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Abstract

Multi-robot coverage and exploration are fundamental problems in robotics. A widely-used,
efficient and distributable algorithm for achieving coverage of a convex environment with Eu-
clidean metric is that proposed by Cortes, et al., which is based on the discrete-time Lloyd’s algo-
rithm. This algorithm is not directly applicable to general Riemannian manifolds with boundary
that are non-convex and are intrinsically non-Euclidean. In this paper we generalize the con-
trol law based on minimization of the coverage functional to such non-Euclidean spaces punc-
tured by obstacles. We also propose a practical discrete implementation based on standard graph
search-based algorithms. We demonstrate the applicability of the proposed algorithm by solving
efficient coverage problems on a sphere and a torus with obstacles, and exploration problems in
non-convex indoor environments. †

1 Introduction
The geometry underlying configuration spaces of multiple robots is a critical feature implicit in
several important challenges in planning and coordination. Metric considerations are fundamen-
tal to problems of coverage [Lloyd 82, Cortez 05, Cortes 04, Bullo 09], exploration [Thrun 05,
Stachniss 05, Stachniss 06], and more. A well-known approach to solving coverage problems with
n robots involve partitioning the appropriate configuration space into n-tessellation (a partition of
the configuration space into simply-connected domains) [Lloyd 82, Cortez 05]. In particular, this
method requires a Voronoi tessellation on the configuration space geometry. While such a tessella-
tion is easy to achieve in a convex environment with Euclidean metric, it becomes increasingly dif-
ficult in environments with obstacles and non-Euclidean metrics. The presence of obstacles makes
it a geodesically non-convex manifold with boundary. Non-Euclidean metrics can arise in the ge-
ometry of a configuration space as inherited from the structure of the underlying domain (e.g., from
irregular terrain), or via direct manipulation of the configuration space geometry for problem goals
(e.g., in multi-robot cooperative exploration problems [Bhattacharya 10]).

The problem of attaining balanced coverage of an environment is fundamental to many practical
multi-robot problems. One common coverage control approach — efficient and distributable — is
through the definition of feedback control laws defined with respect to the centroids of Voronoi cells
resulting from the Voronoi tessellation of the domain. Lloyd’s algorithm [Lloyd 82] is a discrete-
time algorithm that minimizes a coverage functional. A continuous-time version of the algorithm
is described in [Cortes 04], where the authors propose gradient descent-based individual robot con-
trol laws that guarantee optimal coverage of a convex environment given a density function which

†Parts of this work have been presented at the 10th International Workshop on the Algorithmic Foundations of Robotics
(WAFR), 2012.
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(a) The algorithm due to Cortes, et al. for attaining uniform coverage in a convex environment with
Euclidean metric.

?

hole / obstacle

region of
non-zero curvature

(b) We would like to solve the problem for a geodesically non-convex Riemannian manifold with boundary.

Figure 1: An overview of the main contribution of the paper.

represents the desired coverage distribution. To remove the limiting assumption of a convex envi-
ronment, the authors of [Pimenta 08] propose the use of geodesic Voronoi tessellation determined
by the geodesic distance rather than the Euclidean distance. However such a method both involves
computationally-difficult geometric computations and is still limited to Euclidean environments with
polygonal obstacles. Recent work [Bhattacharya 10] has used a graph search-based approach to de-
velop tools for solving the coverage problem in non-convex environments with a non-Euclidean
metric. However, in order to explicitly compute an analog of a generalized centroid in non-convex
tessella, an approximate method involving centroid projection was used. Such a method is, admit-
tedly ad hoc, gives weak guarantees, and is difficult to implement when the configuration space is
not topologically simple (equivalent to a punctured simply-connected domain). There exist search-
based discrete-time algorithms that explicitly search every vertex in a tessellation to find the best
position for the robot in every time-step (as in [Durham 12]). Although such a controller can solve
the problem of multi-robot decentralized coverage on arbitrary metric graphs, the high computa-
tional complexity of this approach makes it impractical for fine discretization or large graphs.

Contributions and Organization:

In this paper we generalize the method for computing the control law that is described in
[Pimenta 08, Lloyd 82] and adapt it to non-Euclidean metric spaces with obstacles that are not nec-
essarily polygonal (Figure 1). In [Bhattacharya 12] we proposed the mathematical formulae and
the basic algorithm for attaining coverage in such spaces. The present work focuses on making the
mathematical framework more rigorous by formalizing details like differentiability and convergence
of the control laws.

The principal theoretical tools are developed in Section 2.6 along with an explicit formula ready
for computation. They relate geodesics, distance derivatives, and the metric tensor. However, the
computability relies on the existence of minimal paths and differentiability of the distance function.
These are formally discussed in details in Section 2.3. This inspires the design of the control law
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for coverage by multiple robots on a manifold with boundary. This control law does not suffer
from the issues of robots getting stuck at the boundaries of obstacles because of the fact that we
use the length metric as our distance function. We realize the control law using a graph search-
based method to achieve an efficient discrete implementation. We illustrate our methodology by
showing how to solve Coverage problems on non-Euclidean Riemannian manifolds with boundary,
multi-robot cooperative exploration, and cooperative human-robot exploration.

In Section 2 of the paper we primarily discuss some mathematical tools related to Riemannian
manifolds with boundary. The main contribution of the paper appears in Section 3 where we develop
and prove stability of the proposed control law for coverage on Riemannian manifolds with bound-
ary. We present the graph search-based discrete implementation and simulation results in Section 4.
For better readability, we have placed the proofs of the lemmas, the corollary and the proposition in
the paper in the appendix at the end of the paper.

2 Background – Manifolds with Boundary
In this section we discuss and build some of the theoretical tools that will be essential in designing
and proving the stability of the control law (which we will do in Section 3) for coverage in general
Riemannian manifolds with boundary. Unless otherwise mentioned, we will assume all manifolds
mentioned in this paper to be path connected.

2.1 Preliminaries: Riemannian Geometry
We assume that the reader is familiar with the mathematical concepts of manifolds, tangent bundles,
cotangent bundles, coordinate atlas, Riemannian metric and geodesics. For detailed discussion on
these topics please refer to Appendix A of [Murray 94] or any standard text book on Manifolds and
Riemannian geometry [Jost 97, Petersen 06]. As a quick reference, we provide below some of the
most frequently used concepts from Riemannian geometry.

Definition D1 (Metric or Distance function). A metric on a topological space [Munkres 99], X , is
a function d : X ×X → R such that, for any p, q ∈ X , the following conditions are satisfied,

i. d(p, q) ≥ 0,

ii. d(p, q) = 0 if and only if p = q,

iii. d(p, q) = d(q, p), and,

iv. d(p, q) ≤ d(p, r) + d(r, q) for all p, q, r,∈ X (this is called the triangle inequality).

Riemannian geometry is concerned with a specific class of topological spaces, namely manifolds.

Definition D2 (Manifold). A manifold is a topological space that locally looks like an Euclidean
space everywhere. That is, if M is a topological space, and p ∈ M is a point in it, then there
exists a open neighborhood U of p (i.e. an open set U with p ∈ U ), such that one can construct
homeomorphisms ψ : U → RD for some nonnegative integer D. The minimum value of D for
which it is possible to construct such homeomorphisms is called dimension of the manifold.

Definition D3 (Coordinate Chart). Given an open subset [Munkres 99] U of a D-dimensional man-
ifold M , and a continuous injective function φ : U → RD, we say C = (U, φ) is a coordinate chart
on U . φ in fact needs to be a homeomorphism as well (i.e. have a continuous inverse over its image).
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A couple of related concepts are those of atlas and chart transition, for which we will refer the
reader to the standard texts.

Definition D4 (Tangent Space). Given a coordinate chart (U, φ) on a smooth manifold M , the
tangent space at a point p on it represented by the coordinate variable x ∈ Ω = Img(φ) ⊂ RD is a
D-dimensional (abstract) vector space, TpM = TxΩ, spanned by the basis ∂

∂x1 ,
∂
∂x2 , · · · , ∂

∂xD .

The dual of the tangent space (i.e., the space of all linear maps Tp → R) at p is known as the
cotangent space, and is represented by T ∗p .

Definition D5 (Riemannian Metric Tensor). A Riemannian metric tensor (or simply, a Riemannian
metric) on a differentiable manifold, M , is a nondegenerate, symmetric bilinear scalar product on
each tangent space, TpM , for every p ∈ M , such that it varies smoothly with p. That is, it is
a bilinear function (for a given p ∈ M ) η : TpM × TpM → R, that is symmetric in its two
parameters, is zero only if one of its parameters is the zero vector, and varies smoothly with p.

As a consequence, in a particular coordinate chart, η has a matrix representation. The compo-
nents of this matrix are written as ηij . We will use the notation η•• to denote the matrix itself (in the
specific coordinate chart).

A manifold equipped with a Riemannian metric at every point is called a Riemannian manifold.
The metric tensor, η, gives a notion of distance-minimizing curves locally at each point, that satisfy
the geodesic equation (see [Petersen 06]). Integral curves of the geodesic equation are known as
geodesics. If all geodesics can be extended indefinitely on the Riemannian manifold (i.e., all in-
tegral curves of the geodesic equation exists in the manifold), it is called a geodesically complete
Riemannian manifold.

2.2 Motivation: Stability and Convergence of Control Laws
If the configuration space of a robot (or a system of robots) can be described by a finite dimensional
Banach space (i.e. a vector space with a norm, ‖·‖), one can easily specify convergence and stability
of a proposed control law. In particular, Lyapunov stability, asymptotic stability and exponential
stability [Sastry 99] are some of the conditions that are often desired. These stability analyses often
boil down to finding an energy-like function (often called the Lyapunov function), and showing that
the proposed control law can be expressed as the gradient of the energy-like function. Conditions
on the function and its gradients on the entire space translate into stability conditions.

However, very often the configuration space under consideration is a general Riemannian man-
ifold. If it is a complete manifold (i.e. every geodesic curve on it can be extended indefinitely in
both directions), one approach is to consider the tangent space at a point [Petersen 06], which is a
Hilbert space (and hence a Banach space), and study the local stability of the control laws in the
tangent space via the exponential map. Since the exponential map is often not bijective, especially
for compact manifolds, the study of convergence in terms of Lyapunov function makes sense only
locally at each point.

However the scenario is most difficult when the manifold is not complete. These are typically
manifolds obtained by removing closed sets from other complete manifolds. In such cases the
exponential map is not even defined completely on the entire tangent space at a point. Geodesic
emanating from a point can hit a hole/puncture on the manifold. We often include the boundary
near the holes/punctures to make it a manifold with boundary. That makes it complete as a metric
space, but it no longer remains a manifold since the points at the boundary do not locally resemble
Euclidean space. Thus we lose the notion of a tangent bundle on this space with the tangent space
being fibers that are identical at every point.
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ℝ2

r = -∇ℇ

pg

(a) Point robot at r navigating towards pg in
the Banach space, R2, by descending gradi-
ent of E , will reach its goal.

O

ℝ2 − O

r = -∇ℇ

pg

(b) R2 − O is not a Banach space. On this
space the integral curve of ṙ = −∇E does
not exist.

Figure 2: In presence of obstacles, a robot can get stuck at ‘local minima’ at the boundary of the obstacles. This
is because of the fact that the control vector at a point on the boundary may not exist inside the tangent cone at
the point, and hence tend to ‘push’ the robot into obstacles.

Unfortunately it is the last kind of spaces that one encounters most often in problems of robot
navigation [Rimon 91, LaValle 06]. The holes or punctures arise due to presence of obstacles. Sup-
posing one can embed the manifold with boundary in an Banach space, stability of control laws on
the embedding space does not correspond to stability on the manifold with punctures.

