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Abstract

We address the coordination between humans and robots in tasks that involve ex-
ploration and reconnaissance with applications to search and rescue. Specifically,
we consider the problem of humans and robots cooperatively searching an indoor
environment in a distributed manner where we assume that each robot is equipped
with sensors that are able to locate targets of interest. Rather than have humans issue
explicit commands to and guide robots, we allow humans to make decisions on their
own and let the robots adapt to decisions taken by the human. The main contribution
of this paper is a framework in which the robots in the team respond and adapt to
the behavior of the human agents in the task of exploring and clearing an indoor
environment. The central idea is the assignment of robots to homotopy classes that
are complementary to the classes being pursued by human agents. By the virtue of
the sparse topological representation of the agent trajectories, our algorithm lends
itself naturally to a distributed implementation. The framework has three advan-
tages: it (a) ensures that robots and humans pursue different homotopy classes; (b)
requires very little communication between the humans and the robots; and (c) al-
lows robots to adapt to human movement without having to model complex human
decision-making behaviors. We demonstrate the effectiveness of the proposed al-
gorithm through a distributed implementation on a ROS (Robot Operating System)
platform. ∗

1 Introduction
We address the coordination between humans and robots in tasks that involve re-
connaissance with applications to search and rescue. In these applications, robots
may need to quickly and safely explore environments in collaboration with human
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counterparts. When confronted with two or more hallways, a human first respon-
der may choose to explore one hallway, while his/her robot co-responder explores
a different hallway. Similarly, in teams of multiple human and robot explorers, we
want the exploration task to be naturally decomposed between the team members.
At the same time, we want the human(s), who are better at interpreting the available
information and at decision making, to decide what actions they want to take and let
robots adapt accordingly.

We consider a setting where humans and robots are equipped with similar sens-
ing, processing, and communication capabilities, so that robots and humans can be
aware of each others’ positions and robots can interpret human movements and in-
tentions. The sensing capabilities of the agents are assumed to provide adequate
range to detect anomalies (e.g., victims or intruders) in an environment. We as-
sume that both humans and robots have access to blueprints of buildings and are
thus aware of the major features in the environment. As a result, both humans and
robots are able to localize themselves with respect to features in the buildings using
onboard sensors such as laser scanners, cameras and IMUs, as well as GPS, if avail-
able. Finally, we assume that the human-worn computers are able to communicate
with the robot co-workers and share their estimates of current location periodically.

Metric-based multi-robot coordinated exploration have been studied widely in
the past [1, 2, 3, 4, 5]. Multi-robot coverage of environments are also fundamentally
considered as metric problems relying inherently on a metric on the configuration
space [6, 7, 8, 9, 10]. In addition, graph traversal approaches similar to the traveling
salesman problem [11] have been explored in context of room-clearing [12] and
pursuit-evasion problems [13]. Similar coverage problems can be formulated as a
traversal on Voronoi graph or topological map [14, 15] of an environment.

However, in a problem setting as ours, it is likely that maps may not be per-
fect. Noise in the process dynamics and observations will induce errors in localiza-
tion. Thus representations derived from metric information will require estimation
techniques that yield estimates of states that are stochastic. Topological invariants
such as homotopy, on the other hand, being robust towards environmental noise and
measurement errors, are suitable for communication and coordination among the
heterogeneous teams of humans and robots. Furthermore, our primary objective be-
ing quick information/intelligence gathering and clearing, it is not necessary that the
agents visit every point in the environment (as done in graph traversal algorithms).
Homotopy classes of trajectories form natural equivalence classes, within each of
which the information available are similar. If two trajectories belong to the same
homotopy class, then a single agent can perform the task of gathering the avail-
able information in that class, while diverting additional resources to other classes.
While homotopy is directly related to visibility in most indoor environments (e.g.
consisting mostly of hallways and corridors), even in presence of non-convex fea-
tures within the class (e.g. a room by the corridor), traversing the class is sufficient
to gather intelligence and information from the adjacent features as those (e.g., by
glancing through the doors of the rooms) and does not need dedicated agents for
each of those features. Another advantage of using homotopy classes as the pri-
mary means of decision making in coordinated reconnaissance and clearing is the
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(a) Four agents, three robots (R1,R2,R3) and
one human (H), enter an environment with 4
homotopy classes of paths (τa,τb,τc,τd) lead-
ing to the exit. The robots wait for the human
to move first.
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(b) Based on human’s initial trajectory (solid
curve), the robots infer that H is taking the
homotopy class of τa or τb. The homotopy
classes of τc and τd are thus to be taken by
robots.
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(c) R3 tailgates the human (to pursue τa or τb
– whichever not taken by H), while robots R1
and R2 commit to τc and τd .
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(d) H has committed to τb, and thus R3 com-
mits to homotopy class of τa.

Fig. 1 A simple illustration of the idea behind the proposed algorithm involving a team of one
human and three robots. Robots must respond to human action by choosing paths in homotopy
classes complementary to those taken by humans to maximize exploration. The algorithm takes
into account teams consisting of arbitrary number of humans and autonomous robots. In addition,
robots can effectively adapt to erratic/unpredictable human behavior (not illustrated in this figure),
where a human, after committing to a class, may turn back to choose a different homotopy class.

simplicity of its representation, and thus the ease and efficiency in communication.
Choosing complementary homotopy classes by the robot agents is achieved natu-
rally and efficiently, and such choices can be easily adapted to change in the human
actions. Such algorithmic simplicity is absent in graph traversal approaches.

There has been some recent research on using topological techniques in explo-
ration of environments [16]. In this paper our fundamental approach is topological
as well. We exploit topological features in the environment, namely the different ho-
motopy classes of trajectories, to guide our search and rescue missions. This topo-
logical reasoning is fundamental in deciding how the autonomous agents respond
to human behaviors. Although we do use a metric on the space of trajectories in
the workspace (Hausdorff distance), this is purely as an intermediate step towards
classifying a human’s trajectory into one or more of the homotopy classes.

Our algorithm design is inspired by the need to keep explicit human-robot com-
munication (e.g., human commanding robots) at minimum in a time-critical mission
such as search and rescue. The humans should have the freedom to choose actions
based on their superior sensing ability (e.g., audio cues) and change actions without
having to explicitly communicate intent to other agents. The robot agents should be



able to adapt to the human actions and choose complementary tasks to maximize
efficiency of coordinated survey and search. We illustrate the problem at hand us-
ing the scenario in Figure 1 where there is one human and three autonomous robots.
All the agents enter through a single entrance in the environment and need to clear
the building and reach the exit. The figures illustrate how the robots take decisions
and respond based on the human agent’s actions. Our proposed algorithm is highly
suited for a distributed implementation, requiring only limited inter-agent commu-
nication of coarse topological representation (h-signature) of their trajectories.

2 Background
In this section, we will review some preliminary definitions and algorithmic tools.

2.1 Homotopy Class Of Trajectories
Suppose W ⊆ R2 is a simply-connected workspace for the agents with m counts of
connected obstacles O1,O2, · · · ,Om ⊆ W . Trajectories in an environment can be
classified by their topologies into different homotopy classes, which arise from the
presence of obstacles in an environment. We start by reviewing some of the standard
definitions related to homotopy.
Definition 1 (Homotopy classes of curves [17]). Two curves γ1,γ2 : [0,1]→ (W −
O) connecting the same start and end points, are homotopic (or belong to the same
homotopy class) iff one can be continuously deformed into the other without inter-
secting any obstacle (see Figure 2(a). See [17, 18] for formal definitions).
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(a) γ1 is homotopic to γ2 since there is a con-
tinuous sequence of trajectories representing
deformation of one into the other, but not to
γ3 since it cannot be continuously deformed
into any of the other two.
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(b) ζi are representative points inside the ob-
stacles, O1,O2, · · · ,Om (in that order), and
ri, i = 1, · · · ,m are rays emanating from the
respective points. The homotopy invariant of
this curve γ is h(γ) = “r2r3r5r−1

6 ”.

Fig. 2 Homotopy classes and their word representation.

