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Abstract— In this paper we investigate the problem of nav-
igation for a planar mobile robot tethered to a base by a
flexible cable of length L. Obstacles present in the environment,
coupled with the cable length constraint, makes the problem
highly non-trivial. We adopt a topological approach along with
graph search-based techniques to solve this problem, wherein
we use the notion of a homotopy augmented graph to capture
the information about the homotopy class of the cable. This
lets us plan traversable optimal trajectories from an initial
robot position and cable configuration to a final position of the
robot. We demonstrate the algorithm by planning trajectories in
several cluttered environments and with different cable lengths.
As a demonstration of practical applicability, using a dynamic
simulation testbed we simulate a robot-cable system following
a planned trajectory.

I. INTRODUCTION

There are important applications in which mobile robots
must be tethered to a base station. A tether can provide a
communication link enabling teleoperation in environments
where wireless signals either may not work or be suffi-
cient [22], [21]. This was the case when robots were de-
ployed in the reactor building after the tragic accident in the
Fukushima because the radioactive environment disrupted
communication links [13]. In disaster recovery operations
a tether may also facilitate high bandwidth communications
between the robot and a remotely located human user [6]. As
in many mobile robot applications, energy can be a scarce
resource and a tether allows a robot to be connected to a
power source allowing for longer missions.

In such applications, the presence of a tether introduces
geometric constraints that are both metric and topological
in flavor. First, because the tether generally has a finite
length, the reachable workspace of the robot is limited.
Second, in the presence of obstacles, the configuration space
of a tethered robot is naturally partitioned into equivalence
classes, each consisting of cable configurations such that one
can be reached from the other without passing through an
obstacle.

In this work, we consider the path planning of robot whose
workspace is limited by a cable. The robot moves in a known,
bounded workspace, W (a subset of R2, which is of interest).
One end of a cable, whose length is L, is attached on the
robot while the other end is anchored on a fixed point, base,
at qb. In the absence of any obstacles, the reachable space
of robot will be the intersection of W and a disk of radius
L centered at the base, qb. However, the presence of obsta-
cles introduces geometric constraints as shown in Figure 1.
In addition, obstacles introduce topological constraints. As
shown in Figure 2(a), the point qg can only be reached if
the cable configuration lies in the appropriate homotopy class
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Fig. 1. The reachable workspace for a robot tethered by a cable of length
L in a workspace W . The blue filled region is the reachable workspace
in absence of any obstacle. However, in presence of obstacles, O1 and
O2, the reachable workspace shrinks to the hatched region (with workspace
boundary traced by the robot with taut cable shown in dash-dots).

(the homotopy classes of C1 or C2, for example, but not the
homotopy class of C3).

Our objective is to be able to find the shortest feasible
trajectory to any specified goal position, qg ∈ (W − O)
(whereO = ∪mi=1Oi, the set of obstacles), if such a trajectory
exists (that is, if the goal lies in the reachable workspace,
via any homotopy class), given an initial configuration of
the robot and the cable. Clearly the shortest trajectory in
(W − O) connecting qs to qg may not be sufficient (as
illustrated in Figure 2(b)). This is because the cable length
constraint may prevent the traversal of the trajectory. Even
if every point on the trajectory is individually reachable
(using some homotopy class), the trajectory as a whole may
not be traversable. However, the shortest trajectory in some
other homotopy class may be traversable (as illustrated in
Figure 2(c)).

The cable can be considered to be of fixed length, L, that
is flexible and can be allowed to slack. We will assume that
the robot can drive over the cable, if required, and hence
we will not be concerned by the issues like damage to or
self-entanglement of the cable. Alternatively, we can assume
that the cable is a flexible and stretchable elastic band, with
maximum length of L, which remains taut all the time. Either
of these models are compatible with the proposed solution.

There are several relevant papers that report similar inves-
tigations. Among the earliest works, [17] have considered
tangle-free planning for multiple tethered robots in an envi-
ronment without obstacles.

In [27] the author approaches the problem by triangulation
of an environment with polygonal obstacles, followed by
a visibility graph-like construction, selection of a particular
homotopy class, and performing an almost-exhaustive enu-
meration of graph paths in the class. However this approach
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(a) The point qg can be reached via some homo-
topy classes, but not others, because of the cable
length constraint.
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(b) The globally shortest trajectory, γ, from qs
to qg , with initial cable configuration Ci is not
traversable because of cable length constraint,
even though every point on γ is reachable via
some homotopy class.
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(c) The shortest trajectory in a different homo-
topy class (the trajectory τ ), with initial cable
configuration Ci, is however traversable.