The simplest example is that of a point robot navigating on R2, and the objective being reaching
a goal point, pg ∈ R2. One can simply construct a smooth energy function, E : R2 → R, with an
unique global minima at pg , and non-zero gradient everywhere else (e.g. E(r) = ‖(r−pg)‖2). The
robot following the negative of the gradient of this function would reach the goal (i.e. the integral
curve of ṙ = −2(r − pg), exists in R2, and converges to pg as t → ∞, the convergence being
exponential in this particular example – Figure 2(a)). However, if we remove an open subset O from
R2 and make that the configuration space of the robot, the same control law will end up making the
robot hit the boundary ofO and ‘get stuck’ there, since the control action will tend to make the robot
move into O (Figure 2(b)). These are the local minima at the boundaries where the gradient of the
energy function does not vanish (also see Figure 10). The more fundamental reason that these kinds
of minima occur is that the control vector may not always belong to the tangent cone (an analog of
the tangent space: see Section 2.4) at the point on the boundary.

To solve this problem, one may attempt to generate a smooth energy function in R2 such that,
starting at any point in R2 − O, the integral curves of the gradient of the function will remain
completely inside R2 − O. This was the approach adopted in [Rimon 92], which involved the
construction of specially crafted navigation functions. However, the construction of such energy
functions is, in general, difficult, computationally expensive and works only for special classes
of obstacles, O. The other, more direct approach in R2 involves the construction of visibility
graphs [Lozano-Pérez 79]. In this approach the robot essentially follows the shortest path that lies
entirely in the free configuration space. This, in effect, generates a vector field with the property of
integral curves lying entirely in R2 −O as desired.

While the direct construction of this vector field is simple in case of the problem of goal-
directed navigation for a single robot, very often one is faced with an objective that is more nat-
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dℓ (x, y)

Ω = (ℝ2 − O) ∪  ∂O

Figure 3: In this figure O represents a compact obstacle with smooth boundary in R2. Ω = (R2 −O) ∪ ∂O is
a manifold with smooth boundary that is complete as a metric space (note that we included the boundary of O
to make the space compact). The metric induced by R2 is not a path metric since a path of length d(x, y) does
not exist in Ω. But d` is a path metric.

urally described in terms of minimization of an energy function. The problem of robot cover-
age [Lloyd 82, Cortez 05, Cortes 04, Bullo 09] is one such problem we will consider extensively
later in this paper. In such problems it is natural to compute the control commands from the gradient
of the energy-like functions. So the more general question that arises is:

What class of energy-like functions defined on a manifold, Ω, possibly with boundary,
will guarantee that the integral curves of their gradients, starting from a point in Ω,
will completely lie inside Ω? What can we say about the convergence/stability of the
system?

While in this paper we will mostly focus on the problem of multi-robot coverage, we hope that
the analysis that we will present in the following sections will help in establishing a much broader
control paradigm on manifolds with boundary.

2.3 Length Metric
We consider a smooth manifold, Ω, possibly with boundary. Such spaces are well-studied in math-
ematics [Wolter 85, Alexander 81]. In robotics they are of great interest since they represent con-
figuration spaces of many robots and linkages with no “immaterial edge” assumptions. For most
of the analysis in this paper we will assume that Ω is embedded in some Euclidean space equipped
with its standard Euclidean metric (RD, d). The topology of Ω is assumed to be the subspace
topology [Munkres 99] derived from RD (so that the boundary of Ω is part of the same topological
space). The metric induced by the ambient Euclidean space is, in general, not a path metric unless
Ω is convex (see p.10 of [Gromov 99]). That means, if i : Ω ↪→ RD is the embedding, for any points
p, q ∈ Ω, there may not exist a path [0, 1]→ Ω of length d(i(p), i(q)).

However, if Ω is path connected, one can define a different metric structure on Ω that makes
it a path metric space, (Ω, d`). The new metric, d`, called the length metric, can be defined such
that d`(p, q) is the infimum of the length of rectifiable curves or paths (computed using the length
structure [Gromov 99] induced by the embedding) joining p and q, but lying entirely in Ω. It is not
difficult to see that (Ω, d`) is a complete metric space (though not geodesically complete). Thus,
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due to the Hopf-Rinow theorem [Gromov 99] there exists a minimizing path (not necessarily unique)
joining every pair of points. Although this last observation may appear somewhat trivial, it is easy to
construct cases of non-compact manifolds where such minimizing geodesics may not exist (e.g., in
Figure 3, consider RD −O, without the boundary of O – a path of length equal to the infimum does
not exist in that space for the shown points x, y). Thus we cannot simply remove the boundaries
from the space of interest.

2.4 Generalization of Tangent Space
By retaining the boundary, Ω no more remains a manifold in the strict sense. Neighborhoods of
points on the boundary of Ω (i.e., points on ∂Ω) resemble an Euclidean half space. However, Ω−∂Ω
is indeed a manifold, although not complete. Thus, given p ∈ (Ω− ∂Ω), one can define the tangent
space Tp(Ω − ∂Ω) in its usual sense. However, we do not have the usual notion of a tangent space
at points on ∂Ω.

Let us now consider a point, p ∈ Ω. The tangent space of the Euclidean space in which Ω is
embedded is thus Ti(p)RD. Now we consider the subset of this tangent space that consists of the
vectors (and their non-negative scalings) that are tangents to curves emanating from p and lying
entirely in Ω. That is, we define the cone,

TpΩ =
⋃

v∈ΛpΩ

{αv | α ≥ 0}

where,

ΛpΩ =


(
dγi

dt

∣∣
t=0

)
∂

∂xi

∣∣∣ γ : [0, a]→ RD, a > 0 are C1 paths parametrized by their lengths,
with γ(0) = p, Img(γ) ⊆ Ω


Here trajectory, γ, has been represented using a coordinate system of choice on RD (thus γi is the
ith component of the point’s coordinate). We call TpΩ the tangent cone at p in Ω.

Lemma L1. If Ω is a smooth manifold with smooth boundary embedded in RD, TpΩ is a half space
in Ti(p)RD for p ∈ ∂Ω, and a full space for p ∈ (Ω− ∂Ω) (see Figure 4).

Remark R1. The above lemma can be generalized to assert that TpΩ will be a convex cone for points
on a wider class of manifolds with boundary with corners (i.e. boundary that is not necessarily
smooth). As long as the space is locally convex (i.e. for every point p ∈ Ω, there exists a open
neighborhood, U , in Ω, such that the metric induced by d makes U a path metric space), TpΩ will
be a convex cone (Figure 4(c)).

Remark R2. We will allow ∂Ω to be not smooth (C1) at finite number of distinct points, where
they may not be locally convex either. In our coverage problem such a point can at the worst be an
unstable ‘local minima’, in which case we will rely on presence of small noise that would ‘push’
the robot out that isolated point (see Section 3). Alternatively we can assume smoothness of the
boundary to be a generic condition, wherein a boundary with finite and distinct set of non-smooth
points can be smoothed locally (using a mollifier [Hormander 90]) to obtain a C1 boundary. In
which case the result of Lemma L1 will hold for every point.

Remark R3. We define the cotangent cone at p as the dual of the cone TpΩ, and represent it as T ∗pΩ.
If TpΩ is convex, so is T ∗pΩ, and vise-versa. Consider a real-valued smooth function, f : Ω → R.
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O

Ω = (ℝ2 − O) ∪  ∂O

(a) In the interior of Ω,
neighborhoods are Euclidean
space, which is convex.

O

Ω = (ℝ2 − O) ∪  ∂O

(b) On smooth boundary of
Ω, neighborhoods are Eu-
clidean half space, which is
convex.

O

Ω = (ℝ2 − O) ∪  ∂O

(c) Although this is a point
on the boundary where it is
not C1, TpΩ is still convex.

O

Ω = (ℝ2 − O) ∪  ∂O

(d) TpΩ is not convex at this
point.

Figure 4: Points on Ω and the shape of TpΩ (the lighter region inside the circle). (a), (b) show Ω with smooth
boundary. (c), (d) show Ω with non-smooth boundary.

A differential of f is defined as an element of T ∗pΩ in usual way at points that lie in (Ω − ∂Ω). To
define a differential at a point p that lies on ∂Ω, we take a Cauchy sequence of points in Ω − ∂Ω
that converges to p (recall that Ω is a complete metric space). The limit of the differentials of f
in the cotangent cones of these points gives us the required differential at p. This limit, however,
may or may not exists in T ∗pΩ, and that will depend on the nature of f . The gradient of f is the
corresponding dual of the differential in TpΩ.

2.5 Cut Locus
Definition D6 (Cut locus on manifolds with boundary – See Definition 3.4.II of [Wolter 85]). Let
p ∈ Ω. A point, q ∈ (Ω − ∂Ω), is called a pica relative to p if p and q can be joined with two or
more distinct minimal paths (i.e. paths of length d`(p, q)) with distinct tangents at q. The closure of
the set of all picas relative to p is called the cut locus of p and is denoted by Cp (Figure 5(a)).

Note that by using the term ‘distinct minimal paths’ we mean to impose the condition that the
image of any two distinct paths are not the same. This excludes the multiplicity of paths due to mere
re-parameterization. The definition of cut locus in terms of ‘pica’ (equivalently, non-extenders) is
necessary for retaining certain properties of the standard cut locus on manifolds without boundary.

Lemma L2 (Wolter [Wolter 85]). If Ω is a smooth manifold (with boundary), which is complete as
a metric space, and can be defined as a subset of a smooth, complete manifold of same dimension,
then for every p ∈ Ω,

i. Cp is a closed set of measure zero in Ω,

ii. the function gp := d`(p, ·) is of class C1 in Ω− (∂Ω ∪ p ∪ Cp), and
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p

�pΩ

(a) Points on Cp can be joined with p using 2 minimal
paths.

p

Ω q

dℓ(p,q)

q'

(b) On points on the dotted line in this figure (e.g. the
point q′), gp is C1, but not C2.

Figure 5: The cut locus of p and the smoothness of the function gp.

iii. the gradient of gp is bounded in Ω− (∂Ω ∪ p ∪ Cp).

Lemma L3. For almost every point p ∈ Ω: q /∈ Cp =⇒ p /∈ Cq .

2.6 Gradient of Distance Function
Proposition P1. Let p ∈ Ω. The negative of the gradient of gp := d`(p, ·) exists in TqΩ (equiva-
lently, the negative of the differential of gp exists in T ∗q Ω) at all points q ∈ Ω − (p ∪ Cp) that are
equipped with a Riemannian metric in their neighborhoods. The negative of the gradient is equal to
a normalized vector at q along the tangent to the minimal path connecting q to p (equivalently, the
differential is the dual of the unit tangent vector along the minimal path).

Remark on existence: If q is a point in Ω − (∂Ω ∪ p ∪ Cp), the gradient (and its negative)
obviously exist in TqΩ (part ‘ii.’ of Lemma L2). We need to check the existence for points on the
boundary ∂Ω. Recall that for points, q ∈ ∂Ω, we defined the gradient of a function as the limit of
the gradients over a Cauchy sequence of points, {qn}, in Ω− (p∪∂Ω∪Cp) converging to q. We can
prove the later half of the statement of the proposition for each of these qn (i.e. that the negative of
the gradient is equal to a normalized vector at qn along the tangent to the minimal path connecting
qn to p). Then, the existence of the negative of the gradient at q is implied by the existence of the
minimal path. Since the tangent to the minimal path connecting q to p exists in TqΩ (by definition
of the tangent cone), the negative of the gradient will also exist (see Figure 6).

Thus, the proof of the above proposition relies on being able to compute the gradient of gp
at q ∈ Ω − (p ∪ ∂Ω ∪ Cp) in terms of the tangent to the minimal path. Using the lemma and
corollary that follows next, we will establish an explicit relationship between the gradient of gp
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Ω

Figure 6: Illustration for Proposition P1. The negative of the gradient of gp at q ∈ ∂Ω is the limit of −zpqi as
i→∞, where q1, q2, · · · is a Cauchy sequence converging to q.

and tangents to minimal paths using a coordinate representation of the metric tensor, and using
these will be able to prove the Proposition P1. We will assume summation over repeated indices
following the Einstein summation convention, and coordinatize tangent spaces and the cotangent
spaces by { ∂

∂xi }i=1,2,··· ,N and { dxi}i=1,2,··· ,N respectively [Jost 97, Petersen 06].

