Bonds and preferred stock

Investing in fixed income securities

Basic definitions

\qquad
\qquad

- Stockholders are the owners of the firm
- Two types of stock: preferred and common \qquad Preferred stock: relatively unimportant, safer than common stock but very limited gains
aCommon stock: ultimate owners of the firm, risky, unlimited earnings potential
-Bond: Corporate IOU, a debt of the firm
- Bondholders are creditors, not owners of the firm
- Safer position but lower expected returns than stock

Preferred(?) stock

\qquad
-PPreferred shareholders legally rank behind all \qquad creditors (banks, bond holders) but ahead of common stockholders in claim on income and assets \qquad
UNo voting rights - who cares

- Not very common nowadays \qquad
Like common stock, preferred stock has no maturity date
-Pays a fixed dividend - does not rise as \qquad company profits rise
- $\$ 8.00$ now and $\$ 8.00$ thirty years from now

Return on preferred stock

-Buy a share at its current market price and \qquad receive an infinite annuity of dividends
-Use our PV of annuity formula \qquad

- PV ${ }_{0}=\operatorname{PMT}\left(\right.$ PVIF $\left._{\mathrm{a}}-i \%-n\right)=\operatorname{PMT}\left(\right.$ PVIF $\left._{\mathrm{a}}-i \%-\infty\right)$
- Turns out that with $\mathrm{n}=>\infty, \mathrm{PV}_{0}=\mathrm{PMT} / \mathrm{i}$ or $\mathrm{i}=\mathrm{PMT} / \mathrm{PV}_{0}$ \qquad
DIf $\mathrm{P}_{\mathrm{IBM}}=\$ 100$ and $\mathrm{D}_{\mathrm{IBM}}=\$ 8.00$, yield or rate of return $\mathrm{i}=\mathrm{D} / \mathrm{P}=8 / 100=8.0 \%$ (<=remember!)
-You'll receive an $\$ 8.00$ a year dividend (actually $\$ 2.00$ each quarter) for ever - the $\$ 8.00$ is fixed \qquad
\qquad

Inverse relationship

\qquad

DEven though preferred stock is not \qquad important, let's use it to illustrate a very important relationship between interest \qquad rate* and price
$\square P=D / i$ or $i=D / P$ (D is fixed or constant) \qquad
\square As interest rate rises, price falls
\square As price rises, interest rate falls \qquad

* interest rate \equiv return \equiv yield \qquad
\qquad

Why P changes as i changes

Copyright ©2007 Stephen G. Buell

Why P changes as i changes

－Say HP and GE issue new preferred stock with yields of 10%（perfect substitutes for IBM）
－Assume $P_{H P}=100$ and $D_{H P}=10$ so that $i_{H P}=10 / 100=10 \%$ and $\mathrm{P}_{\mathrm{GE}}=50$ and $\mathrm{D}_{\mathrm{GE}}=5$ so that $\mathrm{i}_{\mathrm{GE}}=5 / 50=10 \%$
－Investors will now demand same 10\％yield on IBM preferred since it＇s essentially the same as HP and GE preferred $i_{I B M}=10 \%=D_{\text {IBM }} / P_{I B M}$
－Investors can get $\$ 10$ dividends by paying $\$ 100$ for HP and GE．Why pay $\$ 100$ for IBM and get only $\$ 8$ ？
\square With $D_{\text {IBM }}$ fixed at $\$ 8.00, \mathrm{P}_{\mathrm{IBM}}=8 / .10=\$ 80$ and IBM shares drop from $\$ 100$ to $\$ 80$
－ $\mathrm{P}_{\text {IBM }}$ must drop to raise its yield up to the market rate

Example of interest rate risk

\qquad
DEven though the likelihood of IBM defaulting on its preferred stock is very， very low，there＇s still risk present \qquad
Olf interest rates rise（in our example i goes from 8% to 10% ），price of the stock drops \qquad from $\$ 100$ to $\$ 80$ and that＇s a capital loss of $\$ 20$ a share
DInterest rate risk is especially important when investing in bonds

Bonds

DBonds：interest bearing IOU＇s issued by \qquad corporations，municipalities and US Gov＇t
DInitial buyer lends money to the seller
\qquad
－Bondholders are creditors，not owners
－Buyers \equiv investors \equiv lenders \equiv creditors \equiv you and me，IBM，Prudential Insurance
－Sellers ミ issuers ミ borrowers ミ HP，IBM， City of Bethlehem，U．S．Treasury

