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a b s t r a c t

The starting point for this paper is a nonlinear, two-point boundary value ordinary differential
equation (BVODE) that defines corneal curvature according to a static force balance. A numerical
solution to the BVODE is computed by first converting the BVODE to a parabolic partial differential
equation (PDE) by adding an initial value (t, pseudo-time) derivative to the BVODE. A numerical solution
to the PDE is then computed by the method of lines (MOL) with the calculation proceeding to a
sufficiently large value of t such that the derivative in t reduces to essentially zero. The PDE solution at
this point is also the solution for the BVODE. This procedure is implemented in R (an open source
scientific programming system) and the programming is discussed in some detail. A series approxima-
tion to the solution is derived from which an estimate for the rate of convergence is obtained. This is
compared to a fitted exponential model. Also, two linear approximations are derived, one of which leads
to a closed form solution. Both provide solutions very close to that obtained from the full nonlinear
model. An estimate for the cornea radius of curvature is also derived. The paper concludes with a
discussion of the features of the solution to the ODE/PDE system.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical modeling in biological and medical sciences is currently receiving wide attention. Qualitative and quantitative models
can provide a major advantage in the diagnosis and prediction of the outcome of therapies for different diseases and related health issues.
In the case of vision, ophthalmologists and optometrists generally consider the cornea as one of the most important components of the
eye that is crucial for normal vision [1]. For diagnostic purposes, a detailed knowledge of corneal topography and curvature is essential. To
understand these features, a sufficient level of detail is achieved only by accurate measurements and correct mathematical models [2].

For corneal topography modeling, models based on various conical sections such as ellipsoids and paraboloids [3] are well established and
confirmed as accurate. This approach goes back to Helmholtz [4] who proposed ellipses as descriptions of corneal profiles. Presently, this
description along with its many variations is the main basis for the mathematical modeling of corneal topography (for a survey see [5] and
references therein; [6] presents some generalizations). Additionally, models and associated numerical simulations of the biomechanical shell
that constitutes the cornea are now widely studied (see e.g., [7,8]). These structural models are invaluable for understanding the fine details of
many corneal features such as their age-dependent evolution [9] and apex displacement caused by intra-ocular pressure [10]. The greater
complexity of biomechanical models provides enhanced insight of the model accuracy and physical interpretations.

This paper considers the numerical analysis of an intermediate (in accuracy and complexity) model between the conical sectional and
structural mechanical approaches. The starting point for the analysis of corneal curvature is [11] a static force balance (see also its generalization
[12])

�T
d2h=dx2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðdh=dxÞ2

q
Þ3
þkh¼ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðdh=dxÞ2
q

The variables and parameters of Eq. (1) are given in Table 1.
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To facilitate computation, it is convenient to rescale all the variables to the non-dimensional form (while retaining the original notation
for clarity) and obtain

d2h=dx2

ð1þðdh=dxÞ2Þ3=2
�ahþ b

ð1þðdh=dxÞ2Þ1=2
¼ 0 ð1Þ

with a¼ R2k=T ; b¼ RP=T and h, x rescaled by R – typical corneal dimension such as its radius. Eq. (1) is a two-point, nonlinear boundary
value ODE (BVODE) with the boundary conditions (BCs)

dhðx¼ 0Þ
dx

¼ 0 ð2aÞ

hðx¼ 1Þ ¼ 0 ð2bÞ

Eq. (2a) reflects the symmetry of the corneal curvature h(x) around x¼0. Eq. (2b) indicates that the height h(x) is defined relative to the
height at x¼1. Eqs. (1) and (2) constitute the BVODE to be integrated numerically as explained next. For more formal and theoretical
developments of the considered problem see [13].

2. PDE formulation

A variety of methods exists for the solution of BVODEs. For example, the derivatives in Eq. (1) could be replaced by finite differences.
The resulting system of nonlinear algebraic equations could be solved with a variant of Newton's method. Here we consider an approach
that offers significant advantages, that is, conversion of Eq. (1) to a partial differential equation (PDE).

