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Abstract
We consider the problem of optimal path planning in different homotopy classes in a given en-

vironment. Though important in applications to robotics, homotopy path-planning in applications
usually focuses on subsets of the Euclidean plane. The problem of finding optimal trajectories in
different homotopy classes in more general configuration spaces (or even characterizing the ho-
motopy classes of such trajectories) can be difficult. In this paper we propose automated solutions
to this problem in several general classes of configuration spaces by constructing presentations
of fundamental groups and giving algorithms for solving the word problem in such groups. We
present explicit results that apply to knot and link complements in 3-space, and also discuss how
to extend to cylindrically-deleted coordination spaces of arbitrary dimension.

1. Introduction
In the context of robot motion planning, one often encounters problems requiring optimal tra-

jectories (paths) in different homotopy classes. For example, consideration of homotopy classes
is vital in planning trajectories for robot teams separating/caging and transporting objects using
a flexible cable (Bhattacharya et al. 2015), or in planning optimal trajectories for robots that are
tethered to a base using a fixed-length flexible cable (Kim et al. 2014). This paper addresses the
problem of optimal path planning with homotopy class as the optimization constraint.

There is, certainly, a large literature on minimal path-planning in computational geometry (for
a brief sampling and overview, see (Mitchell and Sharir 2004)) Of course, since the problem
of computing shortest paths (even for a 3-d simply-connected polygonal domain) is NP-hard
(Canny and Reif 1987), we must restrict attention to subclasses of spaces, even when using
homotopy path constraints. This paper focuses on two interesting and completely different types:
(1) knot and link complements in 3-d; and (2) cylindrically-deleted coordination spaces (Ghrist
and LaValle 2006).

2. Configuration Spaces with Free Fundamental Groups
2.1. Motivation: Homotopy Invariant in (R2 −O)

We are interested in constructing computable homotopy invariants for trajectories in a configu-
ration space that are amenable to graph search-based path planning. To that end there is a very
simple construction for configuration spaces of the form R2 −O (Euclidean plane punctured by
obstacles) (Grigoriev and Slissenko 1998; Hershberger and Snoeyink 1991; Tovar et al. 2008;
Bhattacharya et al. 2015; Kim et al. 2014): We start by placing representative points, ζi, inside
the ith connected component of the obstacles, Oi ⊂ O. We then construct non-intersecting rays,
r1, r2, · · · , rm, emanating from the representative points (this is always possible, for example,
by choosing the rays to be parallel to each other). Now, given a curve γ in R2−O, we construct a
word by tracing the curve, and every time we cross a ray ri from its right to left, we insert the let-
ter “ri” into the word, and every time we cross it from left to right, we insert a letter “r−1i ” into the
word, with consecutive rj and r−1j canceling each other. The word thus constructed is written as
h(γ). For example, in Figure 1(a), h(γ) = “r−11 r4 r

−1
2 r−14 r4 r

−1
4 r−16 ” = “r−11 r4 r

−1
2 r−14 r−16 ”.

This word, called the reduced word for the trajectory γ, is a complete homotopy invariant
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FIGURE 1. Homotopy invariants of curves such as γ in (R2 −O) are words constructed by tracing γ and
inserting letters in the word for every crossing of the chosen oriented sub-manifolds, Ui (in red).

for trajectories connecting the same set of points. That is, γ1, γ2 : [0, 1] → (R2 − O), with
γi(0) = qs, γi(1) = qe are homotopic if and only if h(γ1) = h(γ2).

2.2. Words as Homotopy Invariants in Spaces with Freely Generated Fundamental Groups
In a more general setting the aforesaid construction can be generalized as follows:

CONSTRUCTION 1. Given a D-dimensional manifold (possibly with boundary), X , suppose
U1, U2, · · ·Un are (D − 1)-dimensional oriented sub-manifolds (not necessarily smooth and
possibly with boundaries) such that ∂Ui ⊆ ∂X . Then, for any curve, γ (connecting fixed start
and end points, xs, xe ∈ X), which is in general position (transverse) w.r.t. the Ui’s, one can
construct a word by tracing the curve and inserting into the word a letter, ui or u−1i , whenever
the curve intersects Ui with a positive or negative orientation respectively.