For curves in 2-dimensional plane punctured by obstacles, computation of the
homotopy class of a given curve can be performed in a relatively simple way [19,
20, 21, 18, 22]: We consider representative points, ζi, inside the ith obstacle Oi
[17], and parallel non-intersecting rays, r1,r2, · · · ,rm, emanating from the obstacles
(Figure 2(b)). If γ is a given curve whose homotopy class we are trying to identify,
we construct a word by tracing γ , and consecutively placing the letters of the rays



that it crosses, with a superscript of ‘+1’ (assumed implicitly) if the crossing is from
left to right, and ‘−1’ if the crossing is from right to left. Thus, for example, the word
for γ in Figure 2(b) will be “r2r3r4r−1

4 r5r−1
6 ”. We then reduce this word by canceling

the same letters that appear consecutively but with opposite superscript signs. Thus,
the word for γ in Figure 2(b) can be reduced to “r2r3r5r−1

6 ”. This reduced word
representation is a homotopy invariant for open curves (with fixed end points), γ ,
and we will write this as h(γ) and call it the “h-signature of γ”. The h-signature
(reduced word) uniquely identifies the homotopy class of a curve. Note that if the
end point of γ coincides with the start point of γ ′, then h(γ∪γ ′)= h(γ)◦h(γ ′) (where
‘◦’ indicate concatenation of words).

h-augmented Graph
We use a discrete representation of the workspace, W , and construct a graph, G (with
vertex set V (G) and edge set E (G)), by placing a vertex in every accessible discrete
cell (cells not intersecting with an obstacle) and by establishing an edge between
the vertices of adjacent cells. While the graph, G, itself can be quite arbitrary, we
used a uniform square discretization and an 8-connected graph representation of the
environment in all our simulations for simplicity (Figure 3(a)).

From such a graph, we construct an h-augmented graph, Gh, for keeping track
of the homotopy class of the trajectories. The construction, in brief, is as follows:
Vertices in this h-augmented graph, Gh, are of the form (q,w) where q ∈ V (G) is
a position of an agent in the workspace (as a vertex in the discrete representation
graph, G ) and w is the word (i.e. the homotopy invariant) corresponding to the ho-
motopy class of a trajectory leading up to q from a base vertex qb (all h-signatures
of trajectories are computed with respect to a fixed point, called the base point, the
vertex at which is qb ∈ V (G)). We write the tuple as v = (q,w) ∈ V (Gh), with
vb := (qb,“ ”) being the vertex corresponding to the path of zero length. Thus the
h-augmented graph encodes in its vertex set information about homotopy classes
of paths, along with agent positions. The connectivity in the h-augmented graph is
described as follows: For every directed edge [q q′] ∈ E (G) (i.e., connecting q
to q′ in V (G)), and for every vertex of the form v = (q,w) ∈ V (Gh), there exists
a vertex (q′, w ◦ h(

−→
qq′)) (where

−→
qq′ is the line segment corresponding to the edge)

– see Figure 3(a). Thus, starting from (qb,“ ”), this gives a recipe to construct the
h-augmented graph, Gh, incrementally — a construction approach perfectly suited
for any graph search algorithm (such as A* and Dijkstra’s) involving expansion of
vertices starting from an initial vertex, so as to find shortest paths leading up to a
vertices of the form (qg,∗) – i.e., the goal vertex, qg, but reached via a specific ho-
motopy class. The cost of an edge in Gh is chosen to be the same as the cost of the
projected edge in G. That is, cGh([(q,w) (q′,w ◦ h(

−→
qq′)]) = cG([q q′]) (where

cG and cGh represent the cost functions in the respective graphs). In our implemen-
tation we choose cG([q q′]) to be the Euclidean length of the line segment that
constitutes the edge, qq′. For more details, the reader can refer to similar construc-
tion appearing in recent works [23, 24].



2.2 Hausdorff Distance as a Metric on Space of Trajectories
The behavior of a human agent, by nature, can be highly unpredictable. Even if a
human is presented with a clear set of trajectories to choose from, he/she may take
a trajectory that deviates from the planned ones. In our problem it is critical that
the robots quickly understand/estimate which homotopy class the human agents are
potentially taking so that the robots can quickly follow the complementary classes.
This is achieved by comparing the human’s partial trajectory with a set of esti-
mated/baseline candidate trajectories in different homotopy classes connecting the
start and the goal locations. The h-signature by itself does not provide adequate
information to evaluate distance between candidate trajectories. Instead, this com-
parison warrants a metric in the space of all trajectories in (W −O). In particular,
one can choose the Hausdorff distance [25], that is suitable for comparing any two
subsets of a metric space.