This is accomplished by appending a derivative to Eq. (1) in a second independent variable t

∂h
∂t

¼ ∂2h=∂x2

ð1þð∂h=∂xÞ2Þ3=2
�ahþ b

ð1þð∂h=∂xÞ2Þ1=2
ð3Þ

The approach then is to integrate Eq. (3) forward in t until ∂h=∂t � 0 in which case Eq. (3) reduces to Eq. (1). Eq. (3) is a parabolic PDE with
the important property that the solution is generally stable and tends to move to the equilibrium solution ∂h=∂t � 0. In particular, this is
expected when j∂h=∂xj51 in which case Eq. (3) is a form of the diffusion equation.

Eq. (3) requires two BCs and an initial condition (IC) in t. The latter can be selected arbitrarily if the solution for hðx; t-1Þ approaches
the desired solution of Eq. (1). Here we will use

∂hðx¼ 0; tÞ
∂x

¼ 0 ð4aÞ

hðx¼ 1; tÞ ¼ 0 ð4bÞ

hðx; t ¼ 0Þ ¼ 0 ð5Þ

Eqs. (4) follow from Eqs. (2). Eqs. (3)–(5) constitute the PDE MOL formulation of interest.
As an incidental note, t in Eq. (3) is not part of the original BVODE problem, Eqs. (1) and (2). The solution of Eqs. (3)–(5) is termed the

method of false transients as it takes its name from the introduction of the pseudo-time variable t. t can also be considered as a continuation
parameter that takes (continues) the solution from t¼0 to the desired solution of Eq. (1) as hðx; t-1Þ.

The principal advantage of this approach is that we can use well established methods for PDEs, in this case, the method of lines (MOL)
considered next.

3. Method of lines numerical solution of PDE

The MOL is based on the replacement of the PDE boundary value (spatial) partial derivatives, e.g., ∂2h=∂x2 in Eq. (3), with algebraic
approximations. In the present case, the approximations are finite differences (FDs), although other possibilities include finite volumes,
finite elements, spectral and least squares approximations. The algebraic replacement of the boundary value derivatives leaves only one
independent variable, the initial value variable (time, t) so that a system of approximating ODEs results. This system of initial value ODEs
can then be integrated by a library routine.

Table 1
Variables, parameters of Eq. (1).

Variable parameter Interpretation Units (mks)

h(x) Corneal surface height m
x Distance from axisymmetric center m
T Tension N
P intraocular pressure N/m
k Elastic constant N/m2
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These steps in the MOL solution of Eqs. (3)–(5) are illustrated with the ODE/MOL routines corneal_2.R in Appendix A1 and the main
program is Appendix A2. Some features of these two R routines are considered next (for more information see [14]).

4. ODE/MOL routine

The ODE/MOL R routine for Eqs. (3) and (4) is listed in Appendix A1. We can note a few particular points about this routine.

� A grid in x is defined with nx¼21 points in the main program discussed next, which is the basis for 21 ODEs approximating Eq. (3). The
dependent variable vector for the 21 ODEs is u (in accordance with the usual convention for PDE numerical analysis, u rather than h is
used for the dependent variable of Eq. (3)). Then, corneal_2 computes 21 ODE derivatives in t which are placed in the array ut. To
start, BC (4b) is programmed as

#
# BC

u½nx� ¼ 0;

Note the use of index nx corresponding to x¼1.
� The derivative ∂h=∂x¼ ∂u=∂x is computed by a call to the differentiation routine dss006.

#
# ux

ux¼ dss006ð0;xl;nx;uÞ;
A vector of 21 values of the derivative, ux, results.

� BC (4a) is programmed as

#
# BC

ux½1� ¼ 0;

Note the use of the index 1 corresponding to x¼0.
� The derivative ∂2h=∂x2 ¼ ∂2u=∂x2 is computed by a call to the differentiation routine dss046.

#
#uxx

nl¼ 2; nu¼ 1;
uxx¼ dss046ð0;xl;nx;u;ux;nl;nuÞ;

nl¼2 and nu¼1 correspond to Neumann and Dirichlet BCs, respectively, that is BCs (4a,b).
� The MOL approximation of Eq. (3) is programmed as

#
#PDE

tr¼ sqrtð1þ1=342Þ;tr3¼ tr43

sr¼ sqrtð1þux42Þ;sr3¼ sr43

ifðncase¼ ¼ 1Þut¼ uxx=sr3�anuþb=sr

ifðncase¼ ¼ 2Þut¼ uxx�anuþb=sr

ifðncase¼ ¼ 3Þut¼ uxx=tr3�anuþb=tr

#

ut½nx� ¼ 0;

ncase¼1(set in the main program) uses the full eq. (3)