The proposition below is a direct consequence of a simple version of the Van Kampen’s The-
orem (of which several different generalizations are available in the literature).

PROPOSITION 1. Words constructed as described in Construction 1 are complete homotopy
invariants for curves in X joining the given start and end points if the following conditions hold:

(a)Ui ∩ Uj = ∅, ∀i 6= j.
(b)X −

⋃n
i=1 Ui is simply-connected, and,

(c) π1(X −
⋃n
i=1,i6=j Ui) ' Z, ∀j = 1, 2, · · · , n,

Proof. Consider the spacesX0 = X−
⋃n
i=1 Ui andXj = X−

⋃n
i=1,i6=j Ui, j = 1, 2, · · · , n.

Due to the aforesaid properties of the Ui’s the set CX = {X0, X1, · · · , Xn} constitutes an open
cover of X , is closed under intersection, the pairwise intersections Xi ∩ Xj = X0, i 6= j are
simply-connected (and hence path connected), and so are Xi ∩Xj ∩Xk = X0, i 6= j 6= k.

The proof, when γ is a closed loop (i.e. xs = xe), then follows directly from the Seifert-van
Kampen theorem (Hatcher 2001; Crowell 1959) by observing that π1(X) ' π1(X0) ∗ π1(X1) ∗
π1(X2) ∗ · · · ∗ π1(Xn) ' ∗ni=1Z, the free product of n copies of Z, each Z generated due to the
restriction of the curve to Xi, i = 1, 2, · · · , n.

When γ1 and γ2 are curves (not necessarily closed) joining points xs and xe, they are in the
same homotopy class iff γ1∪−γ2 is null-homotopic — that is, h(γ1)◦h(−γ2) = “ ”⇔ h(γ1) =
h(γ2) (where by “◦” we mean word concatenation).

The Construction 1 gives a presentation (Epstein 1992) of the fundamental group ofX (which,
in this case, is a free group due to the Van Kampen’s theorem) as the group generated by the set of
letters U = {u1, u2, · · · , uq}, and is written as G = π1(X) =<u1, u2, · · · , uq>=<U>. In our
earlier construction with the rays, X = R2 − O was the configuration space, and Ui = X ∩ ri
were the support of the rays in the configuration space. It is easy to check that the conditions
in the above proposition are satisfied with these choices. However such choices of rays is not
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FIGURE 2. The fundamental groups of configuration spaces, R3 −O, may or may not be freely generated.

the only possible construction of the Ui’s satisfying the conditions of Proposition 1. Figure 1(b)
shows a different choice of the Ui’s that satisfy all the conditions.

2.3. Simple Extension to (R3 −O) with Unlinked Unknotted Obstacles
The construction described in Section 2.1 can be easily extended to the 3-dimensional Euclidean
space punctured by a finite number of un-knotted and un-linked toroidal (possibly of multi-
genus) obstacles. The role of the “rays” in here is played by 2-dimensional sub-manifolds, Ui,
that satisfy the conditions in Proposition 1, with a letter, ui (or u−1i ), being inserted in h(γ) every
time the curve, γ, crosses/intersects a sub-manifold Ui (Figures 2(a), 2(b)).

However, a little investigation makes it obvious that such 2-dimensional sub-manifolds cannot
always be constructed when the obstacle are knotted or linked (Figure 2(c)). One can indeed
construct surfaces (e.g. Seifert surfaces) satisfying some of the properties, but not all.