First in line

-Bondholders have a prior claim on income and assets - at the head of the line

- Bond's coupon interest payment must be paid before any dividends
- At bankruptcy, all creditors must be 100% satisfied before any stock or equity holders
-Bond is a contract between the issuer and the investors
- Everything is spelled out in advance

Copyright ©2007 Stephen G. Buell

Everything is fixed

\qquad
-Principal \equiv face value \equiv par value $\equiv \$ 1000$
-Annual coupon $=8 \%$ payable semi-annual

- Coupon $=(.08 \times 1000) / 2=\$ 40$ every 6 months
- Olden days, granny clipped her coupons (below)
- Maturity date $=$ August 1, 20XX (25 years)
- Maturity $=2 \times 25=50$ periods $=>50$ coupons below \qquad

40	40	40	40	40	40	40	40	40	40
40	40	40	40	40	40	40	40	40	40
40	40	40	40	40	40	40	40	40	40
40	40	40	40	40	40	40	40	40	40
40	40	40	40	40	40	40	40	40	40

Coupons + principal

\square Bondholder receives an annuity of coupons plus the face value at maturity
$\square P_{0}=C\left(\right.$ PVIF $\left._{a}-i \%-n\right)+1,000 /(1+i)^{n}$ \qquad
DFour variables: P_{0}, C, i and n

- Given 3 , the calculator can find the $4^{\text {th }}$
- Realistically you'll always know C and n
\square Given i , find P - what's the bond's price?
-Given P, find i - what's the bond's yield or return?

Given the yield, find the price

```
DP 
\squareRecap: n=50 periods, C=$40/period
If similar bonds are yielding 11%,compounded
    semiannually, i=.11/2=.055
\squareP
    - 40=>PMT 5.5=>i 50=>n 1000=>FV solve PV=-746.03
    - }\mp@subsup{P}{0}{}=$746.03<1000 sells at a discoun
    - If you pay $746.03 for the bond and hold it for }2
        years (50 periods) you'll earn 11%/yr, csa
```


Given the price, find the yield

\qquad
$\square P_{0}=C\left(\right.$ PVIF $\left._{\mathrm{a}}-\mathrm{i} \%-\mathrm{n}\right)+1,000 /(1+\mathrm{i})^{\mathrm{n}}$
-Recap: $\mathrm{n}=50$ periods, $\mathrm{C}=\$ 40 /$ period
-Let's say you could buy one of these bonds for \$1,117.28

- $1,117.28=40\left(\right.$ PVIF $\left._{\mathrm{a}}-\mathrm{i} \%-50\right)+1000 /(1+\mathrm{i})^{50}$
- $-1117.28=>$ PV $40=>$ PMT $50=>n 1000=>F V$ solve $i=$ $3.5 \% /$ period or $7 \% / \mathrm{yr}$ csa
- If you pay $\$ 1,117.28$ for the bond and hold it for 25 years (50 periods) you'll earn 7\%/yr, csa

Copyright ©2007 Stephen G. Buell

Enough yields and prices for now

If you pay $\$ 746.03$ for the bond and hold it for 25 \qquad years (50 periods) you'll earn $11 \% / \mathrm{yr}$, csa
-If you pay $\$ 1,117.28$ for the bond and hold it for \qquad 25 years (50 periods) you'll earn 7\%/yr, csa
DWe'll see later what happens if you sell early \qquad
USince the coupons and $\$ 1000$ par are fixed, the more you pay for the bond, the lower will be the \qquad yield \equiv int rate \equiv return

Types of bonds

-Corporates

-Treasuries

- Bills, notes and bonds

DMunies

- General obligations
- Revenue bonds

Corporate bonds

\qquad
DLong-term debt or IOU's of a corporation \qquad - Interest paid is tax-deductible for the firm
aGives firm incentive to use debt financing \qquad Interest received by investors is taxed as regular income
-Moody's and Standard \& Poor's rate nearly all bonds

- Paid a fee by the issuing company -lncreases a bond's marketability
- Ratings are based on perceived risk
\qquad
\qquad
\qquad

Risk vs. yield

-Higher ratings mean lower probability of default \qquad

- So, lower interest rates or yields
-Lower ratings mean higher probability of failure \qquad
- So, higher interest rates or yields are necessary to induce investors to buy them \qquad
"Junk Bonds" - Ba and BB and below
- aka "high-yield" bonds - nicer name only
- Still junk
-Yields on corporate > yields on US Gov'ts