∂h
∂t

¼ ∂2h=∂x2

ð1þð∂h=∂xÞ2Þ3=2
� ahþ b

ð1þð∂h=∂xÞ2Þ1=2

ncase¼2 uses eq. (3) modified to

∂h
∂t

¼ ∂2h=∂x2 � ahþ b

ð1þð∂h=∂xÞ2Þ1=2

ncase¼3 uses eq. (3) modified to

∂h
∂t

¼ ∂2h=∂x2

ð1þð1=3Þ2Þ3=2
� ahþ b

ð1þð1=3Þ2Þ1=2

In this way, the effect of 1=ð1þð∂h=∂xÞ2Þ3=2 is investigated. Since BC 4b specifies a constant value (zero), the ODE derivative at x¼1 is set
to zero, ut[nx]¼0.
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� The vector of 21 derivatives in t, utis returned to the calling main program (Listing 2 in Appendix A2) for use by the ODE
integrator.

#

# Return derivative vector

returnðlistðcðutÞÞÞ;
g

The main program in Appendix A2 that calls corneal_2 is considered next.

4.1. Main program

We can note a few particular points about the main program.

� The parameters of Eqs. (1) and (2), or (3)–(5), are defined numerically. These values are used in the calculation of the numerical
solutions described subsequently.

#
# Parameters

R¼ 1; k¼ 1; P¼ 1; T¼ 1; a¼ R42nk=T; b¼ RnP=T; nx¼ 21; xl¼ 1;

� The grid in x is defined on 21 points for the interval 0rxr1 (nx¼21 is set previously as a parameter). Then IC (5) is programmed as a
sequence of 21 zero values.

#

# x grid; initial condition

xg¼ seqðfrom¼ 0;to¼ xl;by¼ xl=ðnx�1ÞÞ;
u0¼ repð0;nxÞ;

This completes the programming of Eqs. (3)–(5).
� The 21 ODEs are integrated by a call to lsodes.

#

# lsodes ODE integration

parms¼ cðrtol¼ 1e�8;atol¼ 1e�8Þ
out¼ lsodesðtimes¼ tm;y¼ u0;func¼ corneal_2;parms¼ parmsÞ;

Note the use of corneal_2. The 21 ODE solutions are returned in out. This solution array is then placed in u for subsequent numerical
and graphical (plotted) display.

� The numerical solution of Eq. (3), uðx; tÞ, and five terms from Eq. (3) are plotted as a 3�2 matrix of plots.

#

# uðx;tÞ vs x

parðmfrow¼ cð3;2ÞÞ;
# parðmfrow¼ cð1;1ÞÞ;

matplotðx¼ xg; y¼ tðuÞ;type¼ “l”;xlab¼ “x”;ylab¼ “uðx;tÞ”;
xlim¼ cð0;xlÞ;lty¼ 1;main¼ “uðx;tÞ; t¼ 0;0:2;…;1”;lwd¼ 2Þ

⋮
Intermediate code removed to conserve space

⋮
#

# Plot 1=ð1þux42Þ4 ð3=2Þ
matplotðx¼ xg;y¼ term1;type¼ “l”;xlab¼ “x”;ylab¼ “1=ð1þux42Þ4 ð3=2Þ”;
xlim¼ cð0;xlÞ;lty¼ 1;main¼ “1=ð1þux42Þ4 ð3=2Þ; t¼ 0;0:2;…;1”;lwd¼ 2Þ;

#

# Plotuxx=ð1þux42Þ4 ð3=2Þ
matplotðx¼ xg;y¼ term2;type¼ “l”;xlab¼ “x”;ylab¼ “uxx=ð1þux42Þ4 ð3=2Þ”;
xlim¼ cð0;xlÞ;lty¼ 1;main¼ “uxx=ð1þux42Þ4 ð3=2Þ; t¼ 0;0:2;…;1”;lwd¼ 2Þ;

#

# Plot�anu

matplotðx¼ xg;y¼ term3;type¼ “l”;xlab¼ “x”;ylab¼ “�anu”;

xlim¼ cð0;xlÞ;lty¼ 1;main¼ “�anu; t¼ 0;0:2;…;1”;lwd¼ 2Þ;
#

# Plot b=ð1þux42Þ4 ð1=2Þ
matplotðx¼ xg;y¼ term4;type¼ “l”;xlab¼ “x”;ylab¼ “b=ð1þux42Þ4 ð1=2Þ”;
xlim¼ cð0;xlÞ;lty¼ 1;main¼ “b=ð1þux42Þ4 ð1=2Þ; t¼ 0;0:2;…;1”;lwd¼ 2Þ;