2.4. Application to Graph Search-based Path Planning
Using the homotopy invariants described in the previous sub-section, we describe a graph con-
struction for use in search-based path planning for computing optimal (in the graph) trajectories
in different homotopy classes. We first fix the set of sub-manifolds {U1, U2, · · · , Un} as de-
scribed earlier. Now, given a discrete graph representation of the configuration space,G = (V,E)
(i.e., the vertex set, V , consists of points in X , and the edge set, E, contains edges that connect
neighboring vertices) such that xs ∈ V , we construct an h-augmented graph, Gh = (Vh, Eh),
which is essentially a lift of G into the universal covering space of X (Hatcher 2001). The con-
struction of such augmented graphs has been described in our prior work (Bhattacharya et al.
2015; Kim et al. 2014), and the explicit construction of Gh can be described as follows:

i. Vertices in Vh are tuples of the form (x,w), where x ∈ V and w is a word made out of letters
ui and u−1i .

ii. (xs, “ ”) ∈ Vh.
iii. For every edge [x1, x2] ∈ E and every vertex (x1, w) ∈ Vh, there exists an edge (x2, w ◦
h(−−→x1x2)) ∈ Eh, where −−→x1x2 denotes the directed curve that constitutes the edge [x1, x2].

iv. The length/cost of an edge inGh is same as its projection inG: CGh ([(x1, w1), (x2, w2)]) =
CG([x1, x2]).

The item ‘i.’ is just a qualitative description of the vertices in Gh. Item ‘ii.’ describes one
particular vertex in Gh, and using that, item ‘iii.’ describes an incremental construction of the
entire graph Gh. The topology of Gh can be described as a lift of G into the universal covering
space, X̃ , of X , and is illustrated in Figure 3 for a uniform cylindrically discretized space with a
single disk-shaped obstacle.

Such an incremental construction is well-suited for use in graph search algorithms such as
Dijkstra’s or A* (Cormen et al. 2001), in which one initiates an open set using the start vertex (in
item ii.), and then gradually expands vertices, generating only the neighbors at every expansion
(the recipe for which is given by item ‘iii.’). Executing a search (Dijkstra’s/A*) in Gh from
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FIGURE 3. The h-augmented graph, Gh, is a lift of G into X̃ .

(a) 5 shortest trajectories
inG belonging to different
homotopy classes. (obsta-
cles in gray)

(b) The trajectories after
being shortened, but be-
longing to same homotopy
classes.

(c) By setting xs = xe =
x0, the same method can
be used to find shortest
loops passing through x0.

(d) Similar computation
in R3 − O, when its fun-
damental group is freely
generated.

FIGURE 4. Simple results in configuration spaces that have freely generated fundamental groups. The
dot/dash pattern and colors are shown to distinguishing between the trajectories.

(xs, “ ”) to vertices of the form (xe, ∗) (where ‘∗’ denotes any word), and projecting it back
to G, gives us optimal trajectories in G that belong to different homotopy classes. Figure 4(a)
shows 5 such optimal trajectories in the graph, connecting a given start and goal vertex, where
G was constructed by an uniform hexagonal discretization of the planar configuration space.
One can then employ a simple curve shortening algorithm (Kim et al. 2014) to obtain ones more
optimal than the ones restricted to G (Figure 4(b)). Similarly, shortest trajectories connecting xs
and xe can be obtained in 3-dimensional configuration spaces (Figure 4(d)) with freely generated
fundamental group.

3. Knot and Link Complements
As described earlier, when the obstacle set in R3 consists of knots and links, it is in general

not possible to find the sub-manifolds Ui ⊂ (R3 − O) as required by Proposition 1. However,
thankfully we have more generalized versions of the Van Kampen theorem at our disposal that
lets us extend the proposed methodology to such spaces. We first illustrate the generalization in
R3 −O using knot/link diagrams.

