The proof of Theorem $4.10 .3(\mathrm{a})$ uses the fact that $H=\operatorname{Gal}\left(\mathbb{E} / \mathbb{B}_{H}\right)$, but the proof of this fact was omitted. Thus we need the following:

Theorem. Let \mathbb{E} be a finite Galois extension of \mathbb{F} and let H be a subgroup of $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$. Let $\mathbb{B}=\operatorname{Fix}(H)$. Then $H=\operatorname{Gal}(\mathbb{E} / \mathbb{B})$.

Proof. Since H fixes \mathbb{B}, we have that $H \subseteq \operatorname{Gal}(\mathbb{E} / \mathbb{B})$. In order to show equality, we need only show that $|H|=|\operatorname{Gal}(\mathbb{E} / \overline{\mathbb{B}})|$. Let $n=|H|$ and $d=|\operatorname{Gal}(\mathbb{E} / \mathbb{B})|$. Certainly $n \leq d$ so in order to show that $n=d$ we need only show that $d \leq n$. Since \mathbb{E} is a Galois extension of \mathbb{B} we know that $d=(\mathbb{E} / \mathbb{B})$.

Proof. (Artin) We prove that $d \leq n$ by contradiction. Suppose that $d>n$.
Let $\left\{\varepsilon_{1}, \ldots, \varepsilon_{d}\right\}$ be a basis for \mathbb{E} as a vector space over \mathbb{B}. Let $H=$ $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$. Label these group elements so that σ_{1} is the identity. Consider the system of linear equations

$$
\begin{equation*}
\sigma_{i}\left(\varepsilon_{1}\right) x_{1}+\ldots+\sigma_{d}\left(\varepsilon_{d}\right) x_{d}=0 \tag{i}
\end{equation*}
$$

for $i=1, \ldots, n$. This is a homogeneous linear system of n equations in d unknowns with $d>n$, so has a nontrivial solution. Choose a solution with the fewest number s of the x_{i} 's nonzero. Renumber if necessary so that these are $x_{1}=\alpha_{1}, \ldots, x_{s}=\alpha_{s}$. Note $s>1$ as if $s=1$, equation $\left(\star_{1}\right)$ would give $\sigma_{1}\left(\varepsilon_{1}\right) \alpha_{1}=0$, i.e., $\varepsilon_{1} \alpha_{1}=0$, and hence $\varepsilon_{1}=0$; contradiction. Multiplying the α_{i} 's by α_{s}^{-1} if necessary, we may assume that $\alpha_{s}=1$. Not all of the α_{i} 's can be in \mathbb{B} as if they were, equation $\left(\star_{1}\right)$ would give $\sigma_{1}\left(\varepsilon_{1}\right) \alpha_{1}+\ldots+\sigma_{1}\left(\varepsilon_{s}\right) \alpha_{s}=0$, i.e., $\varepsilon_{1} \alpha_{1}+\ldots+\varepsilon_{s} \alpha_{s}=0$, contradicting the \mathbb{B}-linear independence of $\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$. Thus some $\alpha_{i} \notin \mathbb{B}$. Renumber if necessary so that $\alpha_{1} \notin \mathbb{B}$. Then equation (\star_{i}) gives

$$
\begin{equation*}
\sigma_{i}\left(\varepsilon_{1}\right) \alpha_{1}+\ldots+\sigma_{i}\left(\varepsilon_{s-1}\right) \alpha_{s-1}+\sigma_{i}\left(\varepsilon_{s}\right)=0 \tag{i}
\end{equation*}
$$

Since $\alpha_{1} \notin \mathbb{B}$ and $\operatorname{Fix}(H)=\mathbb{B}$, there is some $\sigma_{k} \in H$ with $\sigma_{k}\left(\alpha_{1}\right) \neq \alpha_{1}$. Since H is a group, for any $\sigma_{i} \in H$ there is a $\sigma_{j} \in H$ with $\sigma_{i}=\sigma_{k} \sigma_{j}$. Applying σ_{k} to equation $\left(*_{j}\right)$ we obtain the equation

$$
\left(* *_{i}\right)
$$

$$
\sigma_{i}\left(\varepsilon_{1}\right) \sigma_{k}\left(\alpha_{1}\right)+\ldots+\sigma_{i}\left(\varepsilon_{s-1}\right) \sigma_{k}\left(\alpha_{s-1}\right)+\sigma_{i}\left(\varepsilon_{s}\right)=0
$$

Then $\left(*_{i}\right)-\left(* *_{i}\right)$ is the equation

$$
\left(* * *_{i}\right) \quad \sigma_{i}\left(\varepsilon_{1}\right)\left(\alpha_{1}-\sigma_{k}\left(\alpha_{1}\right)\right)+\ldots+\sigma_{i}\left(\varepsilon_{s-1}\right)\left(\alpha_{s-1}-\sigma_{k}\left(\alpha_{s-1}\right)\right)=0
$$

and this is true for $i=1, \ldots, n$. Let $x_{i}=\alpha_{i}-\sigma_{k}\left(\alpha_{i}\right)$ for $i=1, \ldots, s-1$ and $x_{i}=0$ for $i=s, \ldots, d$. Then $x_{1} \neq 0$ as $\sigma_{k}\left(\alpha_{1}\right) \neq \alpha_{1}$, so this is a nontrivial solution to the system $\left(\star_{i}\right)$ for $i=1, \ldots, n$ with fewer than s of the x_{i} 's nonzero; contradiction.

With this Theorem in hand, we can now simplify the proof that Γ is $1-1$ as follows: Let H_{1} and H_{2} be subgroups of G. Suppose that $\mathbb{B}_{H_{1}}=\mathbb{B}_{H_{2}}$. Then

$$
H_{1}=\operatorname{Gal}\left(\mathbb{B}_{H_{1}}\right)=\operatorname{Gal}\left(\mathbb{B}_{H_{2}}\right)=H_{2}
$$

The rest of the proof of Theorem 4.10.3 is unchanged.