#

# Plot ut
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matplotðx¼ xg;y¼ term5;type¼ “l”;xlab¼ “x”;ylab¼ “ut”;

xlim¼ cð0;xlÞ;lty¼ 1;main¼ “ut; t¼ 0;0:2;…;1“;lwd¼ 2Þ;
The solution uðx; tÞ ¼ u is plotted first (using the transpose t(u) so that the row dimension of u is the same as the length of x¼xg). The
five terms term1,…,term5 plotted against xg are identified by the comments for each plot. Note in particular the vector of derivatives
in t, ∂u=∂t¼ut¼term5 computed as the sum of the RHS terms of Eq. (3).
This description of the MOL solution of Eqs. (3)–(5) is abbreviated to conserve space. A more complete description is given in [15],
Chapter 8. A discussion of the method applied to 2D problems is given in [16], Chapter 10.
The composite 3�2 plot is in Fig. 1.
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Fig. 1. Output from Listings 1,2.

Table 2
Numerical solution to Eqs. (3)–(5) for 0rtr1.

xl¼1.00 a¼1.00 b¼1.00

t u(0,t) u(0.25xl,t) u(0.50xl,t) u(0.75xl,t) u(xl,t)

0.00 0.00000 0.00000 0.00000 0.00000 0.00000

0.20 0.16870 0.16229 0.13992 0.09188 0.00000

0.40 0.26179 0.24885 0.20765 0.13039 0.00000

0.60 0.31077 0.29459 0.24392 0.15146 0.00000

0.80 0.33727 0.31942 0.26382 0.16321 0.00000

1.00 0.35188 0.33314 0.27487 0.16980 0.00000

ncall¼131
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(4) Numerical and graphical solutions

We can note the following particular details of Fig. 1.

� All six plots start at t¼0 with a constant value from the IC u0[i]¼0 discussed previously (note the horizontal line in each plot).
� The curves in all six plots appear to be approaching a final steady state through the six successive values t ¼ 0;0:2;…;1. In particular,

the ð1;1Þ plot (top left corner), uðx¼ 0; t ¼ 1Þ � 0:35. This is confirmed with the following numerical output from Listing 2 with
u(0,t)¼0.35188 for t¼1 (Table 2). Also, u(xl,t)¼0.00000 in accordance with BC (4b). The number of calls to corneal_2, 131, is
quite modest indicating lsodes efficiently integrated the 21 ODEs.

� As the solution approaches a steady state, ∂u=∂t � 0 in the ð3;2Þ plot (lower right corner) as expected.
� The contributions of the three RHS terms of Eq. (3) are clear in the ð2;1Þ; ð2;2Þ; ð3;1Þ plots. In this way, the properties of a PDE solution

can be explained in detail.

Table 3
Numerical solution to Eqs. (3)–(5) for 0rtr5.

xl¼1.00 a¼1.00 b¼1.00

t u(0,t) u(0.25xl,t) u(0.50xl,t) u(0.75xl,t) u(xl,t)

0.00 0.00000 0.00000 0.00000 0.00000 0.00000

1.00 0.35188 0.33314 0.27487 0.16980 0.00000

2.00 0.36940 0.34963 0.28824 0.17782 0.00000

3.00 0.37041 0.35057 0.28900 0.17828 0.00000

4.00 0.37046 0.35063 0.28905 0.17831 0.00000

5.00 0.37047 0.35063 0.28905 0.17831 0.00000

ncall¼249

Fig. 2. Complete solution presented as a surface plot.
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t]
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Fig. 3. Evolution of the solution at x¼0.
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� The approach to a steady state is further confirmed in Table 3 for 0rtr5 (by changing tf¼1 to tf¼5 in the main program of Listing
2). u(0,t)¼0.37046 for t¼4 and u(0,t)¼0.37047 for t¼5 infers convergence of the solution to five significant figures.