What you need to know

\qquad
DDetails are spelled out in indenture \qquad

- Big legal document, no need to read
- Check out the prospectus if interested \qquad
-Most important things to know:
- Is it secured or unsecured? \qquad
- What's its coupon rate?
- How long to maturity? \qquad
- Is it a convertible or a coupe?
- Is it callable? \qquad

Collateral or security

DMortgage bonds

- Secured by specific pledged assets of firm
- If failure, pledged assets sold => proceeds go to bond holders
- Safest bonds - lowest yielding bonds \qquad
\square Debentures
- Unsecured, backed by firm's earning power
- If failure, general creditors (ahead of stock)
- Riskiest bonds - highest yielding

Coupon and maturity

-Coupon $=($ coupon rate \times par value) $/ 2$ \qquad

- Fixed semi-annual interest payment
\square Maturity in periods $=$ maturity in years $\times 2$ \qquad
- Short-term (< 5 years) safer, lower yielding
- Intermediate-term (5 to 10 years) \qquad
- Long-term (10 to 30 years) riskier, higher yielding
-Can always sell a bond in bond market prior to maturity

Convertible bonds

\qquad
\square Some bonds contain a "convertible feature" \qquad

- Gives investor the option of exchanging bond for a specified number of shares of firm's \qquad
- Conversion ratio of, say, 20 shares per bond \qquad aConversion price $=1,000 / 20=\$ 50 /$ share
- If firm does well and its stock price rises above $\$ 50$ to, say $\$ 60$, investor can swap bond for \qquad $20 \times 60=\$ 1,200$ of stock
-Investors find attractive - so lower yields \qquad

Callable bonds

\square Some bonds contain a "call feature" \qquad

- Gives firm option of redeeming bonds at specified price prior to maturity if interest rates have dropped
- Rather than continuing to pay old rate of 12%,
\qquad firm issues new bonds at 8\% and uses
\qquad proceeds to "call" old bonds - saves 4\%
- Investors lose the 12% and replace with 8% \qquad alnvestors find unattractive - so higher yields \qquad

Government bonds

Dlssued by the U. S. Treasury

- Default-free since government can always print money to pay interest
- Interest received is exempt from state and local taxes \qquad
- Never callable
- Purchase directly from gov't, thru banks or in securities mkt using broker, in $\$ 1,000$ units -Bills, notes and bonds

T-Bills

\qquad

- Short-term (28, 91 or 182 day maturities) \qquad
-Sold each week on a discount basis
- Mature at face value - no coupon
- Buy a 6-month T-Bill for $\$ 975$, matures for $\$ 1000$ yield $=\frac{(1000-975)}{975} x 2=5.13 \%$
- Interest is taxable by IRS

Notes and bonds

\square Treasury notes

- Mature in 2, 5 or 10 years
- Semi-annual coupons electronically \qquad
- $i_{\text {notes }}>i_{\text {bills }}$ \square Treasury bonds
- Mature in 10 to 30 years
- Semi-annual coupons electronically
- Highest yielding
- 30-year Treasury is the bench-mark

Secondary market

Market for trading Treasury securities is enormous

- You can buy any maturity
\qquad
- Want a 2-week T-Bill?
aWe got that
- Want 7.5 year note?
aWe got that, too
-Prices (and therefore, yields) are determined by supply and demand

Municipal bonds - munies

\qquad

Ilssued by state and local governments \qquad
-Two types of munies

- General obligation bonds
-Backed by full faith and credit (taxing power) of the issuer
\qquad
- Revenue bonds
-Proceeds fund a specific project
- Hospital, toll road, power plant, etc.
-Backed only by revenue generated from project
- Riskier - so higher yields than general obligation bonds

Copyright ©2007 Stephen G. Buell

What's so special about munies

\square Interest received is exempt from federal

\qquad income taxes
IInterest received is exempt from state \qquad and local income taxes if investor lives in same state as issuer \qquad
\square yield ${ }_{\text {muni }}<$ yield $_{\text {corp bonds }} \quad$ (deceiving)

- Say 30\% tax-bracket
- Stated rates $\mathrm{i}_{\text {corp }}=10 \%$ and $\mathrm{i}_{\text {muni }}=8 \%$
- After-tax rates $i_{\text {corp }}=.10(1-.30)=7 \%$ vs $i_{\text {muni }}=8 \%$

