

Basic definitions

□Stock: share of ownership

- Stockholders are the owners of the firm
- Two types of stock: preferred and common
 Preferred stock: relatively unimportant, safer than common stock but very limited gains
 Common stock: ultimate owners of the firm, risky, unlimited earnings potential
- Bond: Corporate IOU, a debt of the firm
 - Bondholders are creditors, not owners of the firm
 - Safer position but lower expected returns than stock

Copyright ©2007 Stephen G. Buell

Preferred(?) stock

- Preferred shareholders legally rank behind all creditors (banks, bond holders) but ahead of common stockholders in claim on income and assets
- □No voting rights who cares
- □Not very common nowadays
- Like common stock, preferred stock has no maturity date
- □ Pays a fixed dividend does not rise as company profits rise
 - \$8.00 now and \$8.00 thirty years from now

Even though preferred stock is not important, let's use it to illustrate a very important relationship between interest rate* and price

 $\Box P = D/i \text{ or } i = D/P$ (D is fixed or constant) $\Box As \text{ interest rate rises, price falls}$ $\Box As price rises, interest rate falls$

* interest rate \equiv return \equiv yield

Example of interest rate risk

Even though the likelihood of IBM defaulting on its preferred stock is very, very low, there's still risk present

□If interest rates rise (in our example i goes from 8% to 10%), price of the stock drops from \$100 to \$80 and that's a capital loss of \$20 a share

Interest rate risk is especially important when investing in bonds

Copyright ©2007 Stephen G. Buell

Bonds

Bonds: interest bearing IOU's issued by corporations, municipalities and US Gov't

Initial buyer lends money to the seller

Bondholders are creditors, not owners

□Buyers ≡ investors ≡ lenders ≡ creditors ≡ you and me, IBM, Prudential Insurance

□Sellers ≡ issuers ≡ borrowers ≡ HP, IBM, City of Bethlehem, U. S. Treasury

Maturity date = August 1, 20XX (25 years)
 Maturity = 2 x 25 = 50 periods => 50 coupons below

40	40	40	40	40	40	40	40	40	40
40	40	40	40	40	40	40	40	40	40
40	40	40	40	40	40	40	40	40	40
40	40	40	40	40	40	40	40	40	40
40	40	40	40	40	40	40	40	40	40

Copyright ©2007 Stephen G. Buell

Bondholder receives an annuity of coupons plus the face value at maturity

 $\Box P_0 = C(PVIF_a-i\%-n) + 1,000/(1+i)^n$

 \Box Four variables: P₀, C, i and n

- Given 3, the calculator can find the 4th
- Realistically you'll always know C and n

Given i, find P – what's the bond's price?
 Given P, find i – what's the bond's yield or return?

 $\Box P_0 = C(PVIF_a - i\% - n) + 1,000/(1+i)^n$

□Recap: n=50 periods, C=\$40/period

□ If similar bonds are yielding 11%, compounded semiannually, i=.11/2=.055

 $\Box P_0 = 40(\mathsf{PVIF}_a-5.5\%-50) + 1000/(1+.055)^{50}$

■ 40=>PMT 5.5=>i 50=>n 1000=>FV solve PV=-746.03

- P₀ = \$746.03 < 1000 sells at a discount</p>
- If you pay \$746.03 for the bond and hold it for 25 years (50 periods) you'll earn 11%/yr, csa

Copyright ©2007 Stephen G. Buell

Given the price, find the yield

 $\Box P_0 = C(PVIF_a - i\% - n) + 1,000/(1+i)^n$

□Recap: n=50 periods, C=\$40/period

Let's say you could buy one of these bonds for \$1,117.28

 \Box 1,117.28 = 40(PVIF_a-i%-50) + 1000/(1+i)⁵⁰

- -1117.28=>PV 40=>PMT 50=>n 1000=>FV solve i = 3.5%/period or 7%/yr csa
- If you pay \$1,117.28 for the bond and hold it for 25 years (50 periods) you'll earn 7%/yr, csa

Copyright ©2007 Stephen G. Buell

Enough yields and prices for now

□ If you pay \$746.03 for the bond and hold it for 25 years (50 periods) you'll earn 11%/yr, csa