The complete solution is presented in Fig. 2 as a surface plot that illustrates how the solution evolves in space and pseudo-time. It is
clear that the solution quickly and smoothly approaches a steady state. It is particularly interesting to observe how the solution at x¼0
evolves, as this location is subject to the Neumann boundary condition ∂hðx¼ 0; tÞ=∂x¼ 0. The method of lines handles this constraint with
ease, as demonstrated in Fig. 3.

5. Analytical approximation

A simple analytical demonstration of the method of false transients follows from a linearization of the nonlinear equation (1).
According to the Gullstrand eye model, the typical cornea has the radii of curvature ρ equal to 7.7 mm for anterior and 6.8 mm for
posterior surfaces respectively [17]. Moreover, since the typical diameter d of the cornea is equal to 11.5 mm, by the formula for circular
segment

h¼ ρ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2�d2

4

s
;

we can calculate that the height of the cornea is approximately equal to 2.5 mm for an ordinary cornea. Using that value we have
jdh=dxj � 2:5=5:75� 0:43 and thus

1

ð1þð∂h=∂xÞ2Þ1=2
� 0:92;

1

ð1þð∂h=∂xÞ2Þ3=2
� 0:78: ð6Þ

These quantities are only roughly close to 1, but in the first approximation it is reasonable to neglect the derivative ∂h=∂x and obtain the
approximation of Eq. (1)

�d2h

dx2
þah¼ b ð7Þ

and its PDE generalization (3)

∂h
∂t

¼ ∂2h
∂x2

�ahþb ð8Þ

along with initial-boundary conditions (4) and (5). Due to the linearity of Eq. (8), a solution follows easily by the separation of variables. To
this end, we note that as t-1 the solution of Eq. (8) should approach the steady-state that satisfies Eq. (7), that is

hpðxÞ ¼
b
a

1�coshð ffiffiffi
a

p
xÞ

cosh
ffiffiffi
a

p
� �

ð9Þ

It is thus reasonable to look for a solution of Eq. (8) in the form of

hðx; tÞ ¼ uðx; tÞþhpðxÞ ð10Þ
where uðx; tÞ is the homogeneous solution and hp(x) is a particular solution. Substituting Eq. (10) into Eq. (8) we find that u is a solution of
the following homogeneous equation

∂u
∂t

¼ ∂2u
∂x2

�au ð11Þ

with boundary conditions (4) and initial condition

uðx; t ¼ 0Þ ¼ �hpðxÞ ð12Þ
By assuming the separated solution uðx; tÞ ¼ XðxÞTðtÞ we obtain two ordinary differential equations

T 0 ¼ �ðaþλÞT ; X″¼ �λX; λ40 ð13Þ
where primes denote differentiation with respect to the corresponding ODE independent variables and λ is a separation constant chosen
positive in anticipation of the decaying transient. We of course have to have X0ð0Þ ¼ Xð1Þ ¼ 0, which along with Eq. (13) gives us a solution
as a constant multiple of cos

ffiffiffi
λ

p
x, where λ¼ ðπ=2þkπÞ2. By solving also for T and using the linearity of Eq. (11) we arrive at

uðx; tÞ ¼ ∑
1

k ¼ 0
Ak cos

π

2
þkπ

� �
x

� �
e�ðaþðπ=2þkπÞ2Þt ð14Þ

where Ak is calculated from the initial condition

Ak ¼ �2
Z 1

0
hpðxÞ cos

π

2
þkπ

� �
x

� �
dx¼ ð�1Þkþ116b

πð1þ2kÞð4aþð1þ2kÞ2π2Þ
ð15Þ

This finally gives us the solution of Eq. (8) with Eqs. (4) and (12)

uðx; tÞ ¼ 16b
π

∑
1

k ¼ 0

ð�1Þkþ1 cos
π

2
þkπ

� �
x

� �
e�ðaþðπ=2þkπÞ2Þt

ð1þ2kÞð4aþð1þ2kÞ2π2Þ
ð16Þ
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Notice that as a characteristic feature of parabolic equations an exponential decay in t is present in each term in Eq. (16), which is essential
in the false transient method. This means that for t40 all terms apart from the first vanish rapidly leaving

uðx; tÞ � �16b
π

cos
π

2
x

� �
e�ðaþπ2=4Þt

4aþπ2
ð17Þ

which immediately gives the transient time scale 1=ðaþπ2=4Þ. We see that increasing parameter a increases the rate of decay of the
solution. This shows a major advantage of the false transient method: exponential decay forces the solution of parabolic problem (3)–(5)
to quickly reach the steady-state (equilibrium solution).

