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An atomistic capacitance is derived for a single-wall carbon nanotube in a nano-
electromechanical device. Multi-scale calculation is performed using a continuum model
for the geometrical capacitance, and statistical and quantum mechanical approaches for
the quantum capacitance of the nanotube. The geometrical part of the capacitance is
studied in detail using full three-dimensional electrostatics. Results reported in this pa-
per are useful for compact modeling of the electronic and electromechanical nanotube
devices.
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1. Introduction

Carbon nanotubes are promising for electronic1 and electromechanical2,3 devices as

these natural nanoscale objects have diameters ∼1–50 nm, high mechanical stabil-

ity and interesting electronic properties. Metallic nanotubes, degeneratively doped

and intrinsic semiconductor nanotubes were observed experimentally.4 Electronic

structure fundamentals of an ideal single-wall nanotube (SWNT) were understood

in detail but no known device theories exist. The development of device theories for

carbon nanotubes and further progress in their technology can make the carbon-

based materials as attractive as standard semiconductor materials.

We recently addressed electrostatics of nanotubes5–7 at different levels of accu-

racy. First, a general macroscopic approach has been employed to model the nano-

tube response in a nanoelectromechanical system (NEMS),5 which gives a good

estimate for an electrostatic force for a large diameter multiwall nanotube. When

a voltage is applied between the nanotube and a backgate, the charge is accumu-

lated on the tube surface. We improved the understanding of the microscopics of

the charge accumulation on the single-wall nanotube within a continuum statisti-

cal model6 and a quantum mechanical approach.7 One needs to use the quantum
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mechanical calculation for the electrostatic force in a narrow nanotube NEMS be-

cause of a high depolarization of the external potential by the valence electrons of

the tube. A simple description has been proposed in Ref. 6 as an alternative to a

full quantum mechanical calculation of the electrostatics. In the proposed approach

an atomistic capacitance of the nanotube is computed as the sum of two terms:

the quantum capacitance6,8 and the geometric capacitance. The latter is a full ana-

logue of a macroscopic capacitance of a metallic cylinder of the same shape as the

nanotube. However, in our earlier papers this geometric or classical capacitance has

been approximated by the well known capacitance of an infinite metal wire.9

In this article we study the region of applicability of classical approximation

for a finite tube by solving the Poisson equation in the finite geometry of a NEMS

device. We show how the device geometry influences the geometrical capacitance.

2. Atomistic Capacitance of a SWNT

We studied two types of SWNT device designs. The first design comprises a straight

nanotube fixed (suspended without a slack) between two metal side electrodes over

a backgate electrode. This is referred to as a “string” NEMS design. The side elec-

trodes are kept at the same potential with respect to the backgate. This design is

standard for semiconductor microelectromechanical systems. A first experimental

realization of a single SWNT string NEMS appeared recently.3 The second design

is a “cantilever” NEMS device whose geometry is shown in Fig. 1. The cantilever

nanotube electromechanical switch has been theoretically studied in Ref. 5. The

same geometry can be used to simulate the behavior of the nanotube nanotweez-

ers (for experimental data see Ref. 2), because the electrostatic potential for the

cantilever geometry is the same as for the symmetrical nanotweezers.9

In order to calculate the charge distribution of the SWNT as a function of the

total (acting) potential we represent the potential as a sum of the external and

induced potentials:

φact = φxt + φind . (1)

Cylindrical Nanotube

Ground Plane

L

V

h

V = 5 Volts
R = 0.67 nm
L = 50 nm
h = 5 nm

R

Fig. 1. Geometry of a cantilever device. The radius of the simulated nanotube is 0.67 nm and its
length is 50 nm. The gap between the axis of the nanotube and the ground plane is 5 nm.
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Fig. 2. Density of states of the metallic SWNT near the Fermi level: shaded area represents an
extra charge induced in the SWNT by shifting the Fermi level away from the charge neutrality
level.

The statistical model assumes that the induced charge is an integral over the nano-

tube density of states (DOS) from a local charge neutrality level to a local chemical

potential which becomes Fermi level at zero temperature (see Fig. 2). The local

chemical potential is supposed to follow the local acting potential. Great simpli-

fication is achieved in case of a metallic nanotube operating at low voltage when

the Fermi level shifts within the first subband. Then, the electron dispersion is

linear and the DOS is constant and equals νM = 8/(3bγ). Here b ' 1.4 Å is the

interatomic distance and γ ' 2.7 eV is the hopping integral (we use standard defini-

tions for TBA calculation of DOS). Within this approximation of the linear energy

dispersion in the lowest subband, the induced charge density reads as:

ρ(z) = −e2νMφ
act(z) . (2)

We note that Eq. (2) holds in one-dimensional (1D) case; while in 2D the charge

density is proportional to the electric field (first derivative of the potential) and in

3D the charge density is proportional to the Laplacian of the potential (the Poisson

equation).

In order to obtain a selfconsistent solution for the charge density one has to

calculate the induced potential. With the use of a Green’s function, G(r, r′), it

reads as:

φind(r) = 4π

∫
G(r, r′)ρ(r′)dr′ . (3)

The Green’s function of a 1D system is known to diverge logarithmically until

some external screening is considered. In case of a nanotube device, this screening is

due to the closest gates/contacts. An equation, giving the nanotube charge density

implicitly, follows from Eqs. (2) and (3) and reads as:

− ρ(r)

e2νM
− 4π

∫
G(r, r′)ρ(r′)dr′ = φxt(r) . (4)

The equation can be inverted analytically in simple cases. In general, it allows only

numerical solution or may be expressed as a series.
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We found that the nanotube may be divided into three parts: two contact regions

and a “central” region.6 The side parts are the regions near the contacts and are of

length about several h, where h is the distance to the gate. Aspect ratio of devices

of the state-of-art nanotube technology is very high, which means that the length

of the nanotube, L, is much larger than h. Then, the central region of the nanotube

covers almost the entire device length.

The electrostatics of the central region is elementary and allows an analytical

solution for Eq. (4). Because of the screening of the Coulomb interaction by the

backgate electrons and the valence electrons of the nanotube, the corresponding

Green’s function is short-ranged. Therefore, at a distance of about 2–3h from the

contact, the selfconsistent charge density is given by a simple expression:

ρ ' ρ∞ = − φxt

C−1
g + C−1

Q

' −φxtCg

(
1− Cg

CQ

)
, (5)

here we used notations C−1
g = 2 log(2h/R) and C−1

Q = 1/(e2νM ) for the inverse

capacitance (potential coefficient) of a straight metal cylinder and the atomistic

correction, respectively. ρ∞ stands for an equilibrium charge density of the SWNT,

calculated at a distance from the side electrode much larger than the distance to

the backgate, h. We will extend this calculation in the next section to take into

account the finite size effects for the Cg.

3. Full Electrostatics Calculation of the Geometric Capacitance

3.1. The model and method

In this section we present a full electrostatic capacitance calculation which is based

on the following governing equation:

52φ = 0 r ∈ Ω̄ (6)

along with appropriate boundary conditions for the exterior electrostatic problem

in 3D as given by10:

φ = g1 on dΩ1 (7)

and

φ = g2 on dΩ2 , (8)

where dΩ1 (dΩ2) denotes the surface or boundary of a conductor 1 (2), and Ω̄ is

the domain exterior to the conductors 1 and 2. A potential of g1 (g2) is applied to

the conductor 1 (2). The objective is to compute the surface charge density on the

two conductors.

Boundary element method11 is an efficient technique to solve the exterior elec-

trostatic problem. The boundary integral equation for the electrostatic problem in

3D is given by:

φ(P ) =

∫
dΩ

G(P,Q)σ(Q)dΓQ , (9)



December 11, 2002 9:33 WSPC/175-IJN 00027

Atomistic Capacitance of a Nanotube Electromechanical Device 341

Fig. 3. Discretized nanotube of length 50 nm and radius 0.67 nm. A magnified view of the free
end of the cantilever nanotube is shown. Typical length of discretization is 0.03 nm.

where σ is the unknown surface charge density, P is the source point, Q is the field

point, G is the Green’s function and dΩ = dΩ1 ∪ dΩ2. In three dimensions,

G(P,Q) =
1

4πε|P −Q| , (10)

where |P −Q| is the distance between the source point P and the field point Q and

ε is the permittivity of the medium.

In the classical boundary element method, the surface of the conductors is dis-

cretized into panels as shown in Fig. 3. The surface charge density is interpolated

using bilinear shape functions.10 The boundary integral equation (9) for a source

point P can be rewritten as:

φ(P ) =
NE∑
k=1

∫
dΩk

1

4πε|P −Qk|
σkdΓQk , (11)

where NE is the number of panels, dΩk is the surface of the kth panel, Qk is the

field point on the kth panel and σk is the unknown charge density on the kth panel.

Depending on the location of the source point P and the field point Q various

techniques are used to evaluate the integrand in Eq. (11). When P and Q are in

the same panel the integration is performed analytically and when P and Q are in

different panels the integration is performed numerically (see Ref. 10 for details).

Equation (11) can be rewritten in a matrix form as:

Aσ̄ = φ̄ , (12)

where A is an NP ×NP coefficient matrix, φ̄ is a right hand side NP × 1 vector,

σ̄ is an unknown NP × 1 vector, and NP is the number of nodes on the surface of

the conductors. The entries of the coefficient matrix are given by:

A(i, j) =

∫
dΩj

1

4πε|Pi −Qj |
dΓQj i, j = 1, . . . , NP . (13)

The φ̄ vector in Eq. (12) is the given potential boundary condition. The unknown

charge density vector can be computed by solving the matrix problem in Eq. (12).
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Fig. 4. 3D plot of the surface charge density distribution on a cantilever nanotube of radius
0.67 nm, length 50 nm and the distance from the ground plane 5 nm.

We plot a typical solution of the problem as a color map in Fig. 4. The electron

density is shown as a vector normal to the nanotube axis. The closer the point of

the surface to the axis, the smaller the charge density. In the vicinity of the side

contact (shown as a black plane), the charge density is smaller. At the free end of

the tube, it increases. The color map shows that the charge density is not uniform

along the equator in contrast to the one-dimensional wire model.

Once the charge density σ̄ is known the capacitance of the conductor with

applied potential g1 can be computed using,12

Cg =
1

g1

∫
dΩ1

σ(Q)dΓQ . (14)

The results of this calculation are presented below.

3.2. Results and discussion

The capacitance of an infinite wire is logarithmic in nature and can be computed

as the product of length of the tube and specific capacitance: C∞ = 1/2 log(2h/R).

The capacitance of a metal cylinder of finite length connected to the metal side

contact(s) from one (both) end(s) is smaller than L× C∞, the capacitance within

the infinite wire approximation for the same length. The reasons are two-fold: first,

the contact region is depleted as the external potential is screened by the free

electrons in the contact. Second, the charge distribution is nonuniform along the

length of the tube because of closed (free and/or attached to the metal surface)
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Fig. 5. Dependence of the capacitance of the nanotube of radius 0.67 nm on the length of the
NEMS, L. The capacitance of the string device is shown as a full line and the capacitance of the
cantilever device is shown as a dot–dashed line. The specific capacitance of the infinite wire times
the length is plotted as a dashed line.

ends of the tube, i.e., finite size effect. We studied the finite size effect by changing

the actual length of the simulated NEMS device, L. The results are presented in

Fig. 5. Both string and cantilever devices have capacitance which differs from the

limit of the infinite wire model. However, this difference decreases with the length

of the device.

The effect of the side contact screening has been studied by calculating the de-

pendence of the capacitance on the distance to the ground plane (NEMS backgate),

h, for a fixed length of the device. In this case, we expect that with the increase in
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Fig. 6. Dependence of the capacitance of the cantilever nanotube of radius 0.67 nm on the gap
between the nanotube and the ground plane (backgate of the device), h.
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Fig. 7. The comparison of results of the full electrostatics calculation and the one-dimensional
model. The relative difference of the calculated electrostatic potentials ((φ3D − φ1D)/φ3D) is
shown for the lowest part of the tube (—), for the central line of the tube (- · - ·) and for the
uppermost part of the tube (- - -). The difference at the central line is due to the finite size effects.

The potential difference between top and bottom of the tube shows the transverse polarization of
the metal cylinder which is not taken into account by the 1D wire approximation.

the distance of the nanotube to the gate the screened area of the nanotube surface

grows, and the change in the capacitance becomes more prominent. As we have dis-

cussed above, the screening diminishes the NEMS capacitance, and therefore, the

geometric capacitance decreases with h. We plot the cantilever NEMS capacitance

in Fig. 6. The string NEMS has the same behavior (not shown).

The effects of the screening and the finite size result in a distribution of the

charge along the nanotube which is different from what we obtained in the infinite

wire approximation. These two results are compared in Fig. 7.

4. Quantum Mechanical Calculation of the Quantum Capacitance

We derived the Green’s functions for several realistic device geometries and calcu-

lated the selfconsistent charge densities in the last section. These charge densities

were compared with the results of the quantum mechanical computation. We solved

the Schrödinger and Poisson equations for the valence pi-electrons of a metallic arm-

chair [10, 10] SWNT in one subband approximation (in full neglecting the inter-

subband or sigma–pi mixing which has been estimated and is of minor importance

for our problem). The statistical, semiclassical and full quantum mechanical charge

distributions are almost identical and the slight difference is because of pure quan-

tum effects like quantum beatings at the ends of the finite length nanotube (a cross

check has been done with the use of periodic boundary conditions to exclude the

finite length effects). Figure 8(a) shows typical charge density distributions calcu-

lated using the TBA and the Boltzmann equation for a cantilever SWNT of 50 nm

long. We must conclude that a simple statistical description works fairly well for
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(a) (b)

Fig. 8. Specific charge density for two devices with geometry described in the text. The solid
oscillating curve is a result of full quantum mechanical calculation. The solid line is a solution of
joint Poisson and Boltzmann equations. The dotted line is our analytical approximation.

the case of straight ideal single-wall nanotube. Similar result is obtained for a string

SWNT with two side contacts (Fig. 8(b)).

Thus, the analytical form of solution for the device electrostatics is a great

simplification for calculating electrostatic forces in various NEMS devices, when a

solution of a corresponding Poisson equation is known for a specific device geometry.

5. Conclusions

In summary, we present a continuum device theory for nanotube electromechanical

systems. The theory gives a fast and accurate method for the simulation of charge

density for a nanotube of an arbitrary shape displaced by a voltage applied to the

nanotube end(s). The charge density is given by an atomistic capacitance of the

nanotube. The atomistic capacitance is not defined solely by material properties of

the nanotube itself. It depends also on the environment as the charge interaction

in a low-dimensional electronic system of the nanotube is screened by the near-by

placed electrodes.

We developed an analytical method to describe a nanotube NEMS and verified

two main approximations used in the method: a model of an infinite wire for the

geometric capacitance and a statistical model for the quantum capacitance. It is

shown that the statistical approximation works fairly well, while the approximation

of the infinite wire may lead to 6–7% error. Thus, the full electrostatics calcula-

tion has to be employed as described in this paper for obtaining the geometric

capacitance, especially for nontrivial device geometries.
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