Galois Theory (2nd edition)-Errata

Page 3, line -4: $\varphi\left(\psi^{2}(\sqrt[3]{2})\right.$ should be $\psi\left(\varphi^{2}(\sqrt[3]{2})\right.$

Page 5 , line -8: so σ^{2} does not fix \mathbf{B} should be so σ does not fix \mathbf{B}

Page 10, line 12: $\Phi(X)=X^{p}$ should be $\Phi(a)=a^{p}$ for any $a \in \mathbf{F}$

Page 15, lines 13-21: $d(x)$ and $\tilde{d}(x)$ should be interchanged throughout

Page 18, line 20: deg $r(X)<d$ should be $r(X)=0$ or $\operatorname{deg} r(X)<d$

Page 24, line -1: $\mathbf{F}\left(\sigma_{1}\right)$ should be $\mathbf{F}\left(\alpha_{1}\right)$ and $\mathbf{F}\left(\sigma_{2}\right)$ should be $\mathbf{F}\left(\alpha_{2}\right)$

Page 28, lines -10 and -4 : $m_{\alpha}(X)$ should be $f(X)$

Page 29, line 11: as $\sigma_{i}\left(\tilde{m}_{\alpha}(X)\right) \in \mathbf{B}[X]$ should be as $\left.\tilde{m}_{\alpha}(X)\right) \in \mathbf{B}[X]$

Page 34, line 11: between \mathbf{E} and \mathbf{B} should be between \mathbf{E} and \mathbf{F}

Page 34, line -7: equivalent should be equivalently

Page 35, line 5: $\Lambda(\sigma)=\left[\sigma_{0}\right]$ should be $\Lambda\left(\sigma_{0}\right)=[\sigma]$

Page 35, line 8: $\Lambda(\sigma)=\left[\sigma_{0}\right]$ should be $\Lambda\left(\sigma_{0}\right)=[\sigma]$ and $\Lambda(\tau)=\tau_{0}$ should be $\Lambda\left(\tau_{0}\right)=[\tau]$

Page 35, line 9: $\Lambda(\sigma \tau)=\left[\sigma_{0} \tau_{0}\right]$ should be $\Lambda\left(\sigma_{0} \tau_{0}\right)=[\sigma \tau]$

Page 35, line 10: should read $\left(\sigma G_{\mathbf{B}}\right)\left(\tau G_{\mathbf{B}}\right)=\sigma \tau G_{\mathbf{B}}$, i.e., $[\sigma][\tau]=[\sigma \tau]$ so $\Lambda(\sigma \tau)=\Lambda(\sigma) \Lambda(\tau)$

Page 35, lines -14 and -13 : b should be β

Page 36, line -10: Let \mathbf{E} be a Galois extension of \mathbf{F} of degree d. should be Let \mathbf{E} be a Galois extension of \mathbf{F} that is a splitting field of a polynomial of degree d.

Page 38, line 3: i is superfluous

Page 38: One subgroup was overlooked in the analysis of the group G. This has the following consequences:

Line 5: 15 subgroups should be 16 subgroups
Line 6: the normal subgroups of G are $A_{1}, D_{1}, E_{1}, G_{1}, H_{1}, I_{1}$, and J_{1}
In the lists of subgroups, fixed fields, and splitting fields, add

$$
H_{1}=\left\{1, \tau^{2}, \tau^{4}, \tau \sigma, \tau^{3} \sigma, \tau^{5} \sigma\right\}
$$

with $\operatorname{Fix}\left(H_{1}\right)=\mathbf{Q}(i)$ and $\operatorname{Fix}\left(H_{1}\right)=$ splitting field of $X^{2}+1$, and rename the existing H_{1} and I_{1} to be I_{1} and J_{1} respectively.

Page 38, line 13: insert $\{$ after the first $=$ sign

Page 43, Exercise 2.10.14: Assume that \mathbf{E} is an algebraic extension of \mathbf{F}.

Page 43, Exercise 2.10.16: Assume that $f(X)$ and all of its factors are monic polynomials.

Page 57, line 15: D should be \mathbf{B}

Page 64, line -5: Corollary 3.4.6 should be Theorem 3.4.7

Page 68, line 17: $\mathbf{F}=\operatorname{Fix}(H)$ should be $\mathbf{B}=\operatorname{Fix}(H)$

Page 68, lines -3 and -2: $\sigma_{2}\left(\alpha_{2}\right)-\alpha_{2}$ should be $\alpha_{2}-\sigma_{2}\left(\alpha_{2}\right)$

Page 118, line 9: $x \in \mathbf{Q}\left(\sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{t-1}}\right)$ should be $x \in \mathbf{Q}\left(\sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{t-2}}\right)$