A check on the rate of decay can be made by fitting an exponential model to the evolution of h. As an example, let us focus on the case
of a¼ b¼ 1. Using the built-in function nls()in R, the following exponential model was fitted to hðx¼ 0; tÞ,

ĥ0ðtÞ ¼ A0ð1�expð�BtÞÞ; A0 ¼ hðx¼ 0; t ¼ 5Þ; B¼ 3:039 ð18Þ

which has a maximum absolute error of 0.003. The value of B compares well with the corresponding value from Eq. (17), i.e.
ðaþπ2=4Þ ¼ 3:47. This idea can be extended over the full range of hðx; tÞ and Fig. 4 shows hðxi; tÞ overlaid with values from the exponential
model ĥiðtÞ, where Ai ¼ hðx¼ xi; t ¼ 5Þ and xiAð0;0:25;0:5;0:75Þ. The approximate exponential model fits the MOL solution very well for all
values of xi, even using the same value for B throughout. The differences for xiAð0:5;0:75Þ can be attributed to the fast decay of the higher
order terms of Eq. (16), as mentioned above.

The comparison in Fig. 5 of the solutions computed by the R routines in Appendices A and B with variable dh=dx and jdh=dxj ¼ 1=3 for
a¼ b¼ 1 (case 3) demonstrates the validity of our choice of the approximation, jdh=dxj � 1=3 (when eq. (3) has the analytical solution ha
(x, t =∞) = 0.9487 − 0.5767 cosh(1.0822x)). The argument for approximating nonlinearities in Eq. (1) can be made somewhat general. In
that equation we can replace dh=dx by the average value of the derivative of the approximation hp (9), which is

dh
dx

�
Z 1

0

dhpðxÞ
dx

dx¼ hpð1Þ�hpð0Þ ¼ �b
a

1� 1
cosh

ffiffiffi
a

p
� �

ð19Þ

By taking the particular values of a¼ b¼ 1 this approach gives jdh=dxj � 0:35 (close to 1/3). Substituting (19) into (1) linearizes the
problem giving an accurate “averaged” approximation

haðxÞ ¼
b
ac

1�cosh
ffiffiffiffiffiffiffi
ac3

p
x

cosh
ffiffiffiffiffiffiffi
ac3

p
 !

where c¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb2

a2
1� 1

cosh
ffiffiffi
a

p
� �2

s
ð20Þ
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Fig. 4. Plots of hðxi; tÞ (solid) overlaid with ĥ iðtÞ (circles) from Eq. (18) for xiAð0;0:25;0:5;0:75Þ with the top plot being for xi¼0.
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Fig. 5. Comparison of solutions using (red solid) the full nonlinear model of Eq. (3); (green solid) the simple approximation jdh=dxj ¼ 1=3 of Eq. (6); and (blue circles) the
closed form hyperbolic approximation of Eq. (21). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Inserting the above values for a and b into Eq. (20) gives the following compact hyperbolic form1 for an approximation to h(x), based on
the accurate averaged value for jdh=dxj

haðxÞ ¼ 0:9433�0:5692 coshð1:0915xÞ ð21Þ
Fig. 5 includes a plot of this approximation which is very close to the solution of the full nonlinear model of Eq. (3), with a maximum
absolute error of 0.006.

The closed form solution of Eq. (21) also provides a simple way of estimating the radius of curvature, ρ. From

ρ¼ ð1þh02Þ3=2
h″

�����
�����

we obtain the following estimate for the cornea radius of curvature

ρðxÞ ¼ cosh
ffiffiffiffiffiffiffi
ac3

p

bc2
1þ b2c

a cosh2 ffiffiffiffiffiffiffi
ac3

p sinh2
ffiffiffiffiffiffiffi
ac3

p
x

� � !3=2

ð22Þ

In particular, we get a useful estimate for the central radius

ρð0Þ ¼ cosh
ffiffiffiffiffiffiffi
ac3

p

bc2
ð23Þ

Using the values of a¼ b¼ 1 we obtain

ρðxÞ ¼ 1:475
ð1þ0:386 sinh2ð1:092xÞÞ3=2

coshð1:0915 xÞ ð24Þ

giving ρð0Þ ¼ 1:475 in non-dimensional units. This compares well with the value of

ρð0Þ ¼ 1
ahð0Þ�b

����
����¼ 1:59 ð25Þ

obtained from the full non-linear model of Eq. (1) and BC (2a). Ophthalmologists measure the curvature of cornea in almost every eye
examination and can diagnose some corneal problems (like astigmatism) from it. Having an accurate approximation to this radius is very
valuable to assist in a diagnosis.