Fig. 2. A tethered robot in a cluttered environment, (W −O), where O = O1 ∪O2 ∪ · · · .

sufferes from the computational complexities involved and
the limitations surrounding construction of a visibility graph.
This technique has also appeared in [28].

In [18] the authors have solved the problem using a
notion of homotopy classes of the cables, not very unlike
our present approach. However, in the graph construction
presented there, instead of formally identifying homotopy
classes using a homotopy invariant, the distance from the
initial vertex is used. Such a representation of homotopy,
solely based on a metric, under many situation may fail to
identify that two vertices in the graph represent two different
homotopy classes. For example, when a point and the start
point are on an axis of symmetry of a symmetric obstacle,
the shortest paths in the two homotopy classes connecting
the points will be of equal length.

The novelty of our approach, on the other hand, is that
we actually use a true homotopy invariant (h-signature) to
construct what we call a h-augmented graph that explicitly
bears the topological information ([5], [19] and Section III-
A). This not only makes our approach more robust, it also
makes the graph construction a lot simpler and intuitive.

In context of coverage using a tethered robot, a Morse
theory-like approach has been used in [24], where the authors
have identified the critical points (“split cells” and “saddle
lines”) of the Euclidean distance from the base, and hence
guaranteed coverage of the workspace.

In our own previous work we have investigated cooper-
ative control of two autonomous boats towing a boom or
a cable with the motivation to address oil skimming and
environmental clean up [4]. Most recently, we have also
addressed cooperative manipulation of objects in which tools
from algebraic topology were used to find robot trajectories
for separating and manipulating objects [19].

II. THEORETICAL FOUNDATION

A. Homotopy Class Of Paths And Cables

Let W be a 2-dimensional simply connected and bounded
region. Suppose it contains a set of obstacles, O = O1 ∪
Q2∪ · · ·∪Om ⊆ W , where O1, O2, · · · , Om are m counts
of obstacles.

Both cable configuration and robot paths are 1-
dimensional curves in (W −O). They can thus be defined as

continuous maps from the interval [0, 1] to (W−O). We will
need to consider the homotopy class of both cables and robot
trajectories. So we start by reviewing some of the standard
definitions related to homotopy.

Definition 1 (Homotopy classes of curves): Two
curves γ1, γ2 : [0, 1] → (W − O) connecting the same
start and end points, are homotopic (or belong to the same
homotopy class) iff one can be continuously deformed into
the other without intersecting any obstacle (see Figure 3(a)).

Formally, if γ1 : [0, 1]→ (W−O) and γ2 : [0, 1]→ (W−
O) represent the two trajectories (with γ1(0) = γ2(0) = qs
and γ1(1) = γ2(1) = qg), then γ1 is homotopic to γ2 iff
there exists a continuous map η : [0, 1]× [0, 1]→ (W −O)
such that η(α, 0) = γ1(α) ∀α∈ [0, 1], η(β, 1) = γ2(β) ∀β∈
[0, 1], and η(0, µ) = qs, η(1, µ) = qg ∀µ∈ [0, 1] [5], [15].

Homotopy invariants of curves (a function of curves that
uniquely identifies its input’s homotopy class), in general,
are difficult to design and compute. Homotopy groups do not
have the natural structure of a vector space, unlike its more
computationally favorable cousin, homology groups [15].
However, for curves in 2-dimensional plane with punctures
(i.e. obstacles), there is a relatively simple representation of
the homotopy group and a way of computing the homotopy
class of a given curve [12], [16], [26], [15], [3]: We consider
representative points, ζi, inside the ith obstacle Oi [5],
and parallel non-intersecting rays, r1, r2, · · · , rm, emanating
from the obstalces (Figure 3(b)). If γ is a given curve whose
homotopy class we are trying to identify, we construct a
word by tracing γ, and consecutively placing the letters of
the rays that it crosses, with a superscript of ‘+1’ (assumed
implicitly) if the crossing is from left to right, and ‘−1’ if the
crossing is from right to left. Thus, for example, the word
for γ in Figure 3(b) will be “r2r3r4r−14 r5r

−1
6 ”. We then

reduce this word by canceling the same letters that appear
consecutively but with opposite superscript signs. Thus, the
word for γ in Figure 3(b) can be reduced to “r2r3r5r−16 ”.
This reduced word representation is a homotopy invariant
for open curves (with fixed end points), γ, and we will write
this as h(γ) and call it the “h-signature of γ”. However, it
is important to note that we cannot exchange position for
arbitrary pairs of letters in the word (i.e. the juxtaposition of
letters is non-commutative). h-signature is not a vector, but an
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(a) γ1 is homotopic to γ2 since there is a
continuous sequence of trajectories representing
deformation of one into the other, but not to γ3
since it cannot be continuously deformed into any
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points. The homotopy invariant of this curve γ is
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Fig. 3. Homotopy classes and their word representation.

element of the non-abelian group freely generated [23], [15]
by {r1, r2, · · · , rm}. Thus, although words can’t be added
in the sense of vectors, they can be concatenated under the
non-commutative group operation, ‘�’. Also, the inverse of a
word, w, written as w−1, is the h-signature of the same curve
but with opposite orientation (i.e. h(−γ) = (h(γ))

−1), and
is a word where the order of the letters are reversed, and the
exponent of each letter is flipped (so that w �w−1 =“ ”, the
identity element). Thus, (w1 �w2)

−1
= w2

−1�w1
−1. As an

example, (“r2r3r5r−16 ”)−1 =“r6r−15 r−13 r−12 ”. Furthermore,
if the end point of γ coincides with the start point of γ′, then
h(γ ∪ γ′) = h(γ) � h(γ′).

The homotopy invariant of a curve, γ, is the reduced word
constructed in the described way. We call this the h-signature
of γ, and write it as h(γ). It uniquely identifies the homotopy
class of a curve. That is, the reduced word for two curves
connecting the same points are same if and only if the curves
are homotopic.

B. Feasible Path to Goal

Definition 2: (Reachability of point via a particular
homotopy class): Given a point in the workspace, q ∈
(W − O), and a homotopy class of curves connecting qb
to q (represented by the corresponding word, w), we say q
is reachable via homotopy class w if the Euclidean length
of the shortest path connecting qb and q, but restricted to
the homotopy class corresponding to word w, is less than or
equal to L (see Figure 3(c)).

Proposition 1: Let q be a robot position and C be a
corresponding cable configuration connecting qb to q. C
is given an orientation from base to robot, as shown in
Figure 3(c). Let τ be a trajectory connecting q to another
point q′ ∈ (W − O) (with that orientation). If τ(t) is
reachable via homotopy class h(C) � h(τ([0, t])), for every
t ∈ [0, 1] (i.e., for all points on the trajectory), then the
robot can traverse τ in its entirety to reach q′. Furthermore,
the word corresponding to the homotopy class of the final
cable configuration (i.e., its h-signature) will be h(C ′) =
h(C) � h(τ).
[Note: By τ([0, t]) we mean the part of the trajectory, τ , up
to the point τ(t). That is, τ([0, t]) = ∪u∈[0,t]τ(u).]

Proof: We need to prove that each point, τ(t), that is
reached as the robot traverses the trajectory, is reachable via
the homotopy class corresponding to the cable configuration
at that t.

Say the cable configuration at the instant t (i.e., when the
robot is at τ(t)) be C(t). It is easy to notice that then C,
τ([0, t]) and −C(t) will form a closed region (Figure 3(c))
that has been swept by the cable itself. Thus C ∪ τ([0, t])∪
(−C(t)) is null-homotopic [15] – that is, it is a closed loop
that can be contracted to a point. Thus, h(C ∪ τ([0, t]) ∪
(−C(t))) = “ ” (the empty word). This implies h(C(t)) =
h(C ∪ τ([0, t])) = h(C) � h(τ([0, t])).

Thus, due to the hypothesis in the statement, every point
on the trajectory, τ(t), is reachable via the homotopy class
that the cable will be in as the robot follows the trajectory.
Thus the trajectory will be traversable.

The last statement is obvious since C ′ ≡ C(1).

III. OPTIMAL PATH GENERATION

A. Homotopy Augmented Graph

We use a discrete representation of the workspace, W ,
and construct a graph, G (with vertex set V(G) and edge set
E(G)), by placing a vertex in every accessible discrete cell
(cells not intersecting with an obstacle) and by establishing
an edge between the vertices of adjacent cells. While the
graph, G, itself can be quite arbitrary, for simplicity we used
a uniform square discretization and an 8-connected graph
representation of the environment for all our simulations
(Figure 4). From such a graph we construct an h-augmented
graph, Gh, for keeping track of the homotopy class of the
cable. This construction, in essence, is very similar to that of
the homology augmented graph (or H-augmented graph) as
was described in [5]. However here, instead of the homology
invariant, we use the described homotopy invariant. Similar
construction also appears in our recent work [19].

A vertex in this h-augmented graph is of the form (q,w)
where q ∈ V(G) is the position of the robot in the workspace
(as a vertex in the discrete representation graph, G) and
w is the word (i.e. the homotopy invariant) corresponding
to the homotopy class of the cable. We write the tuple as
v = (q,w) ∈ V(Gh). We assume that there is a vertex
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Fig. 4. The h-augmented graph, Gh, is created from the discrete graph
representation of the environment, G, so as to incorporate information about
the homotopy class of the cable.

in G corresponding to the base, qb ∈ V(G). This point is
reachable by the robot with the cable not wrapping around
any obstacle (the cable curled up or spooled completely,
for example). In this configuration, the h-signature of the
cable is the empty word, “ ”. Thus in the h-augmented, the
corresponding vertex is vb := (qb, “ ”).

Suppose q ∈ V(G) and q′ ∈ NG(q) ⊂ V(G) (where by
NG(q) we mean the neighbors of q in G). Thus, [q q′] ∈
E(G) (where by [q  q′] we mean a directed edge from q
to q′). Then, if v = (q,w) ∈ V(Gh) is a vertex in the h-
augmented graph, and if the robot travels from q to q′ via the
line segment

−→
qq′ (line segment corresponding to the edge),

the h-signature of the cable will be w � h(
−→
qq′) when the

robot reaches q′ (due to the last statement of Proposition 1).
This means that the neighbors of (q,w) in Gh will be of the
form (q′, w � h(

−→
qq′)), ∀ q′ ∈ NG(q) (refer to Figure 4).

Thus, starting from vb = (qb, “ ”), one can generate the
vertices in Gh. Corresponding to every edge [q  q′] ∈
E(G), there are edges of the form [(q,w)  (q′,w �
h(
−→
qq′)] ∈ E(Gh). We take the cost of an edge in Gh to

be the same as the cost of the projected edge in G. That
is, cGh

([(q,w)  (q′,w � h(
−→
qq′)]) = cG([q  q′]) (where

cG and cGh
represent the cost functions in the respective

graphs). In our implementation we choose cG([q  q′]) to
be the Euclidean length of the line segment that constitutes
the edge, qq′

In the above construction, for a (q,w) ∈ V(Gh), we do not
however take into account the reachability of q via homotopy
class w. Thus in the next section we describe the first step in
implementation, that is to determine the reachable workspace
via the different homotopy classes.

B. Algorithm: Step 1 — Determining the Reachable
Workspace (the Pre-processing Step)

This step is required for determining the reachable ver-
tices in Gh. This is a one-time pre-processing step — that
means this step needs to be executed only once for a given
environment. Following that, every time we need to plan an
optimal path from any arbitrary robot-cable configuration to
a goal position of the robot, we need not execute this step,
and will only need to run Step 2 of the algorithm.

Starting from the vertex vb = (qb, “ ”) ∈ V(Gh), we
use Dijkstra’s [10], [8] algorithm to expand the vertices in
the graph. For a v = (q,w) ∈ V(Gh), this simultaneously
computes the cost of the shortest path connecting the vertex

and vb. Let us represent the cost of this shortest path in the
graph by gGh

(v) (typically called the g-score of the vertex).
It is to be noted that gGh

(v) is the cost of a path in
the discrete graph representation of the environment, and
in general is greater than the actual Euclidean length of
the shortest curve with h-signature w connecting qb and q
(where q∗ is the position of the vertex q∗ in W −O). While
one can simply eliminate vertices with g-score greater than
L, that approach will get rid of some vertices that are actually
accessible when the maximum cable length is L (because
Euclidean length of the shortest curve up to the vertex in
the particular homotopy class is less than L, but the shortest
path in the graph leading to the vertex is greater than L).

Thus, we try to do better by reducing the elimination of
physically accessible vertices: While executing the Dijkstra’s
algorithm, if for an expanded vertex v = (q,w) we have
gGh

(v) > L (i.e. it is potentially inaccessible), instead of
marking it as inaccessible right away, we take the shortest
path in Gh leading up to v (call it P ), and use a curve
shortening algorithm (Algorithm ‘CurveShorten’) to compute
the Euclidean length of the shortest curve with h-signature w
leading up to q. CurveShorten(P ) gives a value that is closer
(though not equal) to the Euclidean length of the shortest
curve in W − O connecting qb to q, and in the homotopy
class w.

However, since the CurveShorten algorithm is expensive
to run, we do not run it for every vertex, v, with gGh

(v) >
L. Instead, we run it for such a vertex only when the g-
score of its parent (call it vp) is less than or equal to L
as well. We represent this shortened distance of v (from vb
via the correct homotopy class, w) as dGh

(v) and store it
as a data associated with the vertex v. Otherwise, if the g-
score of the parent, vp, of a vertex, v, is greater than L
(which implies, using an inductive argument, that dGh

(vp)
has been computed) we designate its ‘shortened distance’
as dGh

(v) = dGh
(vp) + cGh

([vp  v′]). This effectively
performs the curve shortening only for points on a sphere
of (approximate) radius L in Gh (i.e., distance L in metric
restricted to the graph), while for points outside the ball the
curve shortening happens partially. Thus, only if for a vertex
gGh

(v) ≥ dGh
(v) > L, we mark v to be inaccessible (and

hence do not generate its children).
We next describe the CurveShorten algorithm briefly.

Algorithm CurveShorten: l = CurveShorten(P ):
Input: A path (a sequence of n+ 1 vertices) in graph Gh,

P = [v0=vb, v1, v2, · · · , vn−1, vn=v], vi = (qi,wi) ∈ V(Gh)
Output: The length of the “shortened” curve, l.

1) l := 0
2) i :=0, j :=0
3) while j ≤ n
4) if j < n AND qiqj+1 ∩ O = ∅
5) j := j + 1
6) else
7) l := l + ‖qiqj‖
8) i := j
9) end if

10) end while
11) return l

By qiqj+1 we mean the line segment (in the workspace W )
joining the ith and (j + 1)th vertices in the path. ‖qiqj‖
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Fig. 5. Illustration of algorithm CurveShorten.

indicates the Euclidean length of the line segment qiqj .
Starting from the base, the CurveShorten algorithm tries to
sequentially join the vertices (that constitute the path P )
using straight line segments until the line segment intersects
an obstacle (which is checked by sampling points on the
line segment and checking if any lies inside obstacles). Upon
intersection with an obstacle it continues to try joining the
last point with the following points (Figure 5). The shortened
curve that this algorithm thus uses is a valid curve joining
qb and q and is in the same homotopy class as that of the
original path provided to the algorithm (since we prevent
intersection, and hence ‘crossing across’ an obstacle). The
algorithm however is not guaranteed to return the lowest
Euclidean length path in the homotopy class of the given
path. However, the resulting curve has a smaller length that
is closer to the true Euclidean length of the shortest path.
A more extensive curve shortening algorithm may be em-
ployed (see [7] for a comprehensive list of curve shortening
algorithms), but at a higher computational expense.

We also do not expand vertices that correspond to loop-
ing configurations — vertices, v = (q,w), such that the
homology signature (computed using the Hurewicz map)
corresponding to w has elements with absolute value greater
than 1, or such that the projection of the shortest curve
leading to v on to G is self-interesting (see [19], [5] for
a detailed discussion).

We continue expanding vertices in Gh using Dijkstras, and
pruning vertices in the graph as described, until the open set
is empty (this will be encountered since only finitely many
vertices in Gh are reachable due to the length constraint).
Thus, at the end of Step 1 we have a subgraph of Gh that
contains vertices (q,w) such that q is reachable via the
homotopy class w (where, reachability is determined by the
condition dGh

((q,w)) ≤ L). We write this subgraph as Ĝh.

C. Algorithm: Step 2 — Finding Optimal Path in Ĝh
Given an initial robot position, qs ∈ V(G) (as a vertex in

G), and a cable configuration, Cs, the vertex in Ĝh that this
state corresponds to is us = (qs, h(Cs)). This vertex will
exist in V(Ĝh) since qs is reachable via the homotopy class
h(Cs) =: hs.

