Steven H. Weintraub

List of Publications


  1. Weintraub, Steven H. The irreducibility of the cyclotomic polynomials, in Why Prove it Again? by John W. Dawson, Birkhaeuser 2015, Chapter 11, 149-170.

  2. Weintraub, Steven H. A survey on arithmetic questions in the representation theory of finite groups, in Recent Advances in Mathematics, A. K. Agarwal, ed., Ramanujan Mathematical Society Lecture Notes Series 21, Ramanujan Mathematical Society 2015, 187-201.

  3. Weintraub, Steven H. The adjoint of differentiation, Experimental Math. 23 (2014), 429-432.

  4. Weintraub, Steven H., Fundamentals of Algebraic Topology, Springer, 2014.

  5. Weintraub, Steven H., Differential Forms, Second edition, Academic Press (Elsevier), 2014.

  6. Weintraub, Steven H. Values of polynomials over integral domains. Amer. Math. Monthly 121 (2014), no. 1, 73-74.

  7. Weintraub, Steven H. Several proofs of the irreducibility of the cyclotomic polynomials. Amer. Math. Monthly 120 (2013), no. 6, 537-545.

  8. Weintraub, Steven H. A mild generalization of Eisenstein's criterion. Proc. Amer. Math. Soc. 141 (2013), no. 4, 1159-1160.

  9. Anselm, Maxwell and Weintraub, Steven H. A generalization of continued fractions. J. Number Theory 131 (2011), 2442-2460.

  10. Weintraub, Steven H., A Guide to Advanced Linear Algebra, Mathematical Association of America, 2011.

  11. Weintraub, Steven H. Observations on primitive, normal, and subnormal elements of field extensions, Monatsh. Math. 162 (2011), 239-244.

  12. Weintraub, Steven H. Involutions, Humbert surfaces, and divisors on a moduli space, Rend. Lincei Mat. Appl. 21 (2010), 415-440.

  13. Weintraub, Steven H. On Legendre's work on the law of quadratic reciprocity, Amer. Math. Monthly 118 (2011), 210-216.

  14. Weintraub, Steven H., Galois Theory, Second edition, Springer, New York, 2009, MR 2009j:12008

  15. Weintraub, Steven H., Jordan Canonical Form: Theory and Practice, Morgan and Claypool, 2009.

  16. Weintraub, Steven H., Jordan Canonical Form: Application to Differential Equations, Morgan and Claypool, 2008.

  17. Weintraub, Steven H., Factorization: Unique and Otherwise, A. K. Peters, Wellesley, MA 2008, MR 2009b:11193

  18. Weintraub, Steven H., A. Everett Pitcher (1912-2006), Notices Amer. Math. Soc. 54 (2007), 1331-1332.

  19. Weintraub, Steven H., Spreads of nonsingular pairs in symplectic vector spaces, J. Geom. 86 (2006), 165-180, MR 2008a:51005

  20. Weintraub, Steven H., Galois Theory, Springer, New York, 2006, MR 2006k:12001

  21. Weintraub, Steven H., An interesting recursion, Amer. Math. Monthly 111 (2004), no. 6, 528--530, MR 2005e:11012

  22. Weintraub, Steven H., Representation theory of finite groups: algebra and arithmetic, American Mathematical Society, Providence, RI, 2003; MR 2004k:20023

  23. Hoffman, J. William and Weintraub, Steven. H., Cohomology of the boundary of Siegel modular varieties of degree two, with applications, Fund. Math. 178 (2003), no. 1, 1--47, MR 2004f:11051

  24. Hoffman, J. William and Weintraub, Steven H., Four dimensional symplectic geometry over the field with three elements and a moduli space of abelian surfaces, Note Mat. 20 (2000/01), no. 1, 111--157; MR 2003e:14045

  25. Hoffman, J. William and Weintraub, Steven H., The Siegel modular variety of degree two and level three, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3267--3305; MR 2003b:11044

  26. Lee, Ronnie and Weintraub, Steven H., The Siegel modular variety of degree two and level four, Mem. Amer. Math. Soc. 133 (1998), no. 631, viii, 1--58; MR 98j:14031

  27. Hoffman, J. William and Weintraub, Steven H., Cohomology of the Siegel modular group of degree two and level four, Mem. Amer. Math. Soc. 133 (1998), no. 631, ix, 59--75; MR 98j:11039

  28. Lee, Ronnie and Weintraub, Steven H., Invariants of branched covering from the work of Serre and Mumford, Forum Math. 8 (1996), no. 5, 535--568; MR 98i:57002