6. Summary

In conclusion, the solution of BVODE (1) by integration of the parabolic PDE (3) is straightforward by the MOL. An important advantage
of this approach is the use of a quality library ODE integrator, lsodes from the R package deSolve [18], which computed the solution to
the 21 MOL/ODEs accurately and efficiently. This conclusion reflects our general experience with the numerical MOL integration of PDE
systems. An estimate for the rate of convergence to the solution for hðx; tÞ is given by Eq. (17) in the form of a truncated series solution. This
compares very well to the fitted exponential model of Eq. (18), as illustrated in Fig. 4.

Finally, we have demonstrated two approximations that can be used to linearize the model. The first uses a simple average value for the
gradient of jdh=dxj � 1=3 from Eq. (6) that is substituted into Eq. (1) and solved by MOL. The second is a more accurate gradient
approximation given by Eq. (19) that leads to the closed-form approximate solution of Eq. (21). Both these approximations give very good
predictions for corneal surface height h(x), the required solution to Eq. (1), as illustrated in Fig. 5. The closed form solution also leads to a
simple estimate for the cornea radius of curvature.
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A. ODE/MOL routine

Listing 1. ODE/MOL routine corneal_2.R.

corneal_2¼function(t,u,parms) {
#

1 This closed form model is similar to that of an inverted catenery.
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# Function corneal_2 computes the PDE t derivative

#
# Declare (preallocate) arrays

sr¼rep(0,nx);
ux¼rep(0,nx);
uxx¼rep(0,nx);
ut¼rep(0,nx);

#
# BC

u[nx]¼0;
#
# ux

ux¼dss006 (0,xl,nx,u);
#
# BC

ux[1]¼0;
#
# uxx

nl¼2; nu¼1;
uxx¼dss046 (0,xl,nx,u,ux,nl,nu);

#
# PDE

tr¼ sqrtð1þ1=342Þ;tr3¼ tr43;
sr¼ sqrtð1þux42Þ;sr3¼ sr43;

ifðncase¼ ¼ 1Þut¼ uxx=sr3�anuþb=sr;
ifðncase¼ ¼ 1Þut¼ uxx=sr3�anuþb=sr;
ifðncase¼ ¼ 3Þut¼ uxx=tr3�anuþb=tr;
#
ut[nx]¼0;

#
# Increment calls to corneal_2

ncall5�ncallþ1;
#
# Return derivative vector

return(list(c(ut)));
}

B. Main program

Listing 2. Main program that calls corneal_2.R.

#
# Corneal shape ODE/PDE

#
# Remove previous workspaces

rm(list¼ls(all¼TRUE));
#
# Access deSolve library

(with lsodes)
library(“deSolve”)

#
# ODE/PDE routines

setwd(“g:/parabolic”);
source(“corneal_2.R”);
source(“dss006.R”);
source(“dss046.R”);

#
# Select case

#
# ncase¼1 - nonlinear ODE

# ncase¼2 - approximate nonlinear ODE

# ncase¼3 - approximate linear ODE

#
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ncase¼1;
#
# Parameters

R¼1; k¼1; P¼1; T¼1; a¼ R42nk=T; b¼RnP/T; nx¼21; xl¼1;
#
# Write selected parameters

cat(sprintf(‘\n xl¼%5:2f a¼%5.2f b¼%5.2f A\n’, xl,a,b))
#
# x grid, initial condition

xg¼seq(from¼0,to¼xl,by¼xl/(nx-1));
u0¼rep(0,nx);
for(i in 1:nx) {
u0[i]¼0;
}

#
# Output sequence in t

tf¼1;nout¼6;ncall¼0;
tm¼seq(from¼0,to¼tf,by¼tf/(nout-1));

#
# lsodes ODE integration

parms¼c(rtol¼1e-8,atol¼1e-8)
out¼lsodes(times¼tm,y¼u0,func¼corneal_2,parms¼parms);