Definition 2 (Hausdorff distance [25]). Consider the free space of the agents,
(W −O), equipped with the standard Euclidean metric. The Hausdorff distance,
dH , between two sets A,B⊂ (W −O) is then defined as

dH(A,B) = max(ddh(A,B),ddh(B,A)) (1)

where, ddh(A,B) = maxa∈A minb∈B ‖a− b‖ is the directed Hausdorff distance be-
tween sets A and B, and ‖a−b‖ is the Euclidean distance between a,b ∈ (W −O).

Hausdorff distance, as defined, is a valid metric (satisfying all the axioms of a
metric) on the space of all subsets of (W −O). In particular, this implies dH(A,B) =
0 ⇐⇒ A = B. We can thus use this metric to compare two trajectories, τ1 and τ2,
when viewed as subsets of (W −O). In particular, if τH is a trajectory that the hu-
man has traversed, and {τ1,τ2, · · ·} are candidate trajectories in different homotopy
classes estimated by the robots, then the values of dH(τH ,τi) will help determine
which homotopy class the human is following.

Figure 3(b) illustrates the idea behind computation of the directed Hausdorff dis-
tance, ddh, for two trajectories τ1 and τ2 in an environment. The Hausdorff distance
itself is a symmetrized version of that distance for satisfying the symmetry property
of a metric.

3 Algorithm Design
As described earlier, the objective of this work is to develop a distributed algorith-
mic framework for autonomous agents in search and rescue operations consisting of
a heterogeneous team of humans and robots, taking into account the unpredictability
of human agents to efficiently explore an environment via complementary homotopy
classes of trajectories. For simplicity, we assume that all trajectories have equal pri-
ority and that each robot and each human travel at the same speed, respectively. Pri-
ority and speed variation could potentially be considered, if needed, through modi-
fication of the cost function to prioritize most promising paths or agents.

As illustrated in Figure 1, a key critical component in the algorithm design is the
ability of the autonomous agents (robots) to identify the intent of the humans. In par-
ticular, the robots need to quickly narrow down the set of possible homotopy classes
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(a) The h-augmented graph, Gh, is cre-
ated from the discrete graph representa-
tion of the environment, G, so as to in-
corporate information about the homo-
topy class of trajectories.
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(b) The directed Hausdorff distance between τ1
and τ2 is determined as follows: Fix a point a∈ τ1,
and find its distance from τ2. The directed Haus-
dorff distance is then the maximum of this value
over all the possible points a on τ1.

Fig. 3 Preliminaries: h-augmented graph and Hausdorff distance.

of paths that the humans are potentially taking, and thus follow the complemen-
tary classes. Furthermore, they need to monitor whether a human agent is altering
his/her behavior (changing the homotopy class that he/she committed to), so that
the robots can change their trajectories accordingly. The principal components in-
volved in achieving these are i. Human path prediction, ii. Robot path assignment
and iii. Human’s path history truncation. The following sub-sections describe these
algorithmic components in details.

3.1 Human Path Prediction Algorithm
At the entrance to the environment, the robots compute a set of reference trajecto-
ries, T = {τ1,τ2, · · · ,τp}, in p shortest homotopy classes that are to be tentatively
pursued by the agents by performing A* search in the h-augmented graph. Ideally,
we should choose all the non-looping and non-intersecting homotopy classes in the
environment, but for most practical cases it is sufficient to choose p=max(P,n+m),
where n is the number of human agents, m is the number of robot agents, and P is
an upper bound on the number of homotopy classes that we compute (determined
by our computation capability). We describe the path prediction algorithm for a sin-
gle human. In the presence of multiple human agents, the algorithm is executed for
each of them. Also, in a distributed implementation, the algorithm for predicting
each human’s path runs independently on each autonomous robot.