3.1. Dehn Presentation of Fundamental Group of Knot/Link Complements
For simplicity we consider knots and links in R3 as obstacles. We assume that the knots/links are
described by polygons, all of which together constitute O ⊂ R3. The thickened obstacles (the
knots/links with the tubular neighborhoods) will be referred to as O. We consider a knot/link
diagram (Lickorish 1997) of the obstacles: Given a projection map, p : R3 → R2, the knot/link
diagram is the projection of the knot/link, p(O), along with additional information about the z-
ordering at the self-intersections of p(O). We assume that in this diagram the self-intersections
are all transverse (which can always be achieved through infinitesimal perturbations) and that the
diagram divides the plane into simply-connected regions (say q counts of them) each bounded
by segments of the projected obstacles, and one unbounded exterior region. The boundary (the
boundary of the closure) of each of the bounded regions is itself a polygon, Qi ⊆ p(O), i =
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FIGURE 5. Constructing the surfaces, Ui, from polygonal knot/link diagrams (polygon segments shown as
thickened cylinders for easy visualization). Null-homotopic loops as γ have non-empty words.

1, 2, · · · , q (Figure 5(a)). Clearly p−1(Qi) ∩ O (the preimage of Qi in the original obstacle)
will be a discontinuous polygon, with discontinuities at the preimages of the self-intersection
points on the knot diagram. But these discontinuities can be removed simply by “connecting” the
preimages at each self-intersection point, resulting into a spatial polygon, Q̃i with the property
that p(Q̃i) = Qi. A simple triangulation can then be employed to construct a surface, Ui, in R3−
O, such that its boundary is Q̃i and p(Ui) is the simply-connected region bounded by Qi (this
can be achieved by first triangulating the planar region, p(Ui), and then lifting the triangulation
to R3) – see Figure 5(a).

The Ui’s thus constructed satisfy properties (b) and (c) of Proposition 1, but not property (a),
nor do they satisfy the property ∂Ui ⊆ ∂X . The consequence of this is that near the regions
where the Ui’s intersect, there can be closed loops in R3 − O which are null-homotopic, but
words constructed simply by tracing the loop and inserting letters corresponding to intersections
with the Ui’s, as we did earlier, may not be the empty word (identity element). An example is
illustrated in Figure 5(b)). Due to our construction, such intersection of the Ui’s happen only
along lines passing through the pre-image of the self-intersections in the knot diagram, for each
of which we end up getting a null-homotopic closed loop with non-empty word.

The Dehn presentation (Weinbaum 1971) uses surfaces as constructed to describe the funda-
mental group of knot/link complements. We consider the free group,G =<u1, u2, · · · , uq>=<
U>. In general, for every self-intersection in the knot/link diagram, there are four adjacent sur-
faces, Ui1 , Ui2 , Ui3 and Ui4 in the order as shown in Figure 6 (when the self-intersection is adja-
cent to the unbounded region in the knot diagram, there are only three). Correspondingly, there
is a closed null-homotopic loop, γi, that has a word ρi = “ui1 u

−1
i2
ui3 u

−1
i4

”. Thus we have such
words ρ1, ρ2, · · · , ρm (assuming there are m counts of self-intersections) that represent null-
homotopic loops. These words are called relations and we call the set R = {ρ1, ρ2, · · · , ρm}
the relation set. It can be easily noted that inverses and cyclic permutations of each ρi also cor-
responds to null-homotopic loops. We thus define the symmetricized relation set, R, as the set
containing all the words in R, all their inverses, and all cyclic permutation of each of those.

Let the normal subgroup of G generated by R be N = {“α1ρi1α
−1
1 α2ρi2α

−1
2 · · ·

α−1κ ακρiκ · · · ” | αk ∈G, ρik ∈R} =<R
G
> (normal closure of R in G). It is easy to observe

that a closed loop, γ, in X = R3−O, has a word that is an element of N iff it is null-homotopic.
Due to a more general version of the Van Kampen’s theorem (Hatcher 2001), the fundamental
group of X is the quotient group, π1(X) = G/N =<U | R> — the group in which, under the
quotient map, elements of N are mapped to the identity element.