  29. Weintraub, Steven H., Early transcendentals, Amer. Math. Monthly 104 (1997), no. 7, 623--631; MR 98h:26002

  30. Weintraub, Steven H., Differential forms, Academic Press, San Diego, CA, 1997; MR 97g:58002

  31. Weintraub, Steven H., Symmetries of a moduli space of abelian surfaces, in Abelian varieties (Egloffstein, 1993), 323--341, de Gruyter, Berlin, 1995; MR 96g:14036

  32. Weintraub, Steven H., Count-wheels: a mathematical problem arising in horology, Amer. Math. Monthly 102 (1995), no. 4, 310--316; MR 96f:01045

  33. Weintraub, Steven H., A note on linear transformations over integral domains, Linear and Multilinear Algebra 35 (1993), no. 3-4, 295--297; MR 95m:13006

  34. Lee, Ronnie and Weintraub, Steven H., On the homology of double branched covers, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1263--1266; MR 95e:57002

  35. Hulek, Klaus, Kahn, Constantin and Weintraub, Steven H., Moduli spaces of abelian surfaces: compactification, degenerations, and theta functions, de Gruyter, Berlin, 1993; MR 95e:14034

  36. Hunt, Bruce and Weintraub, Steven H., Janus-like algebraic varieties, J. Differential Geom. 39 (1994), no. 3, 509--557; MR 95e:14026

  37. Hulek, K., Kahn, C. and Weintraub, S. H., Abelian surfaces, degeneration of theta functions and the Horrocks-Mumford bundle, in Geometry of complex projective varieties (Cetraro, 1990), 165--189, Mediterranean, Rende, 1993; MR 95c:14058

  38. Weintraub, Steven H., Count-wheels, Ars Combin. 36 (1993), 241--247; MR 94f:05010

  39. Lee, Ronnie and Weintraub, Steven H., The "coadjoint" representation of PSp4(Z/2), Amer. J. Math. 115 (1993), no. 1, 109--135; MR 94e:11048

  40. Adkins, William A. and Weintraub, Steven H., Algebra, Springer, New York, 1992; MR 94a:00001

  41. Hulek, Klaus, Kahn, Constantin and Weintraub, Steven H., Singularities of the moduli spaces of certain abelian surfaces, Compositio Math. 79 (1991), no. 2, 231--253; MR 93a:14028

  42. Weintraub, Steven H., The abelianization of the theta group in low genus, in Algebraic topology Poznan 1989, 382--388, Lecture Notes in Math., 1474, Springer, Berlin, 1991; MR 92k:11050

  43. Hulek, Klaus and Weintraub, Steven H., The principal degenerations of abelian surfaces and their polarisations, Math. Ann. 286 (1990), no. 1-3, 281--307; MR 91e:14042

  44. Weintraub, Steven H., Some observations on plethysms, J. Algebra 129 (1990), no. 1, 103--114; MR 91b:20022

  45. Lee, Ronnie and Weintraub, Steven H., The Siegel modular variety of degree two and level four: a report, in Arithmetic of complex manifolds (Erlangen, 1988), 89--102, Lecture Notes in Math., 1399, Springer, Berlin, 1989; MR 90k:11061

  46. Lee, Ronnie and Weintraub, Steven H., A generalization of a theorem of Hecke to the Siegel space of degree two, in Algebraic topology (Evanston, IL, 1988), 243--259, Contemp. Math., 96, Amer. Math. Soc., Providence, RI, 1989; MR 90j:32038

  47. Weintraub, Steven H., Symmetries of simply-connected four-manifolds, especially algebraic surfaces, in Transformation groups (Osaka, 1987), 347--367, Lecture Notes in Math., 1375, Springer, Berlin, 1989; MR 90g:57030

  48. Lee, Ronnie and Weintraub, Steven H., On certain Siegel modular varieties of genus two and levels above two, in Algebraic topology and transformation groups (Göttingen, 1987), 29--52, Lecture Notes in Math., 1361, Springer, Berlin, 1988; MR 90d:11067

  49. Hulek, Klaus and Weintraub, Steven H., Bielliptic abelian surfaces, Math. Ann. 283 (1989), no. 3, 411--429; MR 90b:14052

  50. Lee, Ronnie, Miller, Edward Y. and Weintraub, Steven H., Rochlin invariants, theta functions and the holonomy of some determinant line bundles, J. Reine Angew. Math. 392 (1988), 187--218; MR 89m:57022

  51. Kirwan, F. C., Lee, R. and Weintraub, S. H., Quotients of the complex ball by discrete groups, Pacific J. Math. 130 (1987), no. 1, 115--141; MR 89j:32034