At the start, the set of potential paths that the human is following, denoted S0, is
the entire of T . The kth call of the path prediction algorithm computes Sk, the set of
potential paths that the human is following at the kth computation step, in a recursive
manner. Suppose we computed Sk = {τi1 ,τi2 , · · · ,τiq} ⊆T . The path prediction al-
gorithm at the (k+1)th step takes the human’s path history (say τH ) and compares
it with the reference trajectories in T (i.e., computes the Hausdorff distances from
each τi) to determines the new set Sk+1 of homotopy classes that the human is
potentially following. The basic algorithm is as follows: Let the distances of the hu-
man’s path history from the reference trajectories be di := dH(τH ,τi), i= 1,2, · · · , p.
These distances are normalized by the largest Hausdorff distance out of the most re-
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Fig. 4 Initially (left column), the human’s path τH (in red) is close to either of τ1 and τ2 (i.e. the
set of potential paths that the human is following is Sk = {τ1,τ2}). As the human travels further
(right column), the human’s path, τH , gets closer to τ2. In this case, the human path prediction
algorithm would update the set of potential homotopy classes of paths to Sk+1 = {τ2}. Note how
∆dH (difference between d1 and d2) increases indicating a clear demarcation between the distances
from the two reference trajectories.

cent potential set of trajectories, Sk, that the human was following to obtain a set of
normalized distances: di = di/D, ∀i = 1,2, · · · , p, where D = maxτi∈Sk dH(τH ,τi).
Based on these normalized distances, the objective is to determine if the human’s
trajectory is close to some of the trajectories in T and far from others. This decision
((k+1)th path prediction cycle) involves a two-step reasoning:
i. If min({d1,d2, · · · ,dp})≥α , where α ∈ [0,1] is a parameter encoding the max-

imum uncertainty tolerated by the user, then the decision cannot be made yet
— it is not yet clear what subset of Sk the human has narrowed down to. Thus
Sk+1 is not computed, and it is asserted that the (k+1)th path prediction cycle
is still in progress with Sk being the set of possible homotopy classes that the
human is still following. The robots waiting for the human to make the move
keep waiting or continue to follow the same path as before.

ii. If however, min({d1,d2, · · · ,dp})< α , we update the set of potential paths that
the human is following to the set Sk+1 := {τi | di < β ∗min({d1,d2, · · · ,dp})},
where β ≥ 1 is another parameter. This simply implies that the set of poten-
tial homotopy classes that the human is following contains trajectories that are
within a distance of at most β times the distance from the closest class. This
provides a conservative buffer in the case of very similar paths.

In implementation, following the (k+ 1)th path prediction step, the human broad-
casts the h-signatures of the paths in set Sk+1 only that are being followed by the
human, rather than the full set of vertices describing the predicted path itself. This
gives a compact communication protocol purely based on topological information
rather than denser metric information. Thus the communication burden is minimized



for each human, allowing for more effective and efficient coordination between hu-
mans and robots.

Figure 4 shows a simple example of the path prediction algorithm and how the
Hausdorff distance is used as a metric to select the set Sk+1 of paths for the human’s
potential trajectory.

3.2 Robot Assignment Algorithm
At the very beginning (start/entrance to the environment), the robots wait for all
the humans to make first moves until the humans have a narrowed-down set of
possible homotopy classes (i.e., the number of elements in S1, for each human, has
gone below the number of elements in S0 =T ). Then the robots coordinate among
themselves to determine the h-signature of the path (or a set of h-signatures) that
each robot should follow. In particular, the cost of a path in a given homotopy class
is used to prioritize the assignment of robots to expedite clearing of the environment.
This assignment process is run every time a new cycle of path prediction returns a
new set of possible homotopy classes that a human is following.

Suppose for the jth human the kth
j cycle of path prediction algorithm returned a

new Sk j . The robot assignment algorithm works by first determining the shortest
p paths for each robot in the environment, along with the associated path costs.
Following which there are two stages in the assignment algorithm:

i. Choose complementary homotopy classes: The h-signatures for paths that are
not in the set of potential paths that any of the humans are following (i.e. not in
Sk j of any of the humans) are prioritized first — unassigned homotopy classes
get assigned to the robot with the shortest path cost for that homotopy class.
This behavior is illustrated by robots R1 and R2 in Figure 1(c).

ii. Tailgate humans with more than one homotopy class in the possible set of homo-
topy classes: Once all classes not in any of the human’s Sk j have been assigned
to robots, then the remaining robots are assigned to follow human agents with
excess elements in their set of possible homotopy classes (the jth human’s Sk j ).
This is the behavior of robot R3 in Figure 1(c).

This path assignment algorithm is also executed again for groups of tailgating robots
every time the human which they are following passes through a junction/branching
point (i.e., the path prediction algorithm returns a new set Sk+1).

3.3 Human’s Path History Truncation for Robustness to
Unpredictable Actions

This algorithmic component is necessary to incorporate sudden changes in human
behavior that contradict the decision made in a past path prediction step. In case a
human turns back and goes past an earlier junction/fork point, and starts following
a different homotopy class, the clear demarcation between the Hausdorff distances
from the trajectories in S and those from the other, as was illustrated in Figure 4,
will fade - triggering the ‘path history truncation’ procedure. In order to figure out
which new homotopy class of trajectory the human has taken up, we need to chop
off the part of the human’s path history involving the “U-turn” from the earlier



homotopy class, and replace it with a path that belong to the same homotopy class.
Consequently, the human path prediction algorithm (say the (k + 1)th cycle) will
be able to properly identify the new homotopy class the human is following, and
compute Sk+1 accordingly.

Suppose, for a human, the last path prediction cycle returned Sk. The path trun-
cation algorithm seeks to isolate only the most recent path history for the human so
that the path prediction algorithm only uses the most recent, freshest human path
data and ignores the convoluted past path behavior. This is achieved by looking
at the minimum distance from points on the human’s path to reference trajectories
in Sk−1. Consider a point u′ earlier on the human’s trajectory (see Figure 5). The
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Fig. 5 Identifying the point on the human’s trajectory at which to truncate it.

minimum distance of this point from any trajectory of homotopy classes that the
human was potentially following before taking the U-turn, dmin(u′,τi), ∀τi ∈ Sk,
can be expected to be low. While the distances from the other homotopy classes,
dmin(u′,τi), ∀τi ∈ (Sk−1−Sk), can be expected to be high. However, if we con-
sider a point u′′ later on the human’s trajectory (after the U-turn), this will just be the
reverse – dmin(u′′,τi), ∀τi ∈Sk will be high, while dmin(u′′,τi), ∀τi ∈ (Sk−1−Sk)
will be low. This observation is key in determining the truncation point. In particu-
lar, we choose the truncation point to be a point utrunc on the human’s trajectory at
which the the average of the distances dmin(utrunc,τi), ∀τi ∈Sk becomes equal to
the average of the distances dmin(utrunc,τi), ∀τi ∈ (Sk−1−Sk). After truncation, the
human’s trajectory is updated by replacing the part before truncation with the short-
est path leading to utrunc but in the same homotopy class as the truncated part of
the trajectory. This approach will be effective as long as a human is not perpetually
indecisive switching between classes forever.

4 Results
Implementation: The described algorithm was implemented in ROS (Robot Op-
erating System) with human agents simulated through mouse-driven user interface
controlled by the authors and autonomous robots navigating using the proposed al-
gorithm. Dynamics or kinematics of the agents were not simulated; however, our
implementation is completely distributed, with the agents communicating using
h-signatures as compact representations of trajectories. The environment was pro-
vided to ROS as a bitmap, with automated identification of connected components
of obstacles and placement of representative points. In order to avoid multiplicity
of homotopy classes created by small obstacles/noise, a minimum size threshold



was placed on the obstacles on which to place representative points. Additionally,
the obstacles in the bitmap were inflated by the radius of robot to enable collision
avoidance and modeling of robots as points in the inflated obstacle map. For the path
prediction algorithm we chose the parameters α = 0.5 and β = 1.50 based on ex-
perimentation on a benchmark environment. In practice and for simplicity, the path
prediction algorithm for each human was implemented on the human agent itself
(its processor thread). The predicted paths were communicated to the other agents
by reporting the h-signatures of the predicted paths.

Figure 6 shows how three robots and one human split up the process of ex-
ploring an environment in four different homotopy classes. Figure 7 demonstrates
our algorithm in a more complex indoor environment with two humans and two
robots. The example also illustrates the path truncation algorithm. For each of
the results, the figure captions describe the algorithm in action. The algorithm
was also tested in more complex environments - these results can be viewed at
http://www.seas.upenn.edu/~govvijay/DARS14.html.