Say qg ∈ V(G) is the goal vertex that the robot wants
to reach (qg being the location of the vertex in W ). Thus,
we perform an A* [14], [8] search in Ĝh starting from
vertex (qs, hs) (i.e., seeding the open set with this vertex)
until a vertex of the form (qg, hg) =: ug is expanded (for
some word hg). Following that one can reconstruct the path

in Ĝh connecting (qs, hs) with (qg, hg). Let’s call this path
Q = [us=u0,u1,u2, · · · ,um−1,um=ug], ui = (qi, hi) ∈
V(Ĝh). Now we make couple of observations about this path:

i. Every vertex on this path is reachable via some ho-
motopy class due to the construction of Ĝh (which
we constructed by eliminating non-reachable vertices
of Gh).

ii. Due to the construction of Gh (and since Ĝh is just
a sub-graph of Gh), Q being a path in the graph will
imply that for any two consecutive vertices in it, say
uj and uj+1, we have hj+1 = hj � h(−−−−→qjqj+1). Using
an induction over j this implies hj+1 = hs � h(−−→qsq1 t−−→q1q2 t · · · t −−−−→qj−1qj t −−−−→qjqj+1).

We will assume that the discretization is small enough so that
if uj and uj+1 are reachable (via their respective homotopy
classes), the points on the straight edge joining them will also
be reachable. Thus, from the above observations, and using
Proposition 1, we can conclude that the robot will be able
to follow the trajectory defined by the projection of the path
Q on to G, i.e., the path QG = [qs, q1, q2, · · · , qm−1, qg].

Optimality follows from the fact that we used an optimal
search algorithm to find path to a vertex of the form (qg, ∗) ∈
V(Ĝh), and that cost of the edges in Ĝh are the Euclidean
lengths of the edges. Note however that this optimality is
in the discrete graph (i.e., we found the shortest path in the
discrete graph leading to a valid goal vertex).

For the A* search we use an admissible Heuristic func-
tion for 8-connected graph representation with Euclidean
length of edges as their costs: cGh

(α, β) = |∆x − ∆y| +√
2 min(∆x,∆y), where α = (a, a), β = (b, b) ∈ V(Gh);

a,b ∈ W are respectively the positions of the vertices
a,b ∈ V(G); and ∆x = |ax − bx|,∆y = |ay − by| are
the differences in their x and y coordinates respectively. It
can be proved that cGh

indeed gives a lower bound on the
actual cost of the path in Gh connecting the two vertices,
and thus being an admissible heuristics will speed up the A*
search without sacrificing optimality.

IV. DYNAMIC SIMULATION
To demonstrate the working of the algorithm we de-

veloped a dynamic simulation platform where we used a
point model for the robot, modeled the cable as a series
of rigid cylindrical segments connected by revolute joints,
as well as considered the interaction between the cable and
the obstacles (disk-shaped) by formulating the problem as
a Linear Complementarity Problem (LCP). This dynamic
simulation platform is built on our previous work [20], [4].
Here we briefly describe the mathematical model.

The cable is modeled as a series of n rigid cylindrical
segments connected by revolute joints. The ith segment is
modeled as an uniform cylinder of length Li, and its diam-
eter, di, is assumed to be much smaller than its length. We
choose the generalized coordinates to be θ = [θ1, . . . , θn]

T ,
where θi is the angles made by the ith cylindrical segment
with respect to positive X axis of the global inertial frame
of reference (see Fig. 6).
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Using Lagrangian mechanics, the equations of motion for
the system can be written as

d

dt

(
∂K

∂θ̇

)
− ∂K

∂θ
−Qθ = 0 (1)

where, K, the kinetic energy of the system, is given by
K =

∑n
i=1

(
1
2mi (ṗi · ṗi) + 1

2
miL

2
i

12 θ̇2i

)
with mi the mass,

and pi the center of mass of the ith segment of the cable. The
generalized forces are Qθi = fxLi sin θi+ fyLi cos θi, ∀i ∈
{1, 2, . . . , n}. For a simple demonstrative simulation we
assume the absence of any friction or drag force.