□ If you pay \$1,117.28 for the bond and hold it for 25 years (50 periods) you'll earn 7%/yr, csa

We'll see later what happens if you sell early
 Since the coupons and \$1000 par are fixed, the more you pay for the bond, the lower will be the

yield \equiv int rate \equiv return

Corporate bonds

Long-term debt or IOU's of a corporation

Interest paid is tax-deductible for the firm
 Gives firm incentive to use debt financing
 Interest received by investors is taxed as regular income

Moody's and Standard & Poor's rate nearly all bonds

- Paid a fee by the issuing company
 □Increases a bond's marketability
- Ratings are based on perceived risk

Risk vs. yield

Higher ratings mean lower probability of default
 So, lower interest rates or yields

- $\ensuremath{\square}\xspace$ Lower ratings mean higher probability of failure
 - So, higher interest rates or yields are necessary to induce investors to buy them
- $\hfill\square$ "Junk Bonds" Ba and BB and below
 - aka "high-yield" bonds nicer name onlyStill junk

□ Yields on corporate > yields on US Gov'ts

Copyright ©2007 Stephen G. Buell

What you need to know

Details are spelled out in indenture

- Big legal document, no need to read
- Check out the prospectus if interested
- Most important things to know:
 - Is it secured or unsecured?
 - What's its coupon rate?
 - How long to maturity?
 - Is it a convertible or a coupe?
 - Is it callable?

Copyright ©2007 Stephen G. Buell

Collateral or security

Mortgage bonds

- Secured by specific pledged assets of firm
- If failure, pledged assets sold => proceeds go to bond holders
- Safest bonds lowest yielding bonds

Debentures

- Unsecured, backed by firm's earning power
- If failure, general creditors (ahead of stock)
- Riskiest bonds highest yielding

Convertible bonds

Some bonds contain a "convertible feature"

- Gives investor the option of exchanging bond for a specified number of shares of firm's common stock
- Conversion ratio of, say, 20 shares per bond
 Conversion price = 1,000/20 = \$50/share
- If firm does well and its stock price rises above \$50 to, say \$60, investor can swap bond for 20x60=\$1,200 of stock

□Investors find attractive – so lower yields

Copyright ©2007 Stephen G. Buell

Callable bonds

□Some bonds contain a "call feature"

- Gives firm option of redeeming bonds at specified price prior to maturity if interest rates have dropped
- Rather than continuing to pay old rate of 12%, firm issues new bonds at 8% and uses proceeds to "call" old bonds – saves 4%
- Investors lose the 12% and replace with 8%

Investors find unattractive – so higher yields

Government bonds

□Issued by the U. S. Treasury

- Default-free since government can always print money to pay interest
- Interest received is exempt from state and local taxes
- Never callable
- Purchase directly from gov't, thru banks or in securities mkt using broker, in \$1,000 units

Bills, notes and bonds

Copyright ©2007 Stephen G. Buell

T-Bills

Short-term (28, 91 or 182 day maturities) □Sold each week on a discount basis

- Mature at face value no coupon
- Buy a 6-month T-Bill for \$975, matures for \$1000 $yield = \frac{(1000 - 975)}{2} x^2 = 5.13\%$

975

Interest is taxable by IRS

Copyright ©2007 Stephen G. Buell

Notes and bonds

□Treasury notes

- Mature in 2, 5 or 10 years
- Semi-annual coupons electronically
- i_{notes} > i_{bills}
- □Treasury bonds
 - Mature in 10 to 30 years
 - Semi-annual coupons electronically
 - Highest yielding
 - 30-year Treasury is the bench-mark

Secondary market

Market for trading Treasury securities is enormous

- You can buy any maturity
- Want a 2-week T-Bill? We got that
- Want 7.5 year note?
- □We got that, too

Prices (and therefore, yields) are determined by supply and demand

Copyright ©2007 Stephen G. Buell

Municipal bonds - munies

□Issued by state and local governments

□Two types of munies

General obligation bonds
 Backed by full faith and credit (taxing power) of the issuer

Revenue bonds

□Proceeds fund a specific project

Hospital, toll road, power plant, etc.