Bond yields and prices

-Even if bond is 100% default-free, it's still \qquad susceptible to interest rate risk

- If interest rates rise, bond prices fall \qquad
DOur original AAA-rated debenture at issuance
- Coupon=8\%/yr, maturity=25 yrs, par=\$1,000 aCoupon $=.08 \times 1000 / 2=\$ 40 /$ per and $\mathrm{n}=25 \times 2=50$ per
- Other 25-yr AAA debentures yield $8 \% / \mathrm{yr}=4 \% / \mathrm{per}$ $\square P_{0}=40\left(\right.$ PVIF $\left._{\mathrm{a}}-4 \%-50\right)+1000 /(1.04)^{50}=\$ 1,000$ aNormally bonds are issued close to par $=\$ 1,000$

What a difference 10 yrs makes

\qquad
-Let's pick up the action 10 years later \qquad

- 15 years (30 periods) left to maturity
- Now 15-yr AAA debentures yield $12 \% / \mathrm{yr}=6 \% / \mathrm{per}$ \qquad
- $\mathrm{P}_{10}=40\left(\right.$ PVIF $\left._{\mathrm{a}}-6 \%-30\right)+1000 /(1.06)^{30}$
- $40=>$ PMT $6=>$ i $30=>n 1000=>F V$ solve $P V=-724.70$
- $\mathrm{P}_{10}=\$ 724.70$
- If you sell now (year 10), take a $\$ 275$ capital loss
- If you don't sell, you'll get $\$ 1,000$ in 15 yrs
aBut your money is tied up earning 8% when it could be earning 12% - you need to learn to think this way!

Copyright ©2007 Stephen G. Buell

Same 10 years, happier scenario

-Instead of AAA-debenture rate rising from 8\% to $12 \% / \mathrm{yr}$, assume it drops to $4 \% / \mathrm{yr}$ or $2 \% /$ period

- $\mathrm{P}_{10}=40\left(\mathrm{PVIF}_{\mathrm{a}}-2 \%-30\right)+1000 /(1.02)^{30}$
- 40=>PMT 2=>i 30=>n 1000=>FV solve PV=-1,447.93
- $\mathrm{P}_{10}=\$ 1,447.93$ and you'd get a $\$ 448$ capital gain
-Remember our important inverse relationship between yield and price?
-What rate of return did you make in this happy scenario?

Your 10-year return

- You paid $\$ 1,000$, received coupons for 10 years (20 periods), sold it for \$1,447.93
$\square P V_{0}=C\left(P V I F_{a}-r \%-n\right)+F V /(1+r)^{n}$
$\square 1,000=40\left(\right.$ PVIF $\left._{\mathrm{a}}-\mathrm{r} \%-20\right)+1447.93 /(1+\mathrm{r})^{20}$
$\square-1,000=>P V 40=>P M T$ 1,447.93 \quad =>FV $20=>n$ solve for $r=5.31 \% /$ period $\times 2=$ 10.62\%/year csa

Maturity and yield

\square Maturity is key factor affecting bond's yield

- Long-term bonds are inherently riskier than short-term bonds
- Lots more can go wrong over the life of 20-year bond than over the life of a 2-year bond or a 2-week bond (T-Bill)
- For a given $\Delta \mathrm{i}$
- $\Delta P_{20 y}>\Delta P_{2 x}>\Delta P_{2 w k}$

UNormally $i_{L T}>i_{\text {ST }}$ to compensate for higher risk

Inducing investors to buy

If bond has an unattractive feature, issuer will need to offer an incentive to investor in the form of a higher yield

- $i_{\text {debenture }}>i_{\text {mortgage }}$
- $\mathrm{i}_{\text {long-term }}>\mathrm{i}_{\text {short-term }}$
- $\mathrm{i}_{\text {callable }}>\mathrm{i}_{\text {noncallable }}$
- $i_{\text {nonconvertible }}>i_{\text {convertible }}$
- $\mathrm{i}_{\mathrm{CCC}}>\mathrm{i}_{\mathrm{AAA}}$
-But is the extra yield worth it?

Lots of time and effort

\square Investing in stocks and bonds can be financially rewarding
-But takes a lot of time to research the buy and sell decisions
\square ls there an easier way to get the benefits of investing in stocks and bond?
\square Yes - see next module
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad -

