Time Value of Money

Mathematics of Finance
Compounding and Discounting

Reasons for interest

Lender's side

- Reward for postponing consumption
- Compensation for risk
- Default risk
- Purchasing power risk (inflation)
- Liquidity risk

Borrower's side

- Productivity of capital
- Reinvest the funds at a higher rate

Copyright $@ 2003$ Stephen G. Buell

Mathematics of finance

$\mathrm{P}_{0}=$ principal at time 0
$S_{t}=$ future sum at time t
$\mathrm{n}=$ number of compounding years
$\mathrm{i}=$ interest rate per year

Lump-sum compounding

$\mathrm{S}_{1}=\mathrm{P}_{\mathrm{o}}+\mathrm{P}_{0} \mathrm{i}$
$S_{2}=S_{1}+S_{1} \mathrm{i}$
$\mathrm{S}_{2}=\mathrm{P}_{0}(1+\mathrm{i})^{2}$
$S_{n}=P_{0}(1+i)^{n}$
$(1+\mathrm{i})^{\mathrm{n}}=(\mathrm{FVIF}-\mathrm{i} \%-\mathrm{n})$
$($ FVIF $-\mathrm{i} \%-\mathrm{n})=$ Future Value Interest Factor for $\mathrm{i} \%$ and n years

Simple example

If $\mathrm{P}_{0}=\$ 25, \mathrm{n}=5$ and $\mathrm{i}=6 \%$
$\mathrm{S}_{5}=25(1.06)^{5}=33.46$
$\mathrm{S}_{5}=25(\mathrm{FVIF}-6 \%-5)$
$\mathrm{S}_{5}=25(1.3382)=33.46$

Using a financial calculator:
$25 \rightarrow \mathrm{PV} 6 \rightarrow \mathrm{I} / \mathrm{yr} 5 \rightarrow$ n FV $=33.46$
$\$ 25$ invested today at 6% will grow to $\$ 33.46$ in 5 years

Copyright ©2003 Stephen G. Buell

Frequency of compounding

Bonds	Semiannually	2 times/yr
Savings Aects	Quarterly	4 times/yr
 Mertgages MC/Visa	Monthly	12 times/yr

[^0]
Quarterly compounding

$S_{n}=P_{0}(1+i)^{n}$
$\mathrm{i}=$ interest rate per period
$\mathrm{n}=$ number of periods
Passbook offers $8 \% / \mathrm{yr}$ comp quarterly
$\mathrm{i}=2 \% /$ period and $\mathrm{n}=4$ periods $/ \mathrm{yr}$
$\mathrm{S}_{1 \mathrm{Q}}=\mathrm{P}_{0}(1.02)$
$\mathrm{S}_{2 \mathrm{Q}}=\mathrm{P}_{0}(1.02)(1.02)$
$S_{4 Q / 1 \mathrm{yr}}=\mathrm{P}_{0}(1.02)^{4}$
Copyright ©2003 Stephen G. Buell

Effective Annual Rate

$\mathrm{EAR}=\frac{\text { \$Interest }}{\text { Principal }}=\frac{\mathrm{S}_{\mathrm{lyr}}-\mathrm{P}_{0}}{\mathrm{P}_{0}}$
$\operatorname{EAR}=\frac{\mathrm{P}_{0}(1.02)^{4}-\mathrm{P}_{0}}{\mathrm{P}_{0}}=(1.02)^{4}-1=8.24 \% / \mathrm{yr}$
$\operatorname{EAR}=(1+\mathrm{i})^{\mathrm{n}}-1 \quad \ll=\mathrm{KEY}!!$
where :
$\mathrm{i}=$ interest rate per period
$\mathrm{n}=$ number of periods in a year
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Why EAR?