5 Conclusion
A human-robot coordinated exploration problem in context of search and rescue
operations is addressed in this paper. The autonomous robots intelligently choose
actions to complement the actions of the human agents. In particular, the idea of
complementary homotopy classes of trajectories help the autonomous agents choose
trajectories for fast and efficient exploration. The proposed algorithm comprises of
prediction of the homotopy classes of the human agents’ paths, assignment of com-
plementary paths to the robots, and a truncation algorithm for increased robustness
to the indecisive/uncertain behavior of human agents. We demonstrated the practical
applicability of the algorithm through ROS simulations with distributed implemen-
tation. In the near future, we plan to conduct extensive experiments on real robots
and explore the optimal selection of parameters α and β in the path prediction al-
gorithm for an arbitrary environment. Development of additional interfaces for fast
and easy communication of intent between the agents is under progress.
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(a) Three robots (R1,R2,R3, in blue) and one
human (H, in red) start at the upper “cup” of
the H-shaped obstacle. They find 4 homotopy
classes leading to the goal at the bottom of the
environment. Optimal trajectories in the differ-
ent homotopy classes are shown in different
colors for easy visualization. At this point the
potential set of possible homotopy classes that
the human can take is S0 = {τa,τb,τc,τd}

H

R1R2 R3

τa τb τc τd

(b) As the human moves forward, its set of pos-
sible homotopy classes is narrowed down to
S1 = {τa,τb}. The corresponding trajectories
are shown in red and orange. It is determined
that homotopy classes of τc and τd have not
been taken up by the human. Thus, homotopy
classes of τc and τd are assigned to robots (R2
and R3) with priority. Remaining robot (R1) is
assigned to tailgate human, H, since S1 con-
tains more than one elements.
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B

(c) After crossing a branching point, B, the hu-
man commits to homotopy class of τa (orange
dotted curve). So now S2 = {τa} contains a
single element. R1 thus will choose the com-
plementary class τb. Robots R2,R3 continues as
usual.
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B

(d) A final frame showing that the humans
and robots followed complementary homotopy
classes to reach the goal.

Fig. 6 Collaborative topological exploration in complementary homotopy classes demonstrating
how autonomous agents respond to human actions by choosing complementary homotopy classes.
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(a) Two robots (R1,R2, in
blue) and two humans (H1,H2,
in red) start near the bottom of
the map. They find 4 homo-
topy classes leading to the goal
at the top of the map. As in the
example with one human, the
four shortest paths in different
homotopy classes for H1 and
H2 are displayed.
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(b) As H1 and H2 travel away
from the initial junction point,
R1 responds by planning a path
in a complementary homotopy
class while R2 tailgates the hu-
mans. The planned paths for
R1 and R2 are shown in cyan
color.
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(c) At this point, R1 and R2
have already started moving
towards the goal. H1 and H2
are closer to the goal and ap-
pear to only be following one
path, respectively, so R2 goes
from tailgating the human to
planning a path in the remain-
ing complementary homotopy
class.
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(d) H1 has turned back from
the path it was following pre-
viously. H1 is now traveling to-
wards R2. The indecisive be-
havior results in less clarity re-
garding the human’s path be-
havior. This triggers the path
truncation algorithm to be ex-
ecuted, so that any future pre-
dictions will only focus on the
most recent human path data.
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τH2
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H2

H1
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Truncation 
Point

(e) H1’s path was truncated
at the labeled truncated point,
eliminating the “U-turn”
points from being used as
data in the path prediction
algorithm. The path before the
truncation point is replaced by
the shortest path in the same
homotopy class as the part of
the path that was chopped off
(green dashed curve).

τR1

τR2

τH2

R1
R2

H2

H1

τH1

R2 U-Turn 
Point

(f) In response to the update
in H1’s predicted paths after
the path truncation was com-
pleted, R2 makes a “U-turn”
to take the path abandoned by
H1 - the path to the left of
the uppermost obstacle. Essen-
tially, H1 and R2 have switched
places. From this point on-
wards, all agents travel along
these planned paths to the goal
point.

Fig. 7 An example of the human-robot coordinated exploration in an indoor search and rescue
scenario, with two robots, two humans and a demonstration of the path truncation algorithm.
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