Notations: We will use regular italic letters to denote points and vectors (e.g p ∈ Ω and u ∈
TpΩ), and boldface to denote the coordinate representation of points (e.g., p ∈ RN ) and coefficient
vectors (e.g. u ∈ RN ) in a particular coordinate chart. Later in Section 4, we will use regular font
to represent vertices in a discrete graph. We will typically use ‘η’ to denote the Riamannian metric
tensor. Also, given a metric, d∗, on a manifold, M , and a coordinate chart C = (U, φ) on an open
subset U ⊆M , we define,

i. dC∗ : RN ×RN → R, the metric restricted to U and described in terms of the coordinate chart
C, as dC∗ (a,b) = d∗(φ

−1(a), φ−1(b)), ∀ a,b ∈ Img(φ), and,

ii. dC̃∗ : M × RN → R, the metric with the second parameter restricted to U and described in
terms of the coordinate chart C, as dC̃∗ (a,b) = d∗(a, φ

−1(b)), ∀ b ∈ Img(φ).

Lemma L4. Let U be a geodesically convex open set in a N -dimensional Riemannian manifold
(possibly with boundary) Ω, equipped with a Riemannian metric tensor, η, at every point. We also
assume that for all p ∈ U , Cp is empty insideU . Let d be the metric onU , induced by the Riemannian
metric tensor, η (which agrees with the length metric, d`, since U is geodesically convex).

Then for every coordinate chart, C = (U, φ), defined on U (with coordinate variables
u1, u2, · · · , uN ), and everyw, q ∈ U , with w = φ(w),q = φ(q), the following is true (Figure 7(a)),[

∂

∂u
dC(w,u)

∣∣∣∣
u=q

]
i

≡ ∂

∂ui
dC(w,u)

∣∣∣∣
u=q

=
ηij(q) zjwq√
ηmn(q) zmwqz

n
wq

where, zwq = [z1
wq, z

2
wq, · · · , zNwq]T is the coefficient vector (in coordinate chart C) of the tangent

vector at q to the shortest geodesic connecting w to q, and by
[
∂f
∂u

]
i

we mean the ith component of[
∂f
∂u1 ,

∂f
∂u2 , · · · , ∂f

∂uN

]
.
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φ(U)
ℝN

(a) Illustration for Lemma L4 showing the relation-
ship between the tangent to the geodesic γ∗wq at q,
and the normal to the surface {u|g(u) = g(q)} at
q.

w

q

{ u | �w(u) = �w(q) }

zwq

u1

u2

γ*wq

(b) Illustration in a simple non-Euclidean, anisotropic metric. Note
that the normal to the ellipse is not parallel to the tangent to the
geodesic, zwq. It is however parallel to the cotangent, z∗wq, with

coefficients z∗i,wq
= ηij(q) zjwq.

Figure 7: Relationship between tangent to a geodesic and the derivative of the distance function.

If we define gw(u) := dC(w,u), ∀u ∈ Img(φ) (i.e., gw(q) is the length of the shortest
geodesic connecting w to q), the statement of the proposition essentially implies that the normals to
the constant gw surfaces are parallel to the dual of the tangents (cotangents) to the geodesics. This
is illustrated in Figure 7(a). The statement of the proposition essentially expresses the gradient of
the distance function d (with respect to one of its arguments) in terms of the tangent to the geodesic
connecting two points.

Examples:

1. We note that when the metric tensor is Euclidean in the given chart (i.e. ηij = δij ev-
erywhere as was the case in [Pimenta 08]), the result of the proposition simply reduces to
∂
∂ui d(w,u)

∣∣
u=q

= ziwq. This is no surprise since we know that the vector ∂
∂ud(w,u)

∣∣
u=q

is essentially an unit normal to the sphere with center w (which is the surface of constant
d(w,u)) at the point u = q, which is well-known to be parallel to the straight line connecting
w to q (a radial line of the sphere).

2. If the metric is locally isotropic in the given chart (i.e. if the matrix representation of the metric
is a multiple of the identity matrix at every point), and can be written as ηij(w) = ζ(w)δij
for some ζ : RN → R, then the result of the proposition reduces to ∂

∂ud
C(w,u)

∣∣
u=q

=√
ζ(q) zTwq (where, zTwq = [z1

wq, z
2
wq, · · · , zNwq] is the transpose of the coefficient vector,

zwq, of the tangent to the geodesic).

3. Finally, we consider a simple, yet nontrivial, example of a non-Euclidean, anisotropic metric.

Consider this matrix representation of the metric tensor: η•• =

[
1 0
0 4

]
(in coordinate

chart C). Since the Christoffel symbols vanish in this coordinate chart, one can infer from
the geodesic equation that the geodesics are essentially represented by straight lines when
plotted with ui as orthogonal axes (Figure 7(b)). However, the curves of constant distance
from w become ellipses centered at w and with aspect ratio of 2. Now consider the point
q = w + [1, 1]T . A direct computation of the normal at this point to the ellipse, (u1 −
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w1)2/4 + (u2 − w2)2 = c, passing through this point, reveals the coefficient co-vector of
∂
∂ud

C(w,u)
∣∣
u=q

to be parallel to [ 1
2 , 2]. However, the coefficient vector of the tangent to

the geodesic is zwq = [ 1√
2
, 1√

2
]T . This gives the following:

√
ηmn(q) zmwqz

n
wq =

√
5
2 ,

z1,wq =
∑
j η1j z

j
wq = 1√

2
, z2,wq =

∑
j η2j z

j
wq = 2

√
2. Thus, the coefficient co-vector of

z∗wq is parallel to [ 1√
2
, 2
√

2]. This indeed is parallel to [ 1
2 , 2]. The exact computation of the

scalar multiple will require a more careful computation of ∂
∂ud

C(w,u).

In the following corollary we relax some conditions imposed on U in the Lemma L4 so that we
can generalize the result to manifolds that are not necessarily geodesically convex.

Corollary C1. Let Ω be a N -dimensional manifold possibly with boundary, which is complete as a
metric space, with length metric d`. Let p ∈ Ω and q ∈ Ω − (p ∪ ∂Ω ∪ Cp). Let q be such that the
metric in its neighborhood is induced by a Riemannian metric tensor, η. Let d` be the length metric
on Ω.

Then the following holds for every coordinate chart, D = (V, ψ), defined on open set V 3 q,[
∂

∂u
dD̃` (p,u)

∣∣∣∣
u=q

]
i

≡ ∂

∂ui
dD̃` (p,u)

∣∣∣∣
u=q

=
ηij(q) zjpq√
ηmn(q) zmpqz

n
pq

where, q = ψ(q), and zpq = [z1
pq, z

2
pq, · · · , zNpq]T is the coefficient vector (in coordinate chart D) of

the tangent vector at q to the shortest geodesic connecting p ∈ Ω to q ∈ V . By
[
∂f
∂u

]
i

we mean the

ith component of
[
∂f
∂u1 ,

∂f
∂u2 , · · · , ∂f

∂uN

]
.

Remark R4. This Corollary is applicable to a wider class of metric spaces than Lemma L4. Here we
only need to assume a Riemannian metric in the neighborhood of q (Figure 8(a)). This will enable us
to use the result for locally Riemannian manifolds allowing for pathologies outside local neighbor-
hoods (e.g. boundaries/holes/punctures/obstacles – the kind of spaces we are most interested in), as
well as opens up possibilities for more general metric spaces that may not be Riemannian outside a
small ball neighborhood of q, Bq (e.g. Manhattan metric inM⊂ Ω, Riemannian metric elsewhere).
However, in this paper we will not consider the later kind of cases.

Examples:

1. The simplest example of a space that is only locally Euclidean is one that is R2 punctured
by polygonal obstacles (Figure 8(b)). Due to the ‘pointedness’ of the obstacles, the constant-
gp manifolds are essentially circular arcs centered at p or a vertex v of a polygon. Thus, as
illustrated by Figure 8(b), the normals to the arcs are parallel to the tangent to the segment
joining v to q.

2. A less trivial case is seen in the example where the obstacles have curved boundaries. Then
the corollary essentially reduces to the assertion that the normal at any point on an invo-
lute [Cundy 89] is parallel to the ‘taut string’, the end of which traces the involute – and this
is true irrespective of the curve used to generate the involute. While the statement has an
obvious intuitive explanation by considering the possible directions of motion of the end of
the taut string, we provide an explicit computation for an involute created using a circle (Fig-
ure 8(c)). Consider a taut string unwrapping off a circle of radius r (starting from θ = 0 when

12



p

w

q

V �q

Ω

(a) Illustration for Corollary C1. The patholo-
gies outside Bq do not effect the result of
Lemma L4 holding for p and q.

p

q

z*
pq

ψ-1({ u | �p(u) = �p(q) })

v

(b) Example of a space that is equipped with
Euclidean metric everywhere, but is punctured
by a polygonal obstacles. Here the gp(q) =
const. curve consists of circular arcs. This
was the case considered in [Pimenta 08].

p

q

z*
pqψ-1({ u | �p(u) = �p(q) })

x

y

θ

(c) An example with a circular obstacle where
the gp(q) = const. curve consists of an invo-
lute and circular arc.

(x, y)

Y

X1

Manhattan

Euclidean

p

q

α

2

v

(d) An example involving Manhattan and Eu-
clidean metrics in two different regions. The
distance function between points lying in the
two different regions is given by d(p,q) =
minv (dman(p,v) + deu(v,q)), where v is a
point lying on the boundary of the two regions.

Figure 8: Corollary C1 and illustrative examples.
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it is completely wrapped). Thus, when the string has unwrapped by an angle θ, the string
points at a direction [sin(θ),− cos(θ)]T . Now, it is easy to verify that the involute is described
by the parametric curve x = r(cos(θ) + θ sin(θ)), y = r(sin(θ) − θ cos(θ)). Thus we have
dx
dθ = θ cos(θ), dy

dθ = θ sin(θ). Thus the normal to the involute pointing in the direction
[ dy

dθ ,−
dx
dθ ] is indeed parallel to the direction in which the string points.

3. The last example that we will illustrate involves a mixture of Manhattan distance (in a par-
ticular given coordinate chart) and Euclidean metric. Consider the case in Figure 8(d),
where in the given coordinate chart p is the origin, (0, 0). For any two points inside the
half-plane M = {(x, y)|2x + y < 2}, the distance function is the Manhattan distance.
Outside M it is induced by Euclidean metric. It is to be noted that although the distance
function is defined in M, geodesics are not uniquely defined. Let us consider the point
q = (x, y) outsideM (so that there exists a Bq as required by Corollary C1). The distance

is given by d(p,q) = minα∈R

(
α+ 2(1− α) +

√
(x− α)2 + (y − 2(1− α))2

)
. Denoting

the quantity inside ‘min’ by f(α), and by solving ∂f
∂α = 0, one obtains the unique solution

α = (4x − 3y + 6)/10. This gives d(p,q) = (3x + 4y + 12)/5. Thus, the normals to the
constant-d surfaces are parallel to [3/5, 4/5]. Again, the segments vq have tangent pointing
in the direction [x− α, y − 2(1− α)]T = [(6x+ 3y − 6)/10, (8x+ 4y − 8)/10]T . Thus we
see that they are indeed parallel.

2.7 Minimization of the Second Moment Function
Definition D7 (Second moment about a point). Let Λ be a N -dimensional manifold (possibly with
boundary), w : Λ→ R+ a continuous (and bounded) weight function on it, and f(x) = x2 + c, x ∈
R+. If d∗ is a metric on Λ, we define the 2nd moment of Λ about a point p ∈ Λ as

M(p) =

∫
Λ

f (d∗(p, q)) w(q) dq

where dq is a volume N -form on Λ. We callM : Λ → R the second moment function on Λ (with
d∗ being the metric of choice). The definition, more generally, is valid for any measurable metric
space.

The minima ofM are of interest to us, which we will study in this section. We first describe the
standard notion of a generalized centroid. We will illustrate how, for many manifolds with boundary,
the set of generalized centroids form degenerate sets and/or are not unique. However, we will also
discuss its uniqueness for some classes of metric spaces.

The generalized centroid of Λ is defined as p∗ = argmin
p∈Λ

M(p). In cases where the minimizing

point is not unique, we define the ‘set of generalized centroids’ as

P ∗ =

{
p ∈ Λ

∣∣M(p) = min
r∈Λ
M(r)

}
Note that the the constant c in the definition of f is redundant in the definition of p∗ since the
presence of it simply adds a constant term toM (the objective of the minimization problem).

Degeneracy of generalized centroid in spaces that are not simply-connected: We con-
sider a couple of very simple example for N = 1 to illustrate how the generalized
centroid is degenerate in many manifolds that are not simply-connected. Consider a
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Figure 9: Degeneracy of generalized centroid in spaces that are not simply-connected. For a line segment, L,
there is an unique point, p∗ such thatM(p∗) = minp∈LM(p). But for the circle, S1,M(p∗1) = M(p∗2) =
minp∈S1M(p) =M(p′),∀p′ ∈ S1.

line segment, L, with its usual length metric d` and constant weight w(q) = 1, ∀q ∈ L.
Clearly the generalized centroid of L is its usual ‘center’ and is unique (Figure 9). How-
ever, now let’s consider a circle, S1, once again with usual length metric and constant
weight. Note that for any p ∈ S1, the diametrically opposite point constitutes the cut
locus, Cp. It is obvious (due to symmetry) that the value ofM(p) will be same for all
p ∈ S1, and hence the entire space is P ∗. Likewise, for a flat annular region one can
easily see that the generalized centroid is degenerate and hence not unique.

We now consider the problem of minimizingM using the method of gradient decent.

Lemma L5 (M is arbitrarily close to a C1 function). Let Λ be a smooth, compact Riemannian
manifold (possibly with smooth boundary) with the length metric d` induced by the Riemannian
metric tensor. ThenM is arbitrarily close to aC1 function on Λ (i.e.,C1 everywhere except possibly
a set of measure zero). Moreover,M is guaranteed to be C1 if Cp′ = ∅, ∀p′ ∈ Λ (i.e., Λ does not
contain any cut loci).

As a consequence of the above lemma, for all problems involving minimization ofM, we can
instead minimize the corresponding smoothed function, M, and obtain results that are arbitrarily
close to the un-smoothed problem. In the discussions that follow, we will use M to refer to the
smoothed version of the second moment function so as to avoid a plethora of notations. Thus we
will be able to compute gradients ofM.

Lemma L6. [Local minima ofM lie in the interior of Λ] Let Λ be as before. If the length metric
d` is used to computeM, there does not exist a local minimum ofM on ∂Λ (i.e., all local minima
lie in the interior of Λ).

Corollary C2. Suppose the length metric, d`, is the metric of choice for computingM. Then some
immediate consequence of the above lemma are

i. A gradient decent ofM in Λ (with small noise so as to avoid saddle points) will converge to
a point in Λ− ∂Λ (interior of Λ).

ii. Generalized centroids of Λ lie in Λ− ∂Λ.
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X

Y

z = F(x, y)

p*
pb

Λ

(a) The function F : Λ → R has a local minimum at pb ∈
∂Λ. This minimum appears because of the boundary created
by the rectangular obstacle/puncture in Λ.

X

Y

z = Fℓ (x, y)

p*
Λ

(b) The function F` : Λ → R does not have a local
minimum on the boundary even though there is a obsta-
cle/puncture in Λ. For this function, p∗ is the only local
(and global) minimum.

Figure 10: Functions with and without local minima on the boundary. Using the length metric gets rid of local
minima on the boundary.

The implication of Corollary C2.i. is that a gradient decent ofM does not get stuck at a bound-
ary point (equivalently, all integral curves of −∇M, starting at p ∈ Λ with direction v ∈ TpΛ,
exists in Λ — see Section 2.2 for detailed discussion on this phenomenon). This is illustrated in
Figure 10.

Notes on uniqueness: As discussed earlier, the minima ofM can be degenerate. In such cases
(like the example of a circle, S1, as discussed) the notion of a generalized centroid as an unique
point becomes ambiguous. If however the generalized centroid is unique (i.e., P ∗ is a singleton), it
is possible that there can be local minima ofM other than the generalized centroid (all of which lie
in Λ− ∂Λ due to the aforesaid corollary and lemma).

However, there are large classes of metric spaces for which the generalized centroid is not only
unique, it is also the only local minimum ofM. We now list a few of those known metric spaces
along with relevant references

i. It is well-known and easy to prove that the generalized centroid of a convex subset of Eu-
clidean space (with its usual Euclidean metric) is unique and the only local minimum ofM.

ii. If ΛR is a geodesically convex Riemannian manifold with its usual distance function, d (which
agrees with d` in this case), and is free of cut loci, it was proved by Eugenio Calabi that the
the generalized centroid is an unique point and that it is the only local minimum ofM (i.e.,
unique point where the gradient ofM vanishes). See Section 6.1.5 of [Berger 03].

iii. Certain generalizations of the above was achieved in [Corcuera 98] for some special cases by
considering an additional weight function (modeled as probability distribution).

iv. Ck domains (with k ≥ 0) of a general metric space, (Λ, d∗), [Ohta 07, Palfia 11] satisfy the
condition that for any point z in the domain and a minimal path, γ : [0, 1] → Λ, connect-
ing points x and y in the domain, the following holds: d∗(z, γ(t))2 ≤ (1 − τ)d∗(x, z)

2 +
τd∗(z, y)2 for some τ ∈ (0, 1). For such domains it is easy to show that the generalized
centroid is indeed unique and is the only local minimum ofM.
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3 The coverage problem in robotics
In this section we discuss the derivation of the control laws in the continuous-time version of the
Lloyd’s algorithm. We draw parallels with the classical case for convex environments with Euclidean
metric [Lloyd 82] to motivate our generalization to general manifolds with boundary and general
Riemannian metric.

Background: Let Ω be a path-connected metric space that represents the environment, equipped
with a metric, d∗ : Ω × Ω → R+. In [Lloyd 82, Cortes 04, Pimenta 08] Ω is assumed to be a
convex subset of RN and is equipped with the Euclidean metric tensor at every point. However,
in the present scenario we relax d∗ to a more general metric on a metric space, Ω, that need not
necessarily be a manifold. We will eventually consider the length metric, d`, on manifolds with
boundary, induced by a general Riemannian metric. We will introduce those restrictions gradually
as they are required.

Coverage functional: Suppose there are n mobile robots in Ω. The position of the kth robot
is represented by pk ∈ Ω. By definition, a tessellation [Lloyd 82, Cortes 04, Pimenta 08] of the
environment is a partition of Ω, written as {Wk}k=1,2,··· ,n, such that each Wk (called a tessellum
or a cell) is path connected, pk ∈ Wk, Int(Wk) ∩ Int(Wl) = ∅,∀k 6= l (where Int(Λ) = Λ −
∂Λ denotes the interior of Λ), and ∪nk=1Wk = Ω. The tessellum associated with the kth robot is
Wk,∀k = 1, 2, . . . , n. For a given set of robot positions P = {p1, p2, . . . , pn} and tessellation
W = {W1, W2, . . . , Wn}, the coverage functional is defined as:

H(P,W ) =

n∑
k=1

H(pk,Wk) =

n∑
k=1

∫
Wk

fk(d∗(q, pk)) w(q) dq (1)

where fk : R+ → R are smooth and strictly increasing functions,w : Ω→ R+ is a weight or density
function, and dq represents an infinitesimal volume element (more formally, it is a top-dimensional
measure of an an infinitesimal element, associated with the metric d∗ [Gromov 99]).

The name “coverage functional” is indicative of the fact thatH measures how bad the coverage
is — i.e., the more well-distributed the robots are throughout the environment, the lower is the value
of H. In fact, for a given set of initial robot positions, P , we devise a control law that minimizes
the function H̃(P ) := min

W
H(P,W ) (i.e. the best value of H(P,W ) for a given P ). It is easy to

show [Lloyd 82, Cortes 04] that H̃(P ) = H(P, V ), where V = {V1, V2, · · · , Vn} is the Voronoi
tessellation given by

Vk = {q ∈ Ω | fk(d∗(q, pk)) ≤ fl(d∗(q, pl)),∀l 6= k} (2)

Requiring Ω to be a manifold with boundary: The control law for minimizing H̃(P ) =∑n
k=1

∫
Vk
fk(d∗(q, pk))w(q) dq can be reduced to the problem of moving along the direction of

its steepest descent. So far in this section we have not required that Ω be a manifold. However, we
would like to be able to compute the gradient of H̃(P ) so that the negative of it is the direction of
steepest descent. It suffices that the configuration space be a manifold so that each point on it has a
tangent space in which the gradient of a function (or its negative) will reside. However, based on our
discussions in Section 2, we are now capable of defining and computing gradients on manifolds with
boundary (see Remark R3). However, we need to check the existence of the negative of the gradient
inside the tangent cone at a point on the boundary, so that the robots can move along that direction.
In the following discussion we use explicit coordinate charts, Ck = (Uk, φk), with pk ∈ Uk —
the position of the kth robot, at which we compute the gradients. Using the notation introduced in
Corollary C1, we write dC̃k

∗ (a,b) := d∗(a, φ
−1
k (b)) for b ∈ Img(φk).
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Figure 11: Voronoi tessellation of a convex Ω (rectangular region) with n = 10 robots (marked by small
circles). The bold line segments show the boundary of the Voronoi cells. Note how a boundary segment is the
perpendicular bisector of the thin line joining the robots sharing the boundary segment.

The domains of integration, Vk are functions of P , and hence the gradient of H̃(P ) would, in
general, involve boundary terms, ∂Vk. However, it can be shown using methods of differentiation
under integration [Cortes 04, Pimenta 08] that the boundary terms vanish. So the final formula for
the partial derivatives of H̃(P ) with respect to the position of the robots become,

∂H̃(P )

∂pk
=

∫
Vk

∂

∂pk
fk(dC̃k

∗ (q,pk)) w(q) dq (3)

In practice, it is adequate to choose fk(x) = x2 for most implementations [Cortes 04]. However,
a variation of the problem for taking into account finite sensor footprint of the robots, constructs a
power Voronoi tessellation [Brown 79], in which one chooses fk(x) = x2 − R2

k, where Rk can
represent, for example, the radius of the sensor footprint of the kth robot. In this paper we will be
working with the following form for fk

fk(x) = x2 + ck (4)

Requiring d∗ to be a metric induced by Riemannian metric tensor: Until now we haven’t made
any major assumption on the distance function d∗ besides the fact that it is a metric on a manifold
with boundary that can be differentiated at the points pk. We next impose the condition that the
metric is locally represented by a Riemannian metric tensor, η.

Remark R5. If the space Ω is convex, and we can construct a single coordinate chart, B =
{Ω, ψ}, over entire Ω such that the matrix representation of the metric tensor is Euclidean every-
where, then d∗ is the Euclidean distance given by dB∗ (x,y) = ‖x − y‖2 (where, dB∗ (a,b) =
d∗(ψ

−1(a), ψ−1(b)) – refer to notation introduced in Lemma L4). This was the case considered
in [Lloyd 82] (see Figure 11). Under this assumption, and using the form of fk in (4), the formula
of (3) can be simplified to obtain

∂H̃(P )

∂pk
= 2Ak(pk − p∗k) (5)

where, Ak =
∫
Vk
w(q) dq is the weighted volume of Vk, and p∗k =

∫
Vk

q w(q) dq

Ak
(with

q = ψ(q), the coordinate representation of q) is the weighted centroid of Vk. Moreover,
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the Euclidean distance function makes computation of the Voronoi tessellation very easy: V ,
due to Equation (2), can be constructed from the perpendicular bisectors of the line segments
pkpl, ∀k 6= l in the coordinate chart B, thus making each Vk a convex polygon, which are also
simply connected (Figure 11). This also enable closed-form computation of the volume, Ak, and
the centroid, p∗k when the weight function, w, is uniform. Equation (5) yields the simple control
law (in coordinate chart B) in continuous-time Lloyd’s algorithm: uk = −κAk(pk − p∗k), with
some positive gain, κ. Lloyd’s algorithm [Lloyd 82] and its continuous-time asynchronous im-
plementations [Cortes 04] are distributed algorithms for minimizing H(P,W ) with guarantees
on completeness and asymptotic convergence to a local optimum, when Ω is convex Euclidean.
However, this simplification does not work when there does not exist a coordinate chart as B in
which the metric can be expressed as the Euclidean norm of difference for every pair of points
— an inherent characteristic of spaces with holes/obstacles or with metric that is intrinsically
non-Euclidean.

