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Preface

Differential forms are a powerful computational and theoretical tool.

They play a central role in mathematics, in such areas as analysis

on manifolds and differential geometry, and in physics as well, in

such areas as electromagnetism and general relativity. In this book,

we present a concrete and careful introduction to differential forms,

at the upper-undergraduate or beginning graduate level, designedwith

the needs of both mathematicians and physicists (and other users of

the theory) in mind.

On the one hand, our treatment is concrete. By that we mean that

we present quite a bit of material on how to do computations with

differential forms, so that the reader may effectively use them.

On the other hand, our treatment is careful. By that we mean that

we present precise definitions and rigorous proofs of (almost) all of

the results in this book.

We begin at the beginning, defining differential forms and show-

ing how to manipulate them. First we show how to do algebra with

them, and then we show how to find the exterior derivative dϕ of

a differential form ϕ. We explain what differential forms really are:

Roughly speaking, a k-form is a particular kind of function on

k-tuples of tangent vectors. (Of course, in order to make sense of

this we must first make sense of tangent vectors.) We carry on to

our main goal, the Generalized Stokes’s Theorem, one of the central

theorems of mathematics. This theorem states:

Theorem (Generalized Stokes’s Theorem (GST)). Let M be an

oriented smooth k-manifold with boundary ∂ M (possibly empty) and

let ∂ M be given the induced orientation. Let ϕ be a (k − 1)-form on

M with compact support. Then∫
M

dϕ =

∫
∂ M

ϕ.
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This goal determines our path. We must develop the notion of an

oriented smoothmanifold and showhow to integrate differential forms

on these. Once we have done so, we can state and prove this theorem.

The theory of differential forms was first developed in the early

twentieth century by Elie Cartan, and this theory naturally led to

de Rham cohomology, which we consider in our last chapter.

One thing we call the reader’s attention to here is the theme of

“naturality” that pervades the book. That is, everything commutes

with pull-backs–this cryptic statementwill become clear upon reading

the book—and this enables us to do all our calculations on subsets of

R
n, which is the only place we really know how to do calculus.

This book is an outgrowth of the author’s earlier book Differential

Forms: A Complement to Vector Calculus. In that book we introduced

differential forms at a lower level, that of third semester calculus. The

point there was to show how the theory of differential forms unified

and clarified the material in multivariable calculus: the gradient of

a function, and the curl and divergence of a vector field (in R
3) are

all “really” special cases of the exterior derivative of a differential

form, and the classical theorems of Green, Stokes, and Gauss are all

“really” special cases of the GST. By “really” we mean that we must

first recast these results in terms of differential forms, and this is done

by what we call the “Fundamental Correspondence.”

However, in the (many) years since that book appeared, we have

received a steady stream of emails from students and teachers who

used this book, but almost invariably at a higher level. We have thus

decided to rewrite it at a higher level, in order to address the needs

of the actual readers of the book. Our previous book had minimal

prerequisites, but for this book the reader will have to be familiar with

the basics of point-set topology, and to have had a good undergraduate

course in linear algebra. We use additional linear algebra material,

often not covered in such a course, and we develop it when we need it.

We would like to take this opportunity to correct two historical

errorswemade in our earlier book.Oneof themotivations for develop-

ing vector calculus was, as we wrote, Maxwell’s equations in

electromagnetism. We wrote that Maxwell would have recognized

vector calculus. In fact, the (common) expression of those equations

in vector calculus terms was not due to him, but rather to Heaviside.
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But it is indeed the case that this is a nineteenth century formulation,

and there is an illuminating reformulation of Maxwell’s equations

in terms of differential forms (which we urge the interested reader to

investigate). Also, Poincaré’s work in celestial mechanicswas another

important precursor of the theory of differential forms, and in partic-

ular he proved a result now known as Poincaré’s Lemma. However,

there is considerable disagreement among modern authors as to what

this lemma is (some say it is a given statement, others its converse).

In our earlier book we wrote that the statement in one direction was

Poincaré’s Lemma, but we believe we got it backwards then (and

correct now). See Remark 1.4.2.

We conclude with some remarks about notation and language.

Results in this book have three-level numbering, so that, for exam-

ple, Theorem 1.2.7 is the 7th numbered item in Chapter 1, Section 2.

The ends of proofs are marked by the symbol �. The statements of

theorems, corollaries, etc., are in italics, so are clearly delineated. But

the statements of definitions, remarks, etc., are in ordinary type, so

there is nothing to delineate them. We thus mark their ends by the

symbol♦. We use A ⊆ B to mean that A is a subset of B, and A ⊂ B

to mean that A is a proper subset of B. We use the term “manifold”

to mean precisely that, i.e., a manifold without boundary. The term

“manifold with boundary” is a generalization of the term “manifold,”

i.e., it includes the case when the boundary is empty, in which case it

is simply a manifold.
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