3.2. The Word Problem and Dehn Algorithm
Due to the discussion above, two trajectories, γ1, γ2, connecting xs and xe in the knot/link com-
plement, X , belong to the same homotopy class iff the word h(γ1 ∪ −γ2) = h(γ1) ◦ h(γ2)−1

belongs to N =<R
G
>. This problem in group theory is known as the word problem (Epstein

1992), and there are various algorithms, each suitable for specific types of groups, for solving the
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istent, in which case the corresponding letters are simply absent from the word. These words constitute R,
and should map to the identity element in π1(X) =<U | R>

word problem. We, in particular, will focus on a very simple algorithm due to Max Dehn (Lyndon
and Schupp 2001; Greendlinger and Greendlinger 1986), which is applicable to a wide class of
groups and their presentations.

Dehn’s metric algorithm: Given a presentation of a group, π1 =<U | R>, we construct the
symmetricized relation set R as described earlier. Given a cyclically reduced word, w, made up
of letters (and their inverses) from U, one checks for every element ρ ∈ R if w and ρ share a
common sub-words that is of length greater than |ρ|/2 (|ρ| being the length of ρ). If they do (say,
ρ = αβγ, with β being a sub-word appearing in w, and |β| > |ρ|/2), we replace the sub-word
with the shorter equivalent that one obtains by setting ρ to the identity element (i.e., replace β
by α−1γ−1 in w). This process is repeated, and the algorithm terminates when no more such
sub-words are found. The final word at which the algorithm terminates indicates if the initial
word, w, is in N (whether it maps to the identity element in π1).

This algorithm can be used in conjunction with search in Gh as before for finding optimal
trajectories in different homotopy classes, with two vertices (x,w1), (x,w2) ∈ Vh being the
same iff h(w1)◦h(−w2) reduces to the empty word upon applying the Dehn’s metric algorithm.

3.3. Guarantees of Dehn Algorithm
It’s well known (Greendlinger and Greendlinger 1986) that if Dehn algorithm terminates at the
empty word, then w ∈ N . However, the converse is not necessarily true. One can derive several
sufficient (and often highly restrictive) conditions on the presentation <U | R> under which the
converse holds (Lyndon and Schupp 2001). If, for a given presentation of a group the converse
holds, we say that Dehn algorithm is complete for that presentation (or that the presentation is
complete with respect to the Dehn algorithm, or that the word problem is solvable using the
specific presentation and Dehn algorithm).

Due to the result of (Weinbaum 1971), the Dehn presentation of the fundamental groups of
the complement of a tame, alternating, prime knot is complete with respect to the Dehn algo-
rithm. It is also known (Epstein 1992) that automatic groups (including hyperbolic groups) have
presentations that are complete with respect to Dehn algorithm.
4. Cylindrically-deleted Configuration Spaces

The previous results are limited to 3-dimensional spaces: one suspects that higher dimensions
are more difficult. However, there are some classes of spaces for which optimal path-planning
with homotopy constraints is still computable via a Dehn algorithm, independent of dimension.
The following class of examples is inspired by robot coordination problems, in which individual
agents with predetermined motion paths have to coordinate their motions so as to avoid collision.

Consider a collection of n graphs (Γi)
n
1 , each embedded in a common workspace (usually

R2 or R3) with intersections permitted. In the simplest case, each Γi will be homeomorphic to
a closed interval, but more general graphs are permitted, such as roadmap approximations to a
configuration space. On each Γi, a robotRi with some particular fixed size/shape is free to move.
Such motion may be Euclidean (by translation/rotation); more general motions are possible, so
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long as the region occupied by the robot Ri in the workspace is purely a function of location on
Γi. A point in the product space

∏
i Γi determines the locations of the n robots in the common

workspace. Certain configurations are illegal, due to collisions. For example, if the robots are
point-like, and each Γi = Γ is identical, then the configuration space of n points on Γ is the
cross product

∏
i Γi minus the pairwise diagonal ∆. If the robots are given finite extent, then this

system has a configuration space obtained by the graph product
∏
i Γi minus an ε-neighborhood

of the pairwise diagonal. However, more general types of collisions can be defined, say, if the
robots are irregularly shaped and the graphs Γi are all different. In this most general case, the
natural analogue of a configuration space is the coordination spaces of (Ghrist and LaValle 2006).