  52. Lee, Ronnie and Weintraub, Steven H., Moduli spaces of Riemann surfaces of genus two with level structures. I, Trans. Amer. Math. Soc. 310 (1988), no. 1, 217--237; MR 89i:32054

  53. Lee, Ronnie, Miller, Edward Y. and Weintraub, Steven H., Rochlin invariants, theta multipliers and holonomy, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 2, 275--278; MR 89d:57034

  54. Lee, Ronnie and Weintraub, Steven H., Topology of the Siegel spaces of degree two and their compactifications, Topology Proc. 11 (1986), no. 1, 115--175; MR 89c:32071

  55. Weintraub, Steven H., Which groups have strange torsion?, in Transformation groups, Poznan 1985, 394--396, Lecture Notes in Math., 1217, Springer, Berlin; MR 0874190

  56. Lee, Ronnie and Weintraub, Steven H., On the transformation law for theta-constants, J. Pure Appl. Algebra 44 (1987), no. 1-3, 273--285; MR 89a:32038

  57. Weintraub, Steven H., Letter to the editor: "Tricks or treats with the Hilbert matrix" [Amer. Math. Monthly 90 (1983), no. 5, 301--312; MR 84h:47031] by M. D. Choi, Amer. Math. Monthly 93 (1986), no. 4, 324; MR 87g:47047

  58. Lee, Ronnie and Weintraub, Steven H., Cohomology of a Siegel modular variety of degree 2, in Group actions on manifolds (Boulder, Colo., 1983), 433--488, Contemp. Math., 36, Amer. Math. Soc., Providence, R.I., 1985; MR 87g:11056

  59. Lee, Ronnie and Weintraub, Steven H., An interesting algebraic variety, Math. Intelligencer 8 (1986), no. 1, 34--39; MR 87d:32050

  60. Lee, Ronnie and Weintraub, Steven H., Cohomology of Sp4(Z) and related groups and spaces, Topology {\bf 24} (1985), no. 4, 391--410; MR 87b:11044

  61. Lee, Ronnie and Weintraub, Steven H., On a generalization of a theorem of Erich Hecke, Proc. Nat. Acad. Sci. U.S.A. 79 (1982), no. 24, 7955--7957; MR 84f:32041

  62. Weintraub, Steven H., A note on doubles of 4-manifolds, Canad. Math. Bull. 23 (1980), no. 3, 367--369; MR 82e:57004

  63. Weintraub, Steven H., $PSL2(Zps}) and the Atiyah-Bott fixed-point theorem, Houston J. Math. 6 (1980), no. 3, 427--430; MR 82c:10029

  64. Weintraub, Steven H., Inefficiently embedded surfaces in 4-manifolds, in Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus,1978), 664--672, Lecture Notes in Math., 763, Springer, Berlin, 1979; MR 81c:57011

  65. Neumann, Walter D. and Weintraub, Steven H., Four-manifolds constructed via plumbing, Math. Ann. 238 (1978), no. 1, 71--78; MR 80g:57047

  66. Weintraub, Steven H., Group actions on homology quaternionic projective planes, Proc. Amer. Math. Soc. 70 (1978), no. 1, 75--82; MR 58 #24306

  67. Weintraub, Steven H., Topological realization of equivariant intersection forms, Pacific J. Math. 73 (1977), no. 1, 257--280; MR 58} #13100

  68. Weintraub, Steven H., On the existence of group actions on certain manifolds, in Transformation groups (Proc. Conf., Univ. Newcastle upon Tyne,Newcastle upon Tyne, 1976), 226--234. London Math. Soc. Lecture Note Series, 26, Cambridge Univ. Press, Cambridge, 1977; MR 57 #13998

  69. Weintraub, Steven H., Zp-actions and the rank of Hn(N2n), J. London Math. Soc. (2) 13 (1976), no. 3, 565--572; MR 54 #1268

  70. Weintraub, Steven H., Semi-free Zp-actions on highly-connected manifolds, Math. Z. 145 (1975), no. 2, 163--185; MR 53 #4103

  71. Weintraub, Steven H., Some connections between differential geometry and the study of involutions, Houston J. Math. 2 (1976), no. 1, 135--137; MR 53 #1617

  72. Akers, S. B.; Berlin, R. D.; Grossman, J. W.; Weintraub, Steven; Bershad, M. A.; Djokovic, D. Z.; Problems and Solutions: Solutions of Advanced Problems: 5492, Amer. Math. Monthly 75 (1968), no. 5, 556--558; MR 1534907


© Copyright American Mathematical Society 2009