#
# Numerical output

cat(sprintf(“t u(0,t) u(0.25xl,t) u(0.50xl,t) u(0.75xl,t) u(xl,t)”));
u¼matrix(0,nrow¼nout,ncol¼nx);
for(it in 1:nout) {
for(i in 1:nx) {
if(it¼¼1) {

u[1,i]¼u0[i];
}else{

u[it,i]¼out[it,iþ1];
}

}
u[it,nx]¼0;
cat(sprintf(“ tm[it],u[it,1],u[it,6],u[it,11],u[it,16],u[it,21]));
}

#
# Calls to corneal_2

cat(sprintf(“A ncall¼%5dA \n,ncall))
#
# u(x,t) vs x

par(mfrow¼c(3,2));
# par(mfrow¼c(1,1));

matplot(x¼xg,y¼t(u),type¼“l”,xlab¼“x”,ylab¼“u(x,t)”,
xlim¼c(0,xl),lty¼1,main¼“u(x,t), t¼0,0.2,…,1”,lwd¼2)

#
# Supplemental calculations

term1¼matrix(0,nrow¼nx,ncol¼nout);
term2¼matrix(0,nrow¼nx,ncol¼nout);
term3¼matrix(0,nrow¼nx,ncol¼nout);
term4¼matrix(0,nrow¼nx,ncol¼nout);
term5¼matrix(0,nrow¼nx,ncol¼nout);

#
# Step through t

ux¼matrix(0,nrow¼nx,ncol¼nout);
uxx¼matrix(0,nrow¼nx,ncol¼nout);
for(it in 1:nout) {

#
# 1=ð1þux42Þ4 ð3=2Þ

u[it,nx]¼0;
ux[,it]¼dss006(0,xl,nx,u[it,]);
term1½;it� ¼ 1=ð1þux½;it�42Þ4 ð3=2Þ;

#
# uxx=ð1þuxx42Þ4 ð3=2Þ
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ux[1,it]¼0;
nl¼2;nu¼1;
uxx[,it]¼dss046(0,xl,nx,u[it,],ux[,it],nl,nu);
term2[,it]¼term1[,it]nuxx[,it];

#
# -anu

term3[,it]¼-anu[it,];
#
# b=ð1þux42Þ4 ð1=2Þ

term4½;it� ¼ b=ð1þux½;it�42Þ4 ð1=2Þ;
#
# ut

term5[,it]¼term2[,it]þterm3[,it]þterm4[,it];
}

#
# Plot 1=ð1þux42Þ4 ð3=2Þ

matplotðx¼ xg;y¼ term1;type¼ “l”;xlab¼ “x”;ylab¼ “1=ð1þux42Þ4 ð3=2Þ”,
xlim¼ cð0;xlÞ;lty¼ 1;main¼ “1=ð1þux42Þ4 ð3=2Þ; t¼ 0;0:2;…;1“;lwd¼ 2Þ;

#
# Plot uxx=ð1þux42Þ4 ð3=2Þ

matplotðx¼ xg;y¼ term2;type¼ “l”;xlab¼ “x”;ylab¼ “uxx=ð1þux42Þ4 ð3=2Þ”,
xlim¼ cð0;xlÞ;lty¼ 1;main¼ “uxx=ð1þux42Þ4 ð3=2Þ; t¼ 0;0:2;…;1”;lwd¼ 2Þ;

#
# Plot -anu

matplot(x¼xg,y¼term3,type¼“l”,xlab¼“x”,ylab¼“-anu”,
xlim¼c(0,xl),lty¼1,main¼“-anu; t¼0,0.2,…,1”,lwd¼2);

#
# Plotb=ð1þux42Þ4 ð1=2Þ

matplotðx¼ xg;y¼ term4;type¼ “l”;xlab¼ “x”;ylab¼ “b=ð1þux42Þ4 ð1=2Þ”,
xlim¼ cð0;xlÞ;lty¼ 1;main¼ “b=ð1þux42Þ4 ð1=2; t¼ 0;0:2;…;1”;lwd¼ 2Þ;

#
# Plot ut

matplot(x¼xg,y¼term5,type¼“l”,xlab¼“x”,ylab¼“ut”,
xlim¼c(0,xl),lty¼1,main¼“ut; t¼0,0.2,…,1”,lwd¼2);
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