Using a first order approximation for the acceleration in
the equations of motion, (1), we can write at the kth time
instant,

M(θk)
θ̇k+1 − θ̇k

∆tk
− V(θ̇k, θk) − Qk = 0 (2)

where V(θ̇k, θk) ∈ Rn and Qk = [Qθ1 , . . . , Qθn ]
T ∈

Rn is the vector of generalized forces. Thus, using Euler
integration, we can find the generalized states and velocities
at the (k + 1)th time step.

We assume a frictionless contact between the cable and
the obstacles, and adopt a time-stepping algorithms to solve
Linear Complementarity Problem at every step [1], [2], [25].
In order to account for noninterpenetration between the rigid
bodies with smooth distance function, we assume that all
the objects are disk-shaped, and that the thickness of cable
segments are negligible, which is consistent with our earlier
assumptions. We only consider the cable-obstacle contacts
using distance functions as described in earlier work [20],
and ignore the self-collision of the cable.

At a given generalized coordinate, θk, at time, tk, we
select and stack up all the distance functions whose values
are less than some threshold, δ, (say mk of them) into a
vector, f(θk) =

[
f1(θk), . . . , fmk(θk)

]T
, i.e. fp(θk) < δ

for p = 1, 2, . . . ,mk. Then our goal is to find the state in
the next step which satisfies fp(θk+1) ≥ 0 (i.e., there is no
penetration of the cable segments into the obstacles). This
results in a nonlinear problem. We thus linearize the distance
functions around θk using a first order approximation as
follows [1], [2], [25],

fp(θ
k+1) ' fp(θ

k) + ∆tk∇θfp(θk)θ̇k+1 (3)

which is linear with respect to the generalized velocity of
the next time step. We thus incorporate impulse, λk, due
to the contacts into the generalized force term of Eqn. (2),
and thus construct the equations of motion which satisfy the
noninterpenetration constraints

Mkθ̇k+1 =Mkθ̇k + ∆tk
(
Vk + Qk

)
+∇θf(θk)Tλk (4)

=Mkθ̇ku +∇θf(θk)Tλk

where Mk = M(θk), Vk = V(θ̇k, θk), Qk = Q(θk) and
λk =

[
λk1 , . . . , λ

k
mk

]T
is a vector of nonnegative components

(since the impulse due contact of two rigid bodies should
be in a direction such that the distance functions increase).
To simplify the notation, we define θ̇ku to be the generalized
velocity of the next time step when there is no impulse due to
noninterpenetration constraints, which satisfies the Eqn. (2).
Then we substitute this equation into the noninterpenetration
constraints to obtain a linear inequality,
f(θk) + ∆tk∇θf(θk)

(
Mk

)−1 (
Mkθ̇ku +∇θf(θk)Tλk

)
=f(θk) + ∆tk∇θf(θk)θ̇ku + ∆tk∇θf(θk)

(
Mk

)−1

∇θf(θk)Tλk

=bk +Akλk ≥ 0 (5)

where bk = f(θk) + ∆tk∇θf(θk)θ̇ku ∈ Rmk

and Ak =

∆tk∇θf(θk)
(
Mk
)−1∇θf(θk)T ∈ Rmk×mk

are known,
given by the current generalized coordinate and velocity, θk

and θ̇k. Hence we need to solve a linear complementarity
problem (LCP),

bk +Akλk ≥ 0, λk ≥ 0 (6)

λk ·
(
bk +Akλk

)
= 0

at each time step. We can solve this LCP efficiently with
Lemke’s method [9], [11]. We then substitute the solution
of λk into the following equation (derived from Eqn. (4)) to
find the generalized state and velocity for the next time step.

θ̇k+1 =θ̇ku +
(
Mk

)−1

∇θf(θk)Tλk (7)

θk+1 =θk + ∆tkθ̇k+1. (8)

V. SIMULATION RESULTS

We implemented the search algorithms (Step 1 and Step
2) in C++ programming language with ROS integration. The
lengths of the cable mentioned in this section are all in
the discretization units of the respective examples. Obstacles
shown in the figures are assumed to be inflated versions of
the original given obstacles, so as to avoid collisions, and
thus letting us consider a point model for the robot.

Figure 7 shows the simulation result in a simple 200 ×
200 discretized environment. The base is located at qb =
[50, 50] (the red X mark), the initial robot position is qs =
[20, 150] (the red dot), and the initial cable configuration is
schematically shown in light blue (Figure 7(a)). Figure 7(d)
shows the unrestricted shortest path, which is traversable if
the cable is sufficiently long (plan obtained with L = 260 and
L = 280). However, as the cable gets shorter the robot needs
to travel longer distance using different homotopy classes to
reach the goal as shown in Figures 7(c) and 7(b).