The coordination space of this system is defined to be the space of all configurations in
∏
i Γi

for which there are no collisions – the geometric robots Ri have no overlaps in the workspace.
Under the assumption that collisions between robots are pairwise-defined, the coordination space
is cylindrically deleted and of the form

X =

(
n∏

i=1

Γi

)
−O where O =

⋃
i<j

{
(xk)N1 ∈

N∏
k=1

Γk : (xi, xj) ∈ ∆i,j

}
,

for some (open, “collision”) sets ∆i,j ⊂ Γi × Γj where 1 ≤ i < j ≤ N . In what follows, we as-
sume that the ∆i,j are sufficiently tame (e.g., semialgebraic) so as to avoid issues of non-finitely-
generated π1. Given (internal, path-) metrics on each Γi, the coordination space X inherits a
locally-Euclidean metric on products of edges in the graphs. Such X are complete path-spaces
and thus the problem of geodesics is well-posed. Their fundamental groups can be (highly) non-
trivial, depending on the obstacle set O. However, finding optimal paths subject to homotopy
classes is still computable. To that end one can construct the subspaces Ui ⊂ X of co-dimension
1, and the relation set R, and use them to design complete homotopy invariants as before. We do
not discuss the explicit construction of the Ui’s for cylindrically-deleted coordination spaces in
this paper, but provide the following theorem on solvability of the word problem in such spaces.

THEOREM 1. Any compact cylindrically-deleted coordination space X admits a Dehn algo-
rithm for π1.

Proof. Any suchX is realized as a Hausdorff limit of cubcial complexes which were shown in
(Ghrist and LaValle 2006, Thm 4.4) to be nonpositively-curved and to stabilize in π1 by tameness.
All nonpositively-curved piecewise-Euclidean cube complexes have fundamental groups which
are, by a famous result of Niblo-Reeves (Niblo and Reeves 1998), biautomatic. Biautomatic
groups all admit a Dehn algorithm (specifically, there is a quadratic isoperimetric inequality)
(Epstein 1992).

It is worth noting that `2-shortest paths are perhaps not the most natural optimization for
coordination spaces. It would be interesting to consider other (`1, `∞) pointwise norms.

5. Simulation Results in Knot and Link Complements
Given obstaclesO ⊂ R3, and their “skeletons” (1-dimensional homotopy equivalents),O ⊆ O

as polygons in R3, we first choose a projection map, p : R3 → R2, for the knot/link diagram.
With this information, we implemented the automated construction of the surfaces, Ui, for the
Dehn presentation of the knot/link complement, and the symmetricized relation set, R, by com-
puting the self-intersections in p(O). We then used a uniform cubical discretization of R3 − O
to construct the graph G as a discrete representation of the free space, and in the h-augmented
graph, Gh, we find trajectories from (xs, “ ”) to (xg, ∗). We then employ a curve shortening
algorithm to shorten the obtained trajectories. All our implementations were done in C++ pro-
gramming language and visualization were done using OpenGL. The program ran on a laptop
running on a Intel i7-4500U processor @ 1.80GHz with 8 GB memory.

Figure 7(a) shows results in the complement of a trefoil knot. The inset figure shows the
surfaces, Ui, used for Dehn presentation. The graph G was constructed out of uniform 100×
100×100 cubical discretization of the environment. The entire computation (computation of
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(a) 5 trajectories in a trefoil
knot complement.

(b) 5 trajectories in a Hopf link
complement.

(c) 20 trajectories in the com-
plement of a (3, 8) torus knot
linked to a genus-2 torus.

