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ABSTRACT

Substrate and nanotube polarization are shown to qualitatively change a nanotube bandstructure. The effect is studied in a linear approximation
in an external potential which causes the changes. A work function difference between the nanotube and gold surface is estimated to be large
enough to break the band symmetry and lift a degeneracy of a lowest but one subband of a metallic nanotube. This subband splitting for a
[10,10] nanotube is about 50 meV in absence of other external potential.

1. Introduction. Since the discovery of carbon nanotubes
in 1991,1 a deep physics of these one-dimensional nanoscale
objects has been demonstrated. Fundamental properties of
the nanotubes have been studied in view of possible
applications in electronics and other devices.2 A detailed
theoretical description of the electronic structure of ideal
single-walled nanotubes (SWNTs) was obtained, as was the
effect of various defects and disorder on the SWNT electronic
properties (see, e.g., ref 3). However, the nanotube systems
under experimental study often deviate from a model picture.
In this letter we investigate one aspect of a real system: the
modification of the electronic properties of the SWNT
deposited on a substrate. One expects that symmetry of the
nanotube at the substrate will be lower than the symmetry
of the nanotube itself in vacuum.

A description of the breaking of the symmetry of SWNT
bandstructure due to a charge transfer (or charge injection)
between the nanotube and the substrate (or contacts) and
calculation of the polarization of the substrate and the
nanotube, which follows due to the charge transfer, are the
goals of our study. Effects of splitting, mixing, and/or
anticrossing of the nanotube subbands, which are caused by
the depolarization of the electron charge density, have been
almost neglected in the literature to now. We use the term
“depolarization” for a number of phenomena, including a
transverse shift of the electron charge density from its
equilibrium distribution profile (effects due to an axial/
longitudinal depolarization were discussed elsewhere4-6). We
will show that the transVerse depolarizationresults in

qualitative changes of the nanotube density of states (DOS)
near van Hove singularities. In particular, we predict the
splitting of a doublet state7 to be likely observable as a
function of the injected/induced charge density of the SWNT.
We discuss this in section 2.1. In section 2.2 we calculate
this injected/induced charge density in a self-consistent way.

The depolarization andintrasubbandsplitting will be
studied for a typical experimental situation: a single SWNT
lies on a conductive substrate or separated from the conductor
by a thin insulating layer representing an oxide on the surface
of a metal. We assume that the nanotube is connected to
electron reservoirs, which may be the leads or the conductor
substrate itself. A transverse external electric field and/or a
work function difference between the SWNT and the
substrate/contact induce nonzero electron/hole charge density
in the nanotube. This extra charge density polarizes the
substrate, which breaks the axial symmetry of the nanotube.
This effect is much larger than an electronic structure
perturbation caused by the lattice distortion which may
happen due to a van der Waals attraction to the substrate.8

We will demonstrate that a direct action of theuniform
external electric field is of minor importance as compared
to thenonuniformfield of surface charges on the substrate.
In the last section we discuss a modification of our theory
of the subband splitting for a case of purely insulating
substrate.

2. Perturbation Theory for Bandstructure Modifica-
tion. 2.1. Splitting of SWNT Subband due to TransVerse
Depolarization.To calculate the splitting and shift of the
electron energy levels one needs to know matrix elements
of the perturbation potential between corresponding wave
functions. In our case, the perturbation is a self-consistent
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Coulomb potential (operator in Heisenberg representation)
that describes the interaction between the probe electron and
the extra charge density on the SWNT and the polarization
charge density on the substrate surface:

Both the probe electron and the nanotube surface charge are
taken on a cylinder of a radiusR. Then z and R are the
electron coordinates in the cylindrical coordinate system.σ
is the surface charge density. It does not depend on the
coordinateZ along the nanotube because we assume the
translational invariance of the problem for clarity of deriva-
tion. Although, the theory can be easily extended for the
case of slow variation ofσ along the axis. We will show
later that one can drop the dependence ofσ on the angleâ
along the circumferential direction in approximation of a
linear response(in higher orders of perturbation theory a
direct transverse polarization must be taken into account9).
σ* is an image charge density that is equal to-σ for the
metallic substrate.

The first term of eq 1 is the interaction with the charge
density on the nanotube, which coincides with the Hartree
term for the SWNT in a vacuum (without charge injection).
The second term in eq 1 has also a simple physical
meaning: this is the energy of interaction of the electron
with the image charge. The separation between the SWNT
axis and the surface of the conductor ish. In case of the
metallic substrate, it is about the nanotube radius,R, plus
the van der Waals distance for graphite:h ≈ R + 0.34 nm.

The matrix element of the Coulomb operator eq 1 is
calculated with the wave functions of a tight-binding (TB)
Hamiltonian. We use envelope wave functions, obtained
similarly to ref 10. This approach has been widely used in
the literature, so we skip details and give the wave functions
in the one-band scheme (π electrons only) in the form

where indexm labels subbands of the SWNT electronic
structure,k is a longitudinal momentum (these two are good
quantum numbers (discrete and continuum, respectively) for
an ideal, long enough nanotube), andú ) (1 is a pseudospin.
(A pseudospinor vector is formed by a two-component wave
function amplitude defined for two atoms in a graphite unit
cell, A and B). The coordinate along the tube isz, andR is
the angle along the nanotube circumference.

We assume that our potential is smooth at the scale of the
single unit cell (0.25 nm). Then, one may neglect transitions
with the pseudospin flip (transitions between sublattices).
With use of the orthogonality relation between the spinor
components, it yields

whereσ, the surface charge density, is defined later in a self-
consistent way.

Equations 3 and 4 are obtained by a direct Fourier
transformation of eq 1 and describe the energy level shift
whenm ) n and the mixing of different subbands atm * n.
The most interesting term withn ) - m is the mixing
between the degenerate electron states within the same
subband. By solving a secular equation for the intrasubband
mixing of the electron doublet, we obtain the splitting of
the van Hove singularity at the subband edge (Figure 2).
The new subband energy separation reads as

Let us now calculate the injected/induced charge densityσ
which will allow us a numerical estimation for theδEm

splitting.
2.2. Charge Injection due to the Fermi LeVel Shift.

Equations 3-5 are written for the given charge densityσ
which is derived in this section. When the SWNT is placed
in a real device, one must consider the work function
difference between the nanotube and the contact or the
conducting substrate and/or the external potential that may
be applied to the SWNT. The potential shifts the Fermi level
in the SWNT.4 As a result of this, the positive/negative
charge is injected into the nanotube:

Hereν(E) is a bare one-dimensional DOS (independent of
σ in a linear response theory);µ ) ∆W - eæxt - eæind(σ) is
the shift of the electrochemical potential of the SWNT (with
respect to a charge neutrality levelE ) 0) which depends
on the work function difference,∆W, on the external
potential,æxt, applied between the nanotube and the reservoir
and on the potentialæind induced by the charge density of
the nanotube,σ. This last term is proportional to the
intrasubband term (m ) n) of the Coulomb interaction given
by eq 4.

This self-consistent equation forσ, eq 6, is readily solved
analytically if the electrochemical potential is below the
second subband edge. We follow ref 4 in derivation ofσ:
the induced potential is obtained by direct integration of the
charge density along the SWNT as in refs 4 and 5. As it is
shown in Figure 1, for a metallic SWNT, the charge is a
product of the constant DOS,CQ, and the electrochemical
potential,µ. Then the solution of eq 6 is as follows:

〈m| V |n〉 ) - 8πeRσ
|m - n| im-n( R

2h)|m-n|
, m * n (3)

〈m| V |m〉 ) 4πeRσ log(2h
R), m ) n (4)

δEm ) 8πeRσ
m ( R

2h)2m
(5)

σ ) e
2πR∫0

µ(σ)
ν(E) dE (6)

σA ) ∆W - eæxt

2πR e(2 log(2h/R) + CQ
-1)

(7)

V̂ ) e∫-L/2

L/2
dZ∫0

2π
Rdâ [σ̂/[(z - Z)2 +

(RcosR - Rcosâ)2 + (Rsin R - Rsin â)2]1/2] +
[σ̂*/[( z - Z)2 + (RcosR - Rcosâ)2 +

(Rsin R - 2h - Rsin â)2]1/2] (1)

|ψm,k,ú〉 ) 1

x2
(|A〉 + úcmk |B〉) eikzeimR (2)
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and for a semiconductor SWNT, which has the DOS∝
CQE θ(E - ∆)/xE2-∆2, the charge is as follows:

Hereθ(x) is the Heaviside unit step function and∆ is 1/2 of
the energy gap. We introduced a quantum capacitance of
the SWNT following ref 4:

which is the one-dimensional analogue of the quantum
capacitance proposed for a two-dimensional electron gas
system by Luryi.11 Hereb = 1.4 Å is the interatomic distance,
γ = 2.7 eV is the hopping integral for the graphite-like
systems. We notice that despite that theσZ, as given by eq
8, comes from a massive subband (in contrast toσA, as in
eq 7 where the lowest subband is massless, see Figure 1),
the linear dependence ofσA/Z on æxt preserves as long as
the potentialæxt is large enough. This reflects the fact that
a classical one-dimensional charge density is a linear function
of a classical electrostatic potential.12

3. Results and Discussion.In the last section we obtained
the self-consistent expression for the surface charge density
as a function of the external potential and the work function
difference which may be considered as a built-in potential.
Substituting eq 7 into eq 5 we obtain the splitting of the
degenerate subbands|(m〉 of the metallic SWNT (when the
Fermi level is within the first subband) as follows:

The splitting decreases withm exponentially, hence, the
effect is likely observable for the lowest degenerate subband.
Then, for the parameters: SWNT radiusR = 6.7 Å, the
distance to the metal substrateh ) 10.1 Å, and the quantum
capacitanceCQ

-1 = 0.69,4 we obtain a numerical estimate

for the subband splittingδE1 = 0.15(∆W - eæxt). Experi-
mental data for the work function of SWNTs scatters from
4.9 to 5.05 eV.13,14 For the SWNT on the gold substrate we
use as an estimate∆W ∼ 0.3 eV. In the absence of the
external potential, this work function difference results in a
gap of∼46 meV between two split peaks of the density of
states (Figure 2), which is larger thankTat room temperature.
We also calculated the contribution of all other subbands,
which is negligible in the splitting but it shifts the doublet
as a whole. As a result, two new peaks in Figure 2 appear
not symmetrical with respect to the original DOS singularity.

The splitting of(mdoublet is an analogue of a degenerate
level Stark effect for the nanotube in a multipole potential
of the image charge. The lower subband hasx symmetry
and the upper subband hasy symmetry (with corresponding
wave functions |x〉 ) 1/x2(|+m〉 + |-m〉 and |y〉 )
1/x2(|+m〉 - |-m〉) because of an attraction energy of the
electron to its image charge that is lower for the second
combination.

We predict a similar effect for the semiconductor nanotube,
although the total external potential causing the charge
density injection must be larger than one-half of the gap in
this case. As we study in this paper only the effect which is
linear in the external potential, all high order terms in eq 8
have to be discarded.

3.1. Dipole Polarization Correction.The charge injection
in the nanotube may be readily achieved by applying an
external electric field. One may naively argue that the
external field itself can break the bandstructure symmetry
and result in some level splitting. Although, this is a correct
statement in general, the direct splitting of the SWNT orbital
doublet (m by the uniform electric field is forbidden by
symmetry. These degenerate states do not mix together due
to the selection rules of the problem. The matrix element
for an intrasubband splitting in the uniform external field
Ext equals zero by parity:〈m| eExty |-m〉 ) 0.

To calculate the subband splitting in this case, we have to
compute the charge injection, which is proportional to the

Figure 1. Schematic density of states (DOS) of a metallic SWNT.
The first (massless) subband contributes to a constant DOS atE )
0. When the Fermi level,EF, is lower than the second (massive)
subband edge (which corresponds to the first peak of DOS), an
injected/induced charge is proportional to the shaded area and is a
linear function ofEF.

Figure 2. Density of states (DOS) of a [10,10] armchair nanotube
in the vicinity of first van Hove singularity (black line). Charge
injection in the NT due to work function difference (see the text)
results in a splitting of a doublet, which is clearly seen as compared
to bare DOS of neutral NT (light line).σZ ) σA[{x( ∆

∆W - eæxt)2
(4 log2(2h/R) - CQ

-2) + CQ
-2 -

2 log(2h/R)}/(2 log(2h/R) - CQ
-1)]θ(∆W - eæxt - ∆) (8)

CQ ) 8e2

3πbγ
(9)

δEm )
4(∆W - eæxt)

m(2 log(2h/R) + CQ
-1) ( R

2h)2m
(10)
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applied field. The potential is equal toæxt ) Exth, whereh
is the distance between the axis of the tube and the metal
surface, which has to be substituted into eq 10.

In section 2.1 we assumed that the charge densityσ has
no dependence on the angular coordinateâ along the
nanotube circumference. This is an accurate approximation
since a dipole (and higher multipole) component of theσ is
small as compared to what is given by eqs 7 and 8. Let us
prove this assumption for the dipole polarization of the
SWNT.

The nonuniform external potential causes a deviation of
the surface density from the uniform equilibrium value,σ,
which is given by the following expression:

where fi are the occupation numbers, the matrix element
〈i| V |j〉 is given by eqs 3 and 4,Ei are the energies of
subbands, and〈â|i〉 are corresponding wave functions.

We define the nonuniform dipole part of the charge density
of a SWNT asδσ1 ≡ ∫0

2π sin â σ(â) dâ. Then, the dipole
component of the surface charge is as follows:

Let us remind that according to eq 3〈i| V |i ( 1〉 )
-i8πR2eσ/(2h).

In the case where the electrochemical potential equals zero
(no charge in the nanotube), the transverse polarization
includes transitions from the valence to the conduction band
only 〈V| V |c〉 (the details of the calculation are presented
elsewhere9). Here, we study an extra component of the
polarization, which is due to the induced charge density.
Thus, we need to consider only transitions from the levels
above the charge neutrality level,E ) 0, and below the Fermi
level,E ) EF, (which is the shaded area in Figure 1). Hence,
the dipole polarization is proportional to the net charge
density σ, and the dipole charge density of the metallic
SWNT is given by the following expression:

whereCQ = 3.2 is the dimensionless quantum capacitance.
We single out the term 2πRσA, which is the specific one-
dimensional charge density of the SWNT and is proportional
to the external potential and thus to the external field.

Equation 13 shows that the effect of the transverse
polarization on the bandstructure is quadratic in the external
field, in good agreement with a plain dielectric response
theory,9 while the effect of the image charge is linear inExt.
Thus, the degenerate level splitting due to the dipole com-
ponent of the polarization will be less important than the

splitting due to a uniform component:σ0 ≡ ∫0
2π σ(â) dâ, at

least, in a weak field regime discussed in the article. This
proves post factum our assumption ofσ to be independent
of â.

3.2. Depolarization at the Insulator Substrate.For the sake
of completeness we present here also a modification of our
theory to the case of a dielectric substrate. In this case the
screening of the charge density in the nanotube is weaker.
It results from (i) underscreening of the Coulomb interaction
between the nanotube carriers and (ii) lower charge density
induced in the substrate. The second factor can be taken into
account by substituting an effective image charge density
σ* ) σ(1 - ε)/(ε + 1) in the second term of eq 1, whereε

is the dielectric function of the substrate (in case of highly
conductive substrate it equals- ∞), instead of the bare image
charge density- σ. This results in substitutingσ* in eqs
3-8 where appropriate.

Now, the fields of the image charge and the charge in the
SWNT do not cancel each other, in contrast to the case of
the metallic substrate. As a result, underscreening of the
Coulomb interaction happens. This modifies the equations
for the energy level shift (intrasubbandmatrix elements as
in eq 4), and thus the electrochemical potential shift. One
must substitute the log(2h/R) term everywhere by log(2h/R)
+ 2/(ε - 1)log(L/R) whereL is the length of the nanotube
(or distance between metal leads to it). This expression
diverges with the length of the nanotube which reflects the
one-dimensional character of the Coulomb interaction. These
changes have to be made through eqs 7-10.

The first term of eq 1 does not appear in the calculation
of theintersubbandmatrix elements as in eqs 3 and 5. Hence,
no additional correction is required in eqs 11 and 12 of the
previous section.

We assumed in this paper that the perturbation theory in
a linear approximation inµ (or equivalently in σ) is
applicable. Restrictions which may follow from this assump-
tion are as follows. The external potential has to be small.
We neglect here the dipole term in the induced charge density
(and higher multipoles as well). It is equivalent to a weak
intersubband mixing, which assumption may not hold for
wide nanotubes or strong external fields. The effect of the
strong field on the bandstructure is discussed elsewhere.9 In
this paper we used eq 6 for the equilibrium charge density
in the SWNT. One may consider transport devices on an
equal basis, as long as the charge of the nanotube is still
given by the quasi-equilibrium charge density. However, for
nonzero current flowing through the nanotube, one must use
an expression for the charge density that differs from eq 6
(to be discussed elsewhere12).

4. Conclusions. In summary, we have developed a
microscopic quantum mechanical theory for a charge transfer
between a SWNT and a conductive substrate (and/or metallic
leads). This charge injection results from a natural work
function difference between the nanotube and the substrate
or/and from an external potential applied between those. A
surface charge density of the SWNT is calculated self-
consistently within an envelope function formalism of tight-
binding approximation.

δσ(â) ) e∑
i*j

(fi - fj)〈i| V | j〉

Ei - Ej

〈 j|â〉〈â|i〉 (11)

δσ1 )
ie

8πR2
∑

i

(fi - fi (1)〈i|V|i ( 1〉

Ei - Ei (1

(12)

δσ1 )
x3CQ

2

32π
(2πRσA)2

e
R
h

log
2h
R

∝ E xt
2 (13)
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We demonstrated for the first time that the influence of
this charge transfer on the electronic structure of the SWNT
is not negligible for typical material parameters of the
problem. Because of the breaking of the axial symmetry of
the system, the SWNT DOS changes qualitatively: degener-
ate subbands(m, wherem * 0, n, split. It has a simple
physical interpretation: the electrons withx andy polariza-
tions are no longer equivalent as their attraction to the
substrate is different. This effect can be related to a
degenerate level Stark effect with an appropriate choice of
external field of the image charge. The gap between the new
x andy subbands is constant ink-space (for the external field
which is uniform along the tube) so it shows up dramatically
at the subband edge. The van Hove singularity splits, and
the distance between two peaks of the DOS is about 46 meV
for the [10,10] armchair SWNT on the gold substrate.

We obtained analytical expressions for matrix elements
of the image charge field, which yield the mixing of different
subbands and can be used to describe the level anticrossing
(to be discussed elsewhere). The same matrix elements enter
the expression for the multipole polarizabilites of the SWNT.
We estimated a major contribution to the dipole polarizability
of the metallic SWNT, which comes from intraband transi-
tions for nonzero charge injection. The analytical expression
for the dipole component of the surface charge density is
shown to be proportional to the square of the external
potential and, hence, appears in the second order of the
perturbation theory which corroborates post factum our
assumption of uniformity of the induced/injected charge
along the SWNT equator.

We show that the modification of our theory to the case
of semiconductor substrate is straightforward. The analytical

expressions for the van Hove singularity splitting and induced
charge density are obtained.

Acknowledgment. S.V.R. acknowledges support of DoE
through grant DE-FG02-01ER45932, NSF through grant
ECS-0210495, and Beckman Fellowship from the Arnold
and Mabel Beckman Foundation. A.G.P. is grateful to the
Beckman Institute for hospitality during his work in Urbana.
Authors are indebted to Professor K. Hess for valuable
discussions.

References

(1) Iijima, S. Nature1991, 354, 56.
(2) Collins, Ph. G.; Avouris, Ph.Sci. Am.2002, 12, 62.
(3) Louie, S. G. InCarbon Nanotubes: Synthesis, Structure, Properties,

and Applications; Dresselhaus, M. S., Dresselhaus, G., Avouris, Ph.,
Eds.; Springer-Verlag: Berlin. 113-146, 2001.

(4) Bulashevich, K. A.; Rotkin, S. V.JETP Lett.2002, 75(4), 205.
(5) Rotkin, S. V.; Shrivastava, V.; Bulashevich, K. A.; Aluru, N. R.Int.

J. Nanoscience2002, 1 (3/4), 337. Rotkin, S. V.; Bulashevich, K.
A.; Aluru, N. R. In Procs.-ECSPV 2002-12, Kamat, P. V.;
Guldi, D. M.; Kadish, K. M., Eds.; ECS Inc.: Pennington, NJ; 512,
2002.

(6) Leonard, F.; Tersoff, J.Appl. Phys. Lett. 2002, 81(25), 4835.
(7) Vukovic, T.; Milosevic, I.; Damnjanovic, M.Phys. ReV. B 2002,

65(4), 5418.
(8) Hertel, T.; Walkup, R. E.; Avouris, P.Phys. ReV. 1998, B 58, 13870.
(9) Li, Y.; Rotkin, S. V.; Ravaioli, U.Nano Lett.2003, 3(2), 183.

(10) Gonzalez, J.; Guinea, F.; Vozmediano, M. A. H.Nuclear Physics B.
1993, 406(3), 771. DiVincenzo, D. P.; Mele, E. J.Phys. ReV. B 1984,
29(4), 1685.

(11) Luryi, S.Appl. Phys. Lett.1988, 52 (6), 501.
(12) Rotkin, S. V.; Ruda, H.; Shik, A. submitted, 2003.
(13) Suzukia, S.; Bower, Ch.; Watanabe, Y.; Zhou, O.Appl. Phys. Lett.

2000, 76 (26), 4007.
(14) Shiraishi, M.; Ata, M.Carbon2001, 39, 1913.

NL034094X

Nano Lett., Vol. 3, No. 6, 2003 705