We demonstrate the applicability of the algorithm in
a dynamic simulation using the same environment as in
Figure 7. In the dynamic simulation (screen-shots shown in
Figure 8) we set the cable length at 180 discretization units.
Figure 8(a) shows the robot trying to travel the path obtained
with L = 260 (significantly long so as to obtain the globally
shortest path). As evident, the cable length of 180 units falls
short in trying to traverse the planned path. However, the
path obtained with L = 180 (Figure 8(b)) is traversable.

Figures 9 and 10 illustrates the result in larger and more
realistic environments. In both the figures the base of the
cable is marked by the red cross, the robot’s initial position
is the red circle, the initial cable configuration is shown in
light blue, and the target position of the robot is shown in



(a) The intial cable configuration
and robot.

(b) The optimal path when the ca-
ble length is L = 180.

(c) The optimal path when the ca-
ble length is L = 200, 220, 240.

(d) The optimal path when the ca-
ble length is L = 260, 280.

Fig. 7. Planned trajectories in simple 200×200 discretized environment for different values of maximum cable length, L. The gray cells are the obstacles.
The light blue curve is the cable, with the red cross as its base and red dot the initial robot position. The magenta curves are the planned robot trajectories.

(a) The dynamic simulation of traversing the globally shortest path planned not considering the cable length constraint.

(b) The dynamic simulation of traversing path planned considering the cable length constraint of L = 180.
Fig. 8. The dynamic simulation results in the same 200 × 200 environment as in Figure 7. The cable length in the dynamic model is fixed at 180
discretization units.

blue cross. The planned trajectory for the different values of
L are shown in the magenta curves.

All computations were performed on a Intel i7-3770
3.40 GHz processor with 16 GB memory. Table I shows
the number of expanded vertices and computation time for
both step 1 and step 2 of the algorithm for each simulation. A
clear positive correlation can be observed between the length
of the cable and the number of states expanded in step 1.
However, longer the cable is, the robot is allowed to move
in a larger feasible subgraph of Gh, and hence it reduces the
number of expanded vertices and computation time for step
2. Note that the computation time mentioned is up to two
significant places of decimal only.

VI. CONCLUSIONS

In this paper we describe an efficient algorithm for plan-
ning trajectories for robots tethered to a base by a flexible
cable of fixed length (or an elastic cable of maximum length),
L, in a cluttered environment. The objective is to find the
shortest path from the initial robot-cable configuration to a
final robot position. Obstacles in the environment and cable
length constraints give rise to topological non-triviality in the
problem, which we resolve in two steps: i. By constructing

(a) The optimal path with L = 300. (b) The optimal path with L = 400.
Fig. 9. A 400× 400 discretized environment. qb = [80, 80] (red cross),
qs = [52, 252] (red circle), qg = [320, 200] (blue cross).

(a) The optimal path with L = 350. (b) The optimal path with L = 450.
Fig. 10. A 300×200 discretized environment. qb = [160, 10] (red cross),
qs = [285, 190] (red circle), qg = [10, 10] (blue cross).



Environment 200× 200 200× 200 200× 200 400× 400 400× 400 300× 200 300× 200

Figure 7(b) Figure 7(c) Figure 7(d) Figure 9(a) Figure 9(b) Figure 10(a) Figure 10(b)
L (discretization units) 180 200 260 300 400 350 450

Step 1
Number of vertices expanded 105505 131877 260584 1385422 9668053 396162 1244385
Computation time (s) 0.75 1.14 3.13 33.12 459.71 6.04 29.07

Step 2
Number of vertices expanded 23515 4406 548 219811 47579 110313 33995
Computation time (s) 0.01 0.00 0.00 0.11 0.03 0.05 0.02

TABLE I
COMPUTATION TIME AND NUMBER OF VERTICES EXPANDED.

a homotopy augmented graph we find the subgraph of it
that is reachable via different homotopy classes of the cable,
and, ii. once the reachable workspace in different homotopy
classes is constructed, the shortest path in the subgraph of the
homotopy augmented graph becomes the desired trajectory
of the robot. We illustrated the algorithm using simulations
in cluttered environments, and demonstrated its applicability
using a dynamic simulation testbed.
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