Requiring d∗ to be the length metric: We also impose the condition that the metric be the length
metric, i.e. d∗ = d`, that was introduced in Section 2.3. In the following discussion we will hence
use results derived in Section 2 to make assertions about the existence of the gradient, and hence the
convergence.

Now, with fk(x) = x2 + ck, we have ∂
∂pk

fk(dC̃k

` (q,pk)) = 2 d`(q, pk) ∂
∂pk

dC̃k

` (q,pk) where,
pk = φk(pk). Substituting this into Equation (3) and using Proposition P1 (with the explicit formula
from Corollary C1) we obtain,[

∂H̃(P )

∂pk

]
i

= 2

∫
Vk

d`(q, pk)
∂

∂pk
dC̃k

` (q,pk) w(q) dq

= 2

∫
Vk−(p∪Cpk )

d`(q, pk)
ηij(pk) zjqpk√
ηmn(pk) zmqpk

znqpk

w(q) dq (6)

where zjqpk
is the jth component of the coefficient vector (in coordinate chart Ck) of the tangent at

pk to the minimal path connecting q and pk.
That we can write the second equality is due to the fact that pk∪Cpk is a set of measure zero in Vk

(a consequence of Lemma L2), outside which ∂
∂pk

dC̃k

` (·,pk) exists (a consequence of Proposition P1
and and Lemma L3): The domain of integration in the second integral implies q /∈ Cpk . This, due to
Lemma L3, implies that pk /∈ Cq almost always (i.e. for all pk, except possibly for a set a measure
zero in Ω). Also, pk 6= q. This, due to Proposition P1, implies the gradient of d`(q, ·) exists at pk.
Thus we could write the quantity inside the second integral. Moreover, due to part ‘i’ of Lemma L2,
pk ∪Cpk is a set of measure zero in Vk (since Vk is not a set of measure zero in Ω). Also, due to part
‘iii.’ of the same lemma, the gradient at the points in the neighborhoods of pk ∪ Cpk is finite. Thus,
removing pk ∪ Cpk from the domain of integration does not change the value of the integral, but lets
us compute the integral.

We consider the negative of the quantity in (6). The
[
−∂H̃(P )

∂pk

]
i

are coefficients (in chart Ck)
of a covector that resides in T ∗pkΩ. The corresponding vector (the dual) will thus have coefficients[
−∂H̃(P )

∂pk

]
i
ηil(pk) (where η•• is matrix inverse of the matrix representation of the metric tensor,

η•• [Jost 97, Petersen 06]). This is the vector along which the kth robot needs to be moved for
reducing the value of H̃ the most. Using a scalar gain of κ and noting that ηijηil = δlj , the lth
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coefficients of the control vector for the kth robot will be

[uk]l =: ulk = κ

[
−∂H̃(P )

∂pk

]
i

ηil(pk)

= 2 κ

∫
Vk−(pk∪Cpk )

d`(q, pk)
−zlqpk√

ηmn(pk) zmqpk
znqpk

w(q) dq (7)

We now test if this vector actually exists in TpkΩ for all pk (including ones on ∂Ω). Clearly
−zjqpk

∂
∂xj exists in TpkΩ, since the minimal path connecting pk and q exists (see proof of Propo-

sition P1). Now we recall that TpkΩ is a convex cone almost everywhere in Ω due to Lemma L1
and Remark R1 (except for possibly isolated points on ∂Ω, in which case we either smoothen the
boundary near that point or rely on presence of small noise that would ‘push’ the robot out that
isolated point – see Remark R2). Thus a positive linear combination of vectors in TpkΩ (which the
quantity in (7) is) will also be in TpkΩ. This essentially implies that if the kth robot follows this
control law, it won’t get ‘stuck’ at a point on the boundary. It will stop only when the gradient of H̃
becomes zero at a point in the interior of Vk, making the control vector zero (see the illustration in
Figure 10).

The aforesaid convergence to a non-boundary point is also obvious from Corollary C2.i. by
noting that the control velocity of the kth robot is nothing but the gradient of the second moment
function of the Voronoi cell, Vk, computed using the length metric d` (note that a point in the interior
of Vk will also be in the interior of Ω). As a consequence of the discussions above, we state the final
result on convergence guarantee formally in the proposition below:

Proposition P2. Robots navigating on a Riemannian manifold with boundary, using the control law
of Equation (7), will asymptotically converge to points in the the interior of Ω (i.e., Ω− ∂Ω), where
the gradients of the second moment functions on their respective Voronoi cells (computed using the
length metric on Ω) vanish.

Although there can be local minima of the second moment function on the interior of Vk which
are different from a generalized centroid (global minima), as discussed in Section 2.7 there exists
many metric spaces and/or domains in metric spaces where there is an unique local minimum of
the second moment function (namely the global minimum). It should however be noted that even
in such cases the global minimum of H̃ is not guaranteed to be attained. For example, even when
Ω is a convex subset of RN , the original Lloyd’s algorithm or Cortes’ algorithm only guarantee
convergence to a local minimum of H̃.

Assuming uniform weight function, a few examples of manifolds with boundary on which the
robots’ Voronoi cells have an unique local minimum (namely the generalized centroid) are:

i. Convex subsets of Euclidean spaces.

ii. Whenever (Λ, d`) is CAT (0) as a metric space (since in that case it is also a Ck space –
see [Ohta 07] or [Palfia 11]). This include spaces with non-positive curvature everywhere.

iii. A complete sphere with number of robots, n ≥ 2. In that case each Voronoi cell is a hemi-
sphere or smaller, and a geodesically convex subset of a Riemannian manifold not containing
any cut locus, as demonstrated in Figure 15 (see Section 6.1.5 of [Berger 03]).

iv. A CAT (1) space with diameter less than π/2, which is a Ck space. Hence any domain in it
will be Ck as well (see Proposition 3.1 of [Ohta 07]).
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A more general classification of manifolds with boundary with the aforesaid property is within the
scope of future work.

Formula in terms of a single coordinate chart: As discussed earlier, a single coordinate chart
over entire Ω may not exists. However, for many computational purposes, one can use a single
coordinate chart, B = (Ω−S, ψ), that describes almost the whole of Ω, except for a set of measure
zero, S (e.g. the spherical coordinate on a sphere describes everything except one longitudinal line
and the poles). Thus, it is worth re-writing equation (7) entirely in terms of a coordinate chart.
Besides changing q to q = ψ(q) and pk to pk = ψ(pk), we need to compute the volume of the
infinitesimal element dq in the particular coordinate chart. Assuming dq to be an infinitesimal
element in a particular coordinate chart, this is given by dq =

√
det(η••(q)) dq. Thus we have,

ulk = 2κ

∫
Vk−(pk∪Cpk∪S)

dB` (q,pk)
−zlqpk√

ηmn(pk) zmqpk
znqpk

wB(q)
√

det(η••(q)) dq (8)

where dB` is the length metric expressed in terms of coordinate chart B, i.e., dB` (a,b) =
d`(ψ

−1(a), ψ−1(b)). Likewise, wB : RN → R+ such that wB(a) = w(ψ−1(a)). zqpk
=

[z1
qpk

, z2
qpk

, · · · , zNqpk
]T is the coefficient vector (in chartB) of the tangent vector at q to the minimal

path joining pk and q. We emphasize on the fact that (pk ∪ Cpk ∪ S) is a set of measure zero in Ω,
and does not concern us as far as computation is concerned.

The formula in (8), as we will see in the next section, gives an algorithm for approximately com-
puting the gradient of H̃. This gives a generalized Lloyd’s algorithm with guarantee of asymptotic
stability (since we showed that the control vector will always exist in the tangent cones at points in
Ω, and hence the only way the robots can stop is when the control becomes zero, i.e. the gradient
of H̃ vanishes). In the final converged solution, each robot will be at a point in the interior of its
respective Voronoi cell where the gradient of the second moment function of the cell vanishes.

4 Graph Search-based Implementation

Figure 12: Graph construction: An 8-connected grid graph created from a uniformly discretized coordinate
space. The brown cells represent obstacles.

In order to develop a version of the generalized continuous-time Lloyd’s algorithm for a general
distance function, we first need to be able to compute the general Voronoi tessellation of Equation (2)
for the metric, d`. We adopt a discrete graph-search based approach for achieving that, not unlike the
approach taken in previous work [Bhattacharya 10]. While discretization invariably implies certain
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(a) iter = 1. (b) iter = 10100. (c) iter = 25100. (d) iter = 30100. (e) iter = 37300.

Figure 13: Progress of the algorithm for tessellation and control computation in an environment with a L-
shaped obstacle. The graph is constructed by 200 × 200 uniform square discretization of the environment
(see [Bhattacharya 10]). Tessellation is created starting from three points (the location of the agents) to the
complete diagram after expansion of about 37300 vertices. The filled area indicates the set of expanded vertices.
The boundaries of the tessellation are visible in blue.

level of approximation and deviation from the original metric space, in order to make any continuous
problem computationally feasible it is an indispensable trade-off.

We consider a uniform square tiling (Figure 12) of the space of coordinate variables (in
a particular coordinate chart) and create a graph G out of it (with vertex set V(G), edge set
E(G) ⊆ V(G) × V(G) and cost function CG : E(G) → R+). The costs/weights of the edges
of the graph are the metric lengths of the edges. It is to be noted that in doing so we end up re-
stricting the metric of the original space to the discrete graph. Because of this, as well as due to
the discrete computation of the integrations (as discussed later), this discrete graph-search based
approach is inherently an approximate method, where we trade off the accuracy and elegance of a
continuous space for efficiency and computability with an arbitrary metric.

The key idea is to make a basic modification to Dijkstra’s algorithm [Dijkstra 59, Cormen 01]
that enables us in creating a geodesic Voronoi tessellation. For creating Voronoi tessellation we initi-
ate the open set with multiple start vertices from which we start propagation of the wavefronts. Thus
the wavefronts emanate from multiple sources. The places where the wavefronts collide will hence
represent the boundaries of the Voronoi tessellation (see [Adamatzky 96, Velic 09, Durham 12] for
similar wavefront-based Voronoi partitioning methods). In addition, we can conveniently alter the
distance function, the level-set of which represents the boundaries of the Voronoi cells. This en-
ables us to even create geodesic power Voronoi tessellation. Figure 13 illustrates the progress of the
algorithm in creation of the tessellation.

In order to compute the control command for the robots (i.e. the action of the robot in the next
time step), we use the formula in Equation (8). In a discretized setup, the position of the kth robot
corresponds to a vertex pk ∈ V(G) (note that we use a vertical, regular-weight font to distinguish a
vertex from the point pk ∈ Ω or its coordinate representation pk). The coefficient vector zqpk

of the
tangent vector is approximated by the coefficient vectors along edges of the form [p′k,pk] ∈ E(G) for
some p′k ∈ NG(pk) (the set of neighbors of pk) such that the shortest path in the graph connecting
pk and q ∈ V(G) passes through p′k. For a given q, we know the index of the robot, τ(q), whose
tessella it belongs to, and can compute the shortest path in the graph joining the vertices pτ(q) and
q. The neighbor of pτ(q), through which the shortest path passes, is the desired p′τ(q), and it is
maintained in a variable η(q) in an efficient way. Thus, we can also compute the integration of (8)
on the fly (by approximating it as a summation over the discrete cells) as we compute the tessellation.
The complete pseudo-code of the algorithm is given below.
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{τ, {p′k}} = Tessellation and Control Computation (G, {pk}, {Rk}, w)
Inputs: a. Graph G (with vertex set V(G), edge set E(G) ⊆ V(G)× V(G),

and cost function CG : E(G)→ R+)
b. Agent locations pk ∈ V(G), k = 1, 2, · · · , n
c. Agent weight Rk ∈ R+, k = 1, 2, · · · , N
d. Discretized weight/density function w : V(G)→ R
e. The matrix representation of metric tensor, η.. : Img(ψ)→ RD×D , in coordinate chart B

Outputs: a. The tessellation map τ : V(G)→ {1, 2, · · · , n}
b. The next position of each robot, p′k ∈ NG(pk), k = 1, 2, · · · , n

1 Initiate g: Set g(v) :=∞, for all v ∈ V(G) // Shortest distances
2 Initiate ρ: Set ρ(v) :=∞, ∀v ∈ V(G) // Power distances
3 Initiate τ : Set τ(v) := −1, ∀v ∈ V(G) // Tessellation
4 Initiate ν: Set ν(v) := ∅, ∀v ∈ V(G) // Pointer to robot neighbor. ν : V(G)→ V(G)
5 for each ({k ∈ {1, 2, · · · , n}})
6 Set g(pk) = 0
7 Set ρ(pk) = −R2

k

8 Set τ(pk) = k

9 Set Ik := 0 // The negative of differential of H̃ in coordinate chart B (a covector).
10 for each ({q ∈ NG(pk)}) // For each neighbor of pk
11 Set ν(q) = q
12 Set Q := V(G) // Set of un-expanded vertices
13 while (Q 6= ∅)
14 q := argminq′∈Q ρ(q′) // Maintained by a heap data-structure.
15 if (g(q) ==∞)
16 break
17 Set Q = Q− q // Remove q from Q
18 Set l := τ(q)
19 Set s := ν(q)
20 if (s != ∅) // Equivalently, q /∈ {pk}k=1,2,...,n

21 Set z = P(s)−P(pl) // Negative of tangent vector
21 Set M = η..(P(pl)) // Metric tensor at pl as a matrix in coordinate representation of B.
21 Set Il += g(q)× Mz√

zTMz
× w(q)×

√
detM // Negative of integral in gradient of H̃

22 for each ({w ∈ NG(q)}) // For each neighbor of q
23 Set g′ := g(q) + CG([q,w])
24 Set ρ′ := PowerDist(g′, Rl)
25 if (ρ′ < ρ(w))
26 Set g(w) = g′

27 Set ρ(w) = ρ′

28 Set τ(w) = l
29 if (s != ∅) // Equivalently, q /∈ {pk}k=1,2,··· ,n
30 Set ν(w) = s
31 for each ({k ∈ {1, 2, · · · , n}})
32 Set p′k := argmaxu∈NG(pk) (P(u)−P(pk)) · Ik // Choose action best aligned along Ik.
33 return {τ, {p′k}}

where, we used the coordinate chart B = (Ω−S, ψ) as discussed earlier. The function P : V(G)→
Ω is such that P(q) gives the coordinate of the vertex q. Thus, P(pk) = pk and P(q) = q in
relation to Equation (8). In an uniform discretization setting we take w(q) = α w(ψ−1(P(q))) for
an arbitrary positive constant α representing the ‘area’ of each discretized cell. Note that Ik is the
coefficient vector of the differential of H̃ (a covector), while uk is its dual (a vector – see Equa-
tion (7)). Thus, in line 32 of the algorithm, the ‘dot product’ is an element-wise product followed
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by a summation and not the inner product (i.e. for a ∈ T ∗pΩ and b, c ∈ TpΩ, we define a · b = aib
i,

but <b, c>= ηijb
icj). The function PowerDist(x,Rk) ≡ fk(x) = x2 − R2

k computes the power
distance for power Voronoi tessellation.

Complexity: The complexity of the algorithm is the same as the standard Dijkstra’s algorithm,
which for a constant degree graph is O(VG log(VG)) (where VG = |V(G)| is the number of ver-
tices in the graph). This is in sharp contrast to the complexity of search for optimal location as in
[Durham 12], where explicit computation of the second moment is performed with respect to every
vertex in a tessellation (each of which require a Dijkstra’s-like algorithm to start from the chosen ver-
tex and expand every other vertex of the Voronoi cell and compute the distances to those). Although
the approach in [Durham 12] finds the global minimum ofM(Vk) at every iteration, the complexity
of the algorithm is O(V 2

G log(VG)), and becomes prohibitively expensive when the environment is
finely discretized.

Distributed and Decentralized Implementation: The algorithm described above lends itself to
distributed implementation quite naturally. The distributability of the original Lloyd’s algorithm is
well-known in literature [Pavone 11, Bullo 09]. The key idea behind a distributed implementation is
to have minimal information available and the minimal computation performed on the ith processor
for computing the control commands for only the ith robot. Then, multiple processors can com-
pute the control commands for the different robots parallely. Also, as described next, besides the
minimal communication of positions, there is no need for a centralized processor to consolidate the
results obtained from the parallel computations, thus even allowing decentralization of the control
computation.

For adapting the algorithm Tessellation and Control Computation for a distributed imple-
mentation, we note that the control velocity of the ith robot depends only on the shape of its own
tessellum, Vi (see (8)). So on the ith processor we need to do enough to compute only the ith tessel-
lum. For this, the ith processor (assume it is stationed on board the ith robot) needs to know at least
the position of the neighbors of the ith robot – robots with which it shares a tessellum boundary
(One can use a heuristic to determine which robots are such potential boundary-sharing neighbors.
But if that is not possible, considering all robots in the environment as potential neighbors will still
allow the decentralized implementation). Say that set of robot indices is Ni = {j1, j2, · · · , jni

}
(ni being the number of potential boundary-sharing neighbors of the ith robot). Thus the ith robot
will need to communicate with these neighbors to obtain their positions (as vertices in the graph G),
{pi,pj1 ,pj2 , · · · ,pjni

} =: P i (note we included the robot’s own position as the first element in the
set). Likewise we construct the set of agent weights Ri = {Ri,Rj1 ,Rj2 , · · · ,Rjni

}.
Then, all that the ith processor will need to do is run the Tessella-

tion and Control Computation algorithm with only the neighbors and itself as inputs. That
is, it needs to run{

τ, P ′
}

= Tessellation and Control Computation(G, P i, Ri, w)

with the ‘for each’ statements in lines 5 being run over the set of indices k ∈ {i, j1, j2, · · · , jni}
only, and the control computation in line 31-32 being done only for k = i. Moreover, the main
loop (line 13–30) can be exited as soon as the ith tessellum has been completely computed (This
becomes true when the open set, i.e., the set of un-expanded vertices with finite power distance,
does not contain a vertex that is also in the tessellum of robot i. That is, when {q | q ∈ Q, ρ(q) 6=
∞, τ(q) = i} = ∅).

Thus the first element of the set of controls returned, P ′, is the required p′i — the next position
for the ith robot in the graph.

24



y

x

(a) The 2-sphere and a coordinate chart on it.

(b) t = 1. (c) t = 150. (d) t = 250. Converged solution.

Figure 14: Coverage using a discrete implementation of generalized continuous-time Lloyd’s algorithm
on a part of the 2-sphere. The chosen coordinate variables, x and y, are the latitudinal and longitudi-
nal angles respectively, and the domain shown in figures (b)-(d) represent the region on the sphere where
x ∈ [π/16, 3π/4], y ∈ [π/16, 3π/4]. x is plotted along horizontal axis and y along vertical axis on linear
scales. The intensity indicates the determinant of the metric, the thick curves are the tessellation boundaries,
and the thin curves are the robot trajectories.

4.1 Application to Coverage on Non-Euclidean Metric Spaces
In this section we will illustrate examples of coverage using the generalized continuous-time Lloyd’s
algorithm on a 2-sphere. We use a coordinate chart with coordinate variables x ∈ (0, π), the latitu-
dinal angle, and y ∈ [0, 2π), the longitudinal angle (Figure 14(a)). The matrix representation of the

metric on the sphere using this coordinate chart is η•• =

[
1 0
0 sin2(x)

]
. As usual, we use a uniform

square discretization of the coordinate space to create an 8-connected grid graph [Bhattacharya 10].
However, in order to model the complete sphere (in the example of Figure 15), we need to estab-
lish appropriate edges between vertices at the extreme values of y, i.e. the ones near y = 0 and
y = 2π. Similarly, we use an additional vertex for each pole to which the vertices corresponding to
the extreme values of x connect.

Figure 14(b)-(d) shows two robots pursuing the coverage control law on a subset of the 2-sphere
by following the control command computed using the algorithm of Section 4 at every time-step.
The region of the sphere that we restrict to is that of latitudinal angle x ∈ [π/16, 3π/4], and longitu-
dinal angle y ∈ [π/16, 3π/4]. The robots start off from the bottom left of the environment near the
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(a) t = 32. (b) t = 88. (c) t = 171. (d) t = 211.

(e) t = 32. (f) t = 88.

(g) t = 171. (h) t = 211.

Figure 15: Coverage on a complete sphere. In Figures (a)-(d), x ∈ (0, π) (latitudinal angle) is plotted along
horizontal axis and y ∈ [0, 2π) (longitudinal angle) along vertical axis on linear scales. Figures (e)-(h) show
the same plot mapped on the 2-sphere. The colors are used to indicate the tessella of the robots. Note that in
(e)-(h) different viewing angles are used to facilitate visualization. (d) and (h) are the converged solutions.

26



(a) t = 26. (b) t = 126. (c) t = 151. (d) t = 276.

(e) t = 26. (f) t = 126. (g) t = 151. (h) t = 276.

Figure 16: Coverage control on a 2-torus with two obstacles on it (marked in black) with 5 robots. (a)-(d): The
torus is rotated to view from different angles as the coverage algorithm progresses. (e)-(h): The plot on the
coordinate chart.

point [0.42, 0.45], and follow the control law of Equation (8) until convergence is achieved. Note
that the tessellation has a curved boundary in Figures 14(c) and 14(d) because it has to be a segment
of the great circle on the sphere (note that the jaggedness is due to the fact that the curve actually
resides on the discrete graph rather than the original metric space of the sphere). In the converged
solution of Figure 14(d), note how the robots get placed such that the tessellation splits up the area
on the sphere equally rather than splitting up the area of the non-isometric embedding in R2 that de-
pends on the chosen coordinate chart. The weight function is chosen to be constant, w(q) = 1. Note
that in the figures t denote the number of times the control commands were computed (a single incre-
ment of t thus means a complete execution of algorithm ‘Tessellation and Control Computation’).
For this example, the program ran at a rate of about 4 Hz (i.e., 4 passes of the algorithm per second)
on a machine with 2.1 GHz processor and 3 GB memory.

A more complete example is shown in Figure 15 in which 4 robots attain coverage on a complete
2-sphere. The robots start off close to each other on the sphere, and follow the control law of
Equation (8), until they converge attaining good and uniform coverage of the sphere. In order to
avoid numerical problems near the poles, we cordon off small disks near the poles (marked by the
gray regions), and establish ‘invisible’ edges across those disks connecting the vertices on their
diametrically opposite points. Figures 15(a)-(d) show the tessellation in the coordinate chart with
x plotted along the horizontal axis and y along the vertical axis (300 × 600 uniformly discretized).
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Figures 15(e)-(h) show the same tessellation mapped on the sphere. The weight function, once again
is chosen to bew(q) = 1. For this example, the program ran (control computation as well as plotting
of the graphics) at a rate of about 1 Hz on a machine with 2.1 GHz processor and 3 Gb memory.

Figure 16 shows a similar example of coverage on a 2-torus with 2 obstacles by 5 robots. The

matrix representation of the metric tensor on the torus is given by η•• =

[
r2 0
0 (R+ r cosx)2

]
,

where R is the radius of the axial circle, r the radius of the tube of the torus, x is the latitudinal
angle, and y is the longitudinal angle. Note how the Voronoi tessella (distinguished by the shades of
green) in this case are not simply connected.

4.2 Application to Cooperative Exploration and Coverage Problem
Next we apply the tools developed to the problem of cooperative exploration and simultaneous
coverage. In context of an exploration problem, one efficient way of representing uncertainty in the
environment (knowledge about occupancy or a lack of it) is to use the Shannon entropy [Ihara 93].
Each point in the environment can be assigned a numerical value (the Shannon entropy) – higher the
value, more uncertain we are about the accessibility/inaccessibility of the point, while lower value
implies greater certainty about occupancy. Thus, in an exploration problem, greater attention needs
to be given to regions with high entropy where exploration is yet to be performed. If we are using
a Voronoi partitioning and a Lloyd’s-like algorithm for deployment of robots and exploration, we
thus need to produce an effect such that the unknown/unexplored regions get “stretched out” and get
greater attention than the explored regions. This stretching out effect is naturally induced by using
the entropy as a weighing factor in the Riemannian metric of the space for computing the tessellation
and controls for the robots. The apparatus developed so far thus comes to use.

In previous work [Bhattacharya 10] we had used an approximate and ad hoc “projection of cen-
troid” method in order to compute an analog of generalized centroid and device a control law that
was essentially to follow the approximate generalized centroid. However such a method has very
weak guarantee on convergence and could very well make robots to ‘get stuck’ at boundaries of ob-
stacles or even oscillate. Equipped with the control law of Equation (8), we now perform the same
exploration task in a more systematic way with guarantees on convergence.

The problem involves n mobile robots that are equipped with on-board range sensors and can
localize themselves in a global coordinate frame (for example, using on-board GPS devices). Each
mobile robot maintains and communicates a probability map for the discretized environment, such
that p(q) is the probability that the vertex q is inaccessible (i.e. occupied or represents an ob-
stacle) for all q ∈ V(G). Since the initial environment is unknown, the robots start off with

Region of
high Entropy

Splits area equally

Splits entropy equally

Sensor 1 Sensor 2

Figure 17: Entropy-weighted metric for voronoi tessellation in exploration problem.
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p(q) = 0.5, ∀q ∈ V(G). This probability map evolves as the robots obtain sensor data and com-
municate with each other (see [Bhattacharya 10] for a communication protocol in a decentralized
implementation). A threshold on the value of probability determines whether a particular vertex
in V(G) is occupied/inaccessible for computation of the Geodesic Voronoi tessellations as well as
control.

As detailed in [Bhattacharya 10], we choose the Shannon entropy for constructing the density
function as well as to weigh the metric (Figure 17). Thus, the Shannon entropy is given by e(q) =
− (p(q) ln(p(q)) + (1− p(q)) ln(1− p(q))). We use this for modeling the discretized version of
the weight function, w, and an isotropic metric, ζI (where I is the identity matrix). Noting that in
an exploration problem, the occupancy probability, p, and hence the entropy e, will be functions of
time as well, we use the following formulae for w and ζ,

w(q, t) =

{
εw, if e(q, t) < τ
e(q, t), otherwise. , ζ(q, t) =

{
εζ , if e(q, t) < τ
e(q, t), otherwise. (9)

for some small εw and εζ representing zero (for numerical stability).
Each mobile robot maintains, updates and communicates a probability map for the discretized

environment and updates its entropy map. We use a sensor model similar to that described
in [Bhattacharya 10], and ‘freeze’ a vertex to prevent any change to its probability value when its
entropy drops below some τ ′ (< τ).

In addition, to avoid situations where a robot gets stuck at a minima inside its tessella even
when there are vertices with entropy greater than τ in the tessella (this can happen when there
are multiple high entropy regions in the tessella that exert equal and opposite pull on the robot so
that the net velocity becomes zero), we perform a check on the value of the integral of the weight
function, w, within the tessella of the kth robot when its control velocity vanishes. If the integral is
above the value of

∫
Vk
εw dq, we switch to a greedy exploration mode where the kth robot essential

head directly towards the closest point that has entropy greater than the value of τ . This ensures
exploration of the entire environment (i.e. the entropy value for every accessible vertex drops below
τ ). And once that is achieved, both w and ζ become independent of time. Thus convergence is
guaranteed.

Figure 18 shows screenshots of a team of 4 robots exploring a part of the 4th floor of the Levine
building at the University of Pennsylvania. The intensity of white represents the value of entropy.
Thus in Figure 18(a) the robots start with absolutely no knowledge of the environment (maximum
entropy), explore the environment, and finally converge to a configuration attaining coverage and
minimum entropy (Figure 18(d)).

Figure 19 shows a similar scenario. However, in this case a human operator chooses to take con-
trol of one of the robots (Robot 0) soon after they start cooperative exploration of the environment.
That robot is forced to stay inside the larger room at the bottom of the environment. Moreover,
in this case we use a team of heterogeneous robots (robots with different sensor footprint radii),
thus requiring a power voronoi tessellation. This simple example illustrates the flexibility of our
framework with respect to incorporating human inputs to guide exploration.

For either of the above examples, with the environment was discretized into a 284 × 333 grid,
the program ran at a rate of about 3−4 Hz on a machine with 2.1 GHz processor and 3 Gb memory.
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(a) t = 2. (b) t = 300.

(c) t = 900. (d) t = 1550. Converged solution.

Figure 18: Exploration and coverage of an office environment by a team of 4 robots. Thick curves indicate
boundaries of tessellation, intensity of white indicates the value of entropy.
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(a) t = 150. (b) t = 500.

(c) t = 1450. (d) t = 2100. Converged solution.

Figure 19: Exploration and coverage of an office environment discretized into a 284× 333 grid by a team of 4
robots, with one of the robots (robot ‘0’) being controlled by a human user.
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5 Conclusion
In this paper we have extended the coverage control algorithm proposed by Cortes, et al. [Cortes 04],
to non-Euclidean configuration spaces that are, in general, non-convex. The key idea is the transfor-
mation of the problem of computing gradients of distance functions to one of computing tangents
to geodesics. We have shown that this simplification allows us to implement our coverage control
algorithm in any space after reducing it to a discrete graph. We have illustrated the algorithm by
considering multiple robots achieving uniform coverage on a 2-sphere and an indoor environment
with walls and obstacles. We have also shown the application of the basic ideas to the problem of
multi-robot cooperative exploration of unknown or partially known environments.
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Appendix: Proofs

Sketch of proof for Lemma L1:

Since Ω is a manifold with C1 boundary, the ‘neighborhood’ of every p ∈ Ω will either resemble
a complete Euclidean space (Figure 4(a)) or an Euclidean half space (Figure 4(b)). More technically, a
λ-scaling of Ω at p will converge to RN or HN as λ → ∞, where N is the topological dimension of Ω
(see Proposition 3.15 of [Gromov 99]). This indeed is a convex cone in Ti(p)RD (which, by definition, is
λ-scaling of RD at i(p)). To prove that this space is TpΩ, we just invoke the local connectedness property
of RN or HN , and hence existence of paths emanating from p that ‘fill’ the space.

Proof of Lemma L2:

An Ω that can be represented as a subset of a smooth, complete manifold of same dimension, along
with the described path metric d`, is sometimes referred to as a metric space of type (∆) (see Theorem 2.1
of [Wolter 85]).

i. The first result follows from the construction of the cut locus (see discussion in p. 42 of [Wolter 85]).

ii. The fact that gp is C1 in Ω − (∂Ω ∪ p ∪ Cp) follows from Theorem 3.1.b of [Wolter 85] (see
Figure 5(a)). In fact a stronger condition holds: The gradient of gp is locally Lipschitz continuous in
Ω− (∂Ω ∪ p ∪ Cp) (by Theorem 5.1 of [Wolter 85]).

iii. If we choose q, q′ ∈ Ω − (∂Ω ∪ p ∪ Cp) at a distance of ε from each other, then due to the triangle
inequality for the metric d`, we have |gp(q)− gp(q′)| ≤ ε. Thus it follows that the gradient of gp is
bounded.
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(a) Illustration for Lemma L3, adapted from Figure 3.1 of
[Wolter 85].
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(b) The same phenomenon can be created due to locally
non-Euclidean metric on manifold with boundary.

Figure 20: Examples where q /∈ Cp, but p ∈ Cq . This is because the minimal paths, τ1 and τ2, have parallel
tangents at q.

Sketch of proof for Lemma L3:

First we note that, unlike the case in complete manifolds (Lemma 2 of [Klingenberg 59]), the statement
is not true in general for every p on a manifold with boundary. For an example refer to Figure 3.1 of
[Wolter 85] or Figure 20. Thus, the main objective is to prove that the set of points for which the statement
is not true is a set of measure zero in Ω. For the purpose of this sketch we assume that the boundary of Ω is
smooth. However, this can be relaxed without too much difficulty.

We consider the set of points, DΩ ⊂ Ω, for which the statement is not true. Let p ∈ DΩ and q /∈ Cp
but p ∈ Cq . Thus the two minimal paths (say τ1 and τ2) connecting p and q should have parallel tangents at
q but distinct tangents at p. For that being possible, one of the minimal paths (say τ1) needs to be tangent
at some point q1 ∈ ∂Ω to ∂Ω, where the two distinct tangents emanating from p meet parallely for the first
time (and hence continue together up to q). For the two paths to be distinct before q1, the other minimal
path (τ2) needs to meet the boundary earlier than q1, and ‘graze’ the boundary up to q1 – say it meets at
q2 ∈ ∂Ω (see Figure 20). Clearly, the part of τ2 connecting q1 and q2 has to be a geodesic segment on ∂Ω.

Let Ω be of dimension N . A choice of the point p and two directions for the paths emanating from p is
equivalent to choosing a point on the double sphere bundle SΩ := Ω×SN−1×SN−1. Let the point p, along
with the tangents to τ1 and τ2 at p (which we represent as t1 and t2 respectively), be represented on SΩ by
the triple (p, t1, t2). Now, we look at the tangent space of SΩ at (p, t1, t2) and determine the dimension
of the subspace along which we can perturb the position of the point p and the directions of the emanating
minimal paths (i.e. t1 and t2) such that the aforesaid conditions are satisfied. We write T(p,t1,t2)SΩ for that
tangent space, which is of dimension N + 2(N − 1) = 3N − 2, with TpΩ regarded as a N -dimensional
subspace.

We consider the case where τj (j = 1, 2) do not touch ∂Ω between p and qj (like the scenario
in Figure 20(b), but unlike the scenario in Figure 20(a)). It can be easily verified that the situations in
which they do, result in additional constraints that further reduces the number of orthogonal directions in
which (p, t1, t2) can be perturbed. The case that we consider here can arise, for example, when the central
hole/obstacle in Figure 20(a) is removed, but is replaced by a region of high curvature as in Figure 20(b).

First, in order to maintain tangency of τ1 at q1 with ∂Ω, the perturbations will need to satisfy 1 con-
straint. That gives us a (3N − 2) − 1 = 3N − 3 dimensional subspace of T(p,t1,t2)SΩ in which we can
test our further perturbations. Now consider the geodesic curve on ∂Ω emanating from q1 and along the
direction of the tangent of τ1 at q1. For τ2 to intersect this curve, we have another N − 2 constraints (there
would be 0 constraints to intersect any arbitrary point on the N − 1 dimensional ∂Ω. Thus to intersect a 1
dimensional submanifold of it, we need to impose (N −1)−1 constraints). This point of intersection is q2.
Further, in order to ensure that the tangent to τ2 at q2 is parallel to the geodesic segment connecting q1 and
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q2 at q2, we will need to impose another N − 1 constraints (since the space of possible directions in which
it is possible to pass through q2 is SN−1, and we need τ2 to be tangent to a specific direction at q2). Thus, so
far, we have 1+(N−2)+(N−1) = 2N−2 constraints, that leaves us with a (3N−2)− (2N−2) = N
dimensional subspace of T(p,t1,t2)SΩ along which we can choose a direction to move (p, t1, t2) ans still
satisfy the required conditions. Finally, we need to impose the constraint that the lengths of the paths τ1
and τ2 need to be equal. This imposes 1 additional constraint. Thus, the dimensionality of the subspace of
T(p,t1,t2)SΩ along which we can perturb the point p and the emanating directions of τ1 and τ2 is N − 1.
Even if this subspace lies entirely in TpΩ ⊂ T(p,t1,t2)SΩ, it is one dimension less than the dimensionality
of TpΩ. Thus the dimensionality of DΩ can at most be N − 1.

As discussed earlier, we first prove Lemma L4 and Corollary C1, using which we will prove the
Proposition P1.

It is possible to prove Lemma L4 using more direct arguments that establish the direction of
steepest descent of a function in the tangent space as the dual of the differential of the function (i.e.
gradient of a function). However, for completeness, we provide an explicit proof.

Proof of Lemma L4:

For notational convenience, let us define gw(u) := dC(w,u), ∀u ∈ Img(φ). Recall that geodesically
convex implies that any two points in U can be connected using a smooth geodesic segment (a curve
satisfying the geodesic equation at every point) lying entirely in U .

Consider gw as a function from RN to R+ with an unique minima at w. Let γwq represents any
arbitrary curve in Img(φ) ⊆ RN connecting w to q. By the fundamental theorem of calculus and using the
fact that gw(w) = 0, we have,

I(γwq) := gw(q) =

∫
γwq

∂

∂u
gw(u) · du ≡

∫
γwq

∂gw(u)

∂ui
dui (10)

where, [ du1, du2, · · · , duN ] is the coefficient vector (in chart C) of an infinitesimal element along the
tangent to the curve.

Now, the length of the curve γwq is given by

L(γwq) :=

∫
γwq

√
ηij(u) dui duj (11)

By definition, the value of L(γwq) is minimum when γwq is the shortest geodesic (which, due to the
hypothesis that the cut locus of any point in U is empty, is unique – call it γ∗wq) connecting w and q, and
the minimum value is clearly gw(q) (by definition of gw). Thus,

L(γwq) ≥ I(γwq) [= gw(q), a const. independent of γwq] ,
equality holds when γwq = γ∗wq

(12)

Now, consider a family of infinitesimal elements of RN represented by the coefficient vector du =
[ du1, du2, · · · , duN ]T located at an arbitrary point u ∈ Img(φ) such that u + du lies inside Img(φ).
From the triangle inequality of dC (since it is induced by a Riemannian metric) we have,

dC(w,u + du) ≤ dC(w,u) + dC(u,u + du)

=⇒ dC(w,u + du)− dC(w,u) ≤ dC(u,u + du)

=⇒ ∂

∂u
gw(u)

∣∣∣∣
u

· du ≤
√
ηij(u) dui duj

=⇒ ∂gw(u)

∂ui
dui ≤

√
ηij(u) dui duj =

ηij(u) dui duj√
ηmn(u) dum dun

(13)
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Equality of the triangle inequality in (13) of course holds when u lies on the geodesic connecting w and
u + du.

Now consider a curve γ′wq (connecting w and q) with infinitesimal elements du along the tangents to
the curve. If there exists a set of points of non-zero measure (1-dimensional measure), along that curve on
which the inequality in (13) is not an equality, then the integrals of the quantities on the two sides of the
inequality will not be equal. That is, for such a curve we will have I(γ′wq) < L(γ′wq).

But we know that there does exist a curve, γ∗wq, such that I(γ∗wq) = L(γ∗wq) does hold. Thus, for that
curve it should be true that the equality of (13) holds true everywhere except possibly a set of measure zero.
However, since the curves under consideration are continuous, this is possible only when the curves are the
same. Thus we have essentially shown that for the geodesic, γ∗wq, at each and every point of the curve the
following holds

∂gw(u)

∂ui
dui =

ηij(u) dui duj√
ηmn(u) dum dun

where du are of course infinitesimal elements at u along the tangent to γ∗wq.
One can normalize by dividing by ‖ du‖2 to obtain

∂gw(u)

∂ui
ziqu =

ηij(u)ziquz
j
qu√

ηmn(u) zmquznqu
(14)

where ziqu is the ith component of the tangent vector at u to the geodesic connecting w to u, which due to
our assumption is unique. We note that the right-hand-side of the above equation represents a scalar field
(call it S). Also, ziqu (which are functions of u) represent the coefficients of a contravariant vector field in
(U −w). Thus, writing Xi for ∂gw(u)

∂ui
, one can rewrite Equation (14) as

Xiz
i
qu = S(u) (15)

where we need to solve for the coefficients Xi(u) := ∂g(u)
∂ui

. Of course a particular solution is

X0,i(u) =
ηij(u)zjqu√
ηmn(u) zmquznqu

(16)

These coefficients clearly transform as coefficients of a covariant vector field. Moreover, the contravariant
vector field corresponding to this covariant field (i.e. the vectors with coefficients X0,i = ηijX0,j) is
parallel to ziqu. From this we can infer that the solution mentioned in (16) is the only solution of (15)
that transforms as coefficients of a covariant vector field (This is because of the following: Every covariant
transformation of Xi corresponds to an unique contravariant transformation of Xi. Again, the general
solutions of Xi need to be such that ηijziquXj = ηijz

i
quX

0,j = βηijz
i
quz

j
qu for some scalar field β. This

needs to be true in every coordinate chart. Due to positive definiteness of η••, this is possible only with Xj

parallel to zjqu, which also fixes the scalar multiple β since we have the known scalar field, S. ).
Thus we have

∂gw(u)

∂ui
=

ηij(u)zjqu√
ηmn(u) zmquznqu

(17)

Thus, by specializing for u = q, we obtain the proposed result.

Proof of Corollary C1:

We first note that due to Lemma L2, we can always choose an open neighborhood of q, Bq ⊆ V , which
is geodesically convex, on which the function gp := d`(p, ·) is of class C1, and the cut locus of every point
in which is empty in Bq (since q /∈ Cq).

Consider a minimal path γ∗pq connecting p and q. Let w(6= q) be a point on this path (between p and q)
that lies inside Bq (which we can always find since Bq is open) – see Figure 8(a).
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From the definition of minimal path we have γ∗pq = γ∗pw ∪ γ∗wq , for a minimal path, γ∗pw, connecting p
and w, and the minimal geodesic, γ∗wq , connecting w and q (which is unique since q /∈ Cp). Thus it follows
that,

zpq = zwq (18)

Again, by triangle inequality, for any u ∈ ψ(Bq)

dD̃` (p,u) ≤ d`(p, w) + dD̃` (w,u)

⇒ gp(u) ≤ h(u) (19)

where h(u) := d`(p, w) + dD̃` (w,u) and gp(u) := dD̃` (p,u).
However, equality does hold when p, w and ψ−1(u) lie on the same shortest path. This, in particular, is
true when u = q (due to our choice of w). Now, since q /∈ Cp and by our choice of Bq , both gp and h are
of class C1 at q. Thus we have gp(u) ≤ h(u) for u ∈ ψ(Bq), and at u = q they satisfy equality and are
differentiable. This implies the differentials of the functions at q should be same,

∂

∂u
gp(u)

∣∣∣∣
u=q

=
∂

∂u
h(u)

∣∣∣∣
u=q

⇒ ∂

∂u
dD̃` (p,u)

∣∣∣∣
u=q

=
∂

∂u
dD̃` (w,u)

∣∣∣∣
u=q

(20)

Now, Bq satisfies the conditions for U in Lemma L4, and w and q are points inside it. Thus by
Lemma L4,

∂

∂ui
dD̃` (w,u)

∣∣∣∣
u=q

≡ ∂

∂ui
dD` (w,u)

∣∣∣∣
u=q

=
ηij(q) zjwq√
ηmn(q) zmwqznwq

(21)

where w = ψ(w).
Substituting from (18) and (20) into (21) we obtain the proposed result.

Proof of Proposition P1:

Equipped with Corollary C1 we can now conclude the proof of Proposition P1. The gradient of a
function is, by definition, the dual of the differential, i.e. grad(f) =

(
∂f
∂xi

dxi
)∗

= ηij ∂f
∂xj

∂
∂xi

. Let q be a
point on ∂Ω and {qi} be a Cauchy sequence of points converging to q. Due to Corollary C1, at every point
qi ∈ Ω− (∂Ω∪ p∪Cp), the negative of the gradient of the distance from p is parallel to−zpqi , the tangent
at qi to the minimal path connecting qi to p (Figure 6). Due to our definition of gradient at boundary points,
the gradient of the distance function at q will then be limi→∞−zpqi . Since d` is a path metric, the minimal
path connecting each qi to p exists in Ω, as does the path connecting q to p. Thus, the limit exists in TqΩ.

Proof of Lemma L5:

We note that M : Λ → R is a continuous function (since d` is continuous, being a metric on a
topological space). In fact, upon fixing p, the only points where gp(·) := d`(p, ·) is not differentiable,
due to Proposition P1, is p ∪ Cp. This, due to Lemma L2.i., is a set of measure zero in Λ, and due to
Lemma L2.iii., the value of the gradient of gp at these points is bounded. Thus, we can re-write the 2nd

moment about p asM(p) =
∫

Λ−(p∪Cp)
f (d`(p, q)) w(q) dq (since the integral of a bounded function

over p∪Cp, a set of measure zero, is zero). Since the points, q, over which the integral is evaluated are such
that q /∈ Cp, due to Lemma L3 we have p /∈ Cq for almost every p ∈ Λ. ThusM is a C1 function almost
everywhere in Λ (except for possibly a set of measure zero, DΛ – see notation introduced in the proof of
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Lemma L3). That is, it is arbitrarily close [Milnor 63] to a C1 function on Λ. Let such a C1 function be
M. The fact thatM will itself be C1 when Λ does not contain any cut loci is clear from the preceding
discussion.

Proof of Lemma L6:

As before, we useM to refer to the smoothed version of the second moment function (which is arbi-
trarily close to a C1 function).

The fact that a point p ∈ ∂Λ cannot be a local minimum is easily seen by explicitly writing down the
negative of the gradient ofM at p:

−∇M|p =

∫
Λ−(p∪Cp)

2 d`(p, q) (−ẑqp) w(q) dq (22)

where,−ẑqp ∈ TpΛ is the negative of the normalized tangent at p to the geodesic connecting q to p, and due
to Proposition P1 it exists in the tangent cone TpΛ (in explicit coordinate representation, due to Lemma L4,

the lth component of this vector is ẑlqp =
zlqp√

ηmn(p) zmqpz
n
qp

, where zqp is an un-normalized tangent). Thus

the integral in the expression for −∇M|p is a sum of vectors in TpΛ, a convex cone (due to Lemma L1),
with positive coefficients. Thus −∇M|p exists in the tangent cone at p, TpΛ, and is not zero. Thus, from
p, following the integral curve of −∇M, we can reach a point p′ ∈ (Λ − ∂Λ) in the neighborhood of p
such thatM(p′) <M(p).

Proof of Proposition P2:

Recall from (7) (and using (22)) that the control law for the kth robot (using coordinates Ck) is

ulk = 2 κ
∫
Vk−(pk∪Cpk )

d`(q, pk)
−zlqpk√

ηmn(pk) zmqpk
znqpk

w(q) dq

= − κM
k(pk)

pl
k

whereMk is the second moment function on Vk in terms of the coordinates of Ck.
Due to Lemma L6Mk does not have local minimum on ∂Ck. Thus it can converge only to points in

the interior of Ck, where, due to the fact that Mk is arbitrarily close to a C1 function (Lemma L5), the
control velocities will be zero. The fact that the convergence is asymptotic (and there is no oscillation/orbits,
for example) follows simply by considering H̃ in (7) a Lyapunov function, the value of which decreases
steadily with time (by construction).
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