FIGURE 7. Optimal trajectories (in discrete graph representation, followed by curve shortening) in
different homotopy classes in complements of knots and links. Insets show the surfaces, Ui.

the surfaces, the symmetricized relation set R, and computation of the 5 shortest trajectories)
required about 8.1 s. Likewise, Figure 7(b) shows results in the complement of a simple Hopf
link, with the same discretization of the environment, and total computation time of about 8.2 s.
Figure 7(c) shows a much more complex obstacle involving a torus knot linked to a genus-2
obstacle, and the entire computation of 20 trajectories took about 2.6 s.

REFERENCES

S. Bhattacharya, S. Kim, H. Heidarsson, G. Sukhatme, and V. Kumar. A topological approach to using
cables to separate and manipulate sets of objects. International Journal of Robotics Research, online
first publication, February 2015. DOI: 10.1177/0278364914562236.

J. Canny and J. H. Reif. New lower bound techniques for robot motion planning problems. In Proc. 28th
Annu. IEEE Sympos. Found. Comput. Sci., pages 49–60, 1987.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT Press, 2nd
edition, 2001.

Richard H. Crowell. On the van kampen theorem. Pacific J. Math., 9(1):43–50, 1959.
D. B. A. Epstein. Word Processing in Groups. Ak Peters Series. Taylor & Francis, 1992.
R. Ghrist and S. LaValle. Nonpositive curvature and pareto optimal motion planning. SIAM Journal of

Control and Optimization, 45(5):1697–1713, 2006.
E. Greendlinger and M. Greendlinger. On dehn presentations and dehn algorithms. Illinois J. Math., 30(2):

360–363, 06 1986.
D. Grigoriev and A. Slissenko. Polytime algorithm for the shortest path in a homotopy class amidst semi-

algebraic obstacles in the plane. In ISSAC ’98: Proceedings of the 1998 international symposium on
Symbolic and algebraic computation, pages 17–24, New York, NY, USA, 1998. ACM.

Allen Hatcher. Algebraic Topology. Cambridge Univ. Press, 2001.
J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy class. Comput.

Geom. Theory Appl, 4:331–342, 1991.
S. Kim, S. Bhattacharya, and V. Kumar. Path planning for a tethered mobile robot. In Proceedings of IEEE

International Conference on Robotics and Automation, Hong Kong, China, May 31 - June 7 2014.
W.B.R. Lickorish. An Introduction to Knot Theory. Graduate Texts in Mathematics. Springer New York,

1997. ISBN 9780387982540.
R.C. Lyndon and P.E. Schupp. Combinatorial Group Theory. Classics in Mathematics. Springer Berlin

Heidelberg, 2001. ISBN 9783540411581.
Joseph S. B. Mitchell and Micha Sharir. New results on shortest paths in three dimensions. In Proceedings

of the Twentieth Annual Symposium on Computational Geometry, pages 124–133. ACM, 2004.
G. A. Niblo and L. D. Reeves. The geometry of cube complexes and the complexity of their fundamental

groups. Topology, 37(3):621–633, 1998.
Benjamn Tovar, Fred Cohen, and Steven M. LaValle. Sensor beams, obstacles, and possible paths. In

Workshop on the Algorithmic Foundations of Robotics, pages 317–332, 2008.
C. M. Weinbaum. The word and conjugacy problems for the knot group of any tame, prime, alternating

knot. Proceedings of the American Mathematical Society, 30(1):22–26, September 1971.


	Introduction
	Configuration Spaces with Free Fundamental Groups
	Motivation: Homotopy Invariant in (R2-O)
	Words as Homotopy Invariants in Spaces with Freely Generated Fundamental Groups
	Simple Extension to (R3-O) with Unlinked Unknotted Obstacles
	Application to Graph Search-based Path Planning

	Knot and Link Complements
	Dehn Presentation of Fundamental Group of Knot/Link Complements
	The Word Problem and Dehn Algorithm
	Guarantees of Dehn Algorithm

	Cylindrically-deleted Configuration Spaces
	Simulation Results in Knot and Link Complements