- Backed only by revenue generated from project
 - Riskier so higher yields than general obligation bonds

Copyright ©2007 Stephen G. Buell

What's so special about munies Interest received is exempt from federal income taxes Interest received is exempt from state and local income taxes if investor lives in same state as issuer yield_{muni} < yield_{corp bonds} (deceiving) Say 30% tax-bracket

- Ctated rates i 10% and i
- Stated rates i_{corp}=10% and i_{muni}=8%
 After tax rates i = 10(1, 20), 7% years
- After-tax rates i_{corp}=.10(1-.30)=7% vs i_{muni}=8%

Bond yields and prices

□ Even if bond is 100% default-free, it's still susceptible to interest rate risk

If interest rates rise, bond prices fall

□Our original AAA-rated debenture at issuance

- Coupon=8%/yr, maturity=25 yrs, par=\$1,000
 Coupon=.08x1000/2=\$40/per and n=25x2=50 per
- Other 25-yr AAA debentures yield 8%/yr=4%/per
 □P₀ = 40(PVIF₀⁻⁴%-50) + 1000/(1.04)⁵⁰ = \$1,000
 □Normally bonds are issued close to par = \$1,000

Copyright ©2007 Stephen G. Buell

What a difference 10 yrs makes

Let's pick up the action 10 years later

- 15 years (30 periods) left to maturity
- Now 15-yr AAA debentures yield 12%/yr = 6%/per
- $P_{10} = 40(PVIF_a-6\%-30) + 1000/(1.06)^{30}$
- 40=>PMT 6=>i 30=>n 1000=>FV solve PV=-724.70
- P₁₀ = \$724.70
- If you sell now (year 10), take a \$275 capital loss
- If you don't sell, you'll get \$1,000 in 15 yrs
 But your money is tied up earning 8% when it could be earning 12% <u>you need to learn to think this way!</u>

Copyright ©2007 Stephen G. Buell

Same 10 years, happier scenario

□ Instead of AAA-debenture rate rising from 8% to 12%/yr, assume it drops to 4%/yr or 2%/period

- $P_{10} = 40(PVIF_a-2\%-30) + 1000/(1.02)^{30}$
- 40=>PMT 2=>i 30=>n 1000=>FV solve PV=-1,447.93
- P₁₀ = \$1,447.93 and you'd get a \$448 capital gain
- Remember our important inverse relationship between yield and price?
- What rate of return did you make in this happy scenario?

Your 10-year return

□You paid \$1,000, received coupons for 10 years (20 periods), sold it for \$1,447.93 □PV₀ = C(PVIF_a-r%-n) + FV/(1+r)ⁿ □1,000 = 40(PVIF_a-r%-20) + 1447.93/(1+r)²⁰ □-1,000=>PV 40=>PMT 1,447.93=>FV 20=>n solve for r = 5.31%/period x 2 = 10.62%/year csa

Copyright ©2007 Stephen G. Buell

Maturity and yield

□Maturity is key factor affecting bond's yield

- Long-term bonds are inherently riskier than short-term bonds
- Lots more can go wrong over the life of 20-year bond than over the life of a 2-year bond or a 2-week bond (T-Bill)
- For a given ∆i
 - $\Delta P_{20 \text{ yr}} > \Delta P_{2 \text{ yr}} > \Delta P_{2 \text{ wk}}$

Normally i_{LT} > i_{ST} to compensate for higher risk

Copyright ©2007 Stephen G. Buell

Inducing investors to buy

□ If bond has an unattractive feature, issuer will need to offer an incentive to investor in the form of a higher yield

- i_{debenture} > i_{mortgage}
- i_{long-term} > i_{short-term}
- i_{callable} > i_{noncallable}
- i_{nonconvertible} > i_{convertible}
- i_{CCC} > i_{AAA}

But is the extra yield worth it?

Lots of time and effort

- □Investing in stocks and bonds can be financially rewarding
- But takes a lot of time to research the buy and sell decisions
- □ Is there an easier way to get the benefits of investing in stocks and bond?
- □Yes see next module