Twoalternative investments:
$\mathrm{A}: \mathrm{APR}=21 \% /$ yrcompoundedsemiannually \qquad
$\mathrm{B}: \mathrm{APR}=20 \% / \mathrm{yr}$ compoundeddaily
$\mathrm{EAR}_{\mathrm{A}}=\left(1+\frac{.21}{2}\right)^{2}-1=22.10 \% / \mathrm{yr}$
$E A_{B}=\left(1+\frac{.20}{365}\right)^{365}-1=22.13 \% / \mathrm{yr}$

Copyright $@_{2003 \text { Stephen G. Buell }}$

Car loan example

Dealer offers financing at $12 \% /$ year, compounded monthly

What rate are they really charging?
$\operatorname{EAR}=(1+.01)^{12}-1=12.68 \%$

Discounting and present value

Reciprocals of compounding and future value $\$ 33.46$ to be paid in 5 yrs is worth how much today if the interest rate is $6 \% / \mathrm{yr}$?
$\mathrm{S}_{\mathrm{n}}=\mathrm{P}_{0}(1+\mathrm{i})^{\mathrm{n}}$
$\mathrm{P}_{0}=\mathrm{S}_{\mathrm{n}} /(1+\mathrm{i})^{\mathrm{n}}=33.46 /(1.06)^{5}$
$1 /(1+\mathrm{i})^{\mathrm{n}}=(\mathrm{PVIF}-\mathrm{i} \%-\mathrm{n})$
$($ PVIF $-\mathrm{i} \%-\mathrm{n})=$ Present Value Interest Factor for $\mathrm{i} \%$ and n periods

Solution (Cont'd)

$$
\mathrm{P}_{0}=33.46 /(1.06)^{5}=33.46(\mathrm{PVIF}-6 \%-5)=25.00
$$

Using a financial calculator:
$33.46 \rightarrow \mathrm{FV} \quad 6 \rightarrow \mathrm{I} / \mathrm{yr} 5 \rightarrow \mathrm{n}$ PV $=25.00$
$\$ 25$ invested today at 6% will grow to $\$ 33.46$ in 5 years

Same example, different frequency

Assume 6\%/yr compounded semiannually so now $\mathrm{i}=3 \%$ a period
Still 5 years so now $\mathrm{n}=10$ periods
$\mathrm{P}_{0}=33.46 /(1.03)^{10}=33.46(\mathrm{PVIF}-3 \%-10)=24.90$

Find EAR: EAR $=(1.03)^{? ?}-1$
What's the ??

It's NOT 10

It's $\operatorname{EAR}=(1.03)^{2}-1$ periods $=2$, not 10

Remember it's EAR and the $\underline{\mathbf{A}}$ is "annual" and there are 2 periods in a year if it's semiannual compounding
Irrelevant that it's a 5 year investment

Why we need the time value of money
Twogifts from yourrich uncle:

A:		100	100	100			250
0	1	2	3	4	5	6	

B:						325	325
0	1	2	3	4	5	6	

What else do we need to know in order todecide?

Important missing piece

Who is the guy? Mom says it's her brother but can you be sure?
Expected inflation rate over the next 6 years?
How much do we need money in the next couple of years?
How much can we sell the gifts for now?
Assume an interest rate of $\mathrm{i}=10 \%$

Which gift is worth more?

$P V_{A, 0}=\frac{100}{(1.10)^{1}}+\frac{100}{(1.10)^{2}}+\frac{100}{(1.10)^{3}}+\frac{250}{(1.10)^{6}}=389.80$
$P V_{B, 0}=\frac{325}{(1.10)^{5}}+\frac{325}{(1.10)^{6}}=385.25$
$F V_{A .6}=100(1.10)^{5}+100(1.10)^{4}+100(1.10)^{3}+250=690.56$
$F V_{B, 6}=325(1.10)^{1}+325=682.50$
Note that $\frac{690.56}{(1.10)^{6}}=389.80$
Copyright ©2003 Stephen G. Buell

Copyright ©2003 Stephen G. Buell

Observations

You could duplicate your uncle's gift by investing $\$ 389.80$ for 6 years at 10%
You could sell your uncle's gift to your brother today for $\$ 389.80$ and he would earn 10%
If the interest rate were low, say 2%, then B is a lot more attractive than A
If the interest rate were high, say 50%, then A is a lot more attractive than B

Annuities

Constant amounts, regular fixed intervals

Series of equal amounts, received or paid, at regular constant intervals

Ordinary annuity \rightarrow payments are at the end of each period. Annuity begins one period prior to the first payment

Present Value of an Annuity

A		R	R	R
0	1	2	3	\(/ \frac{\mathrm{R}}{\mathrm{n}-1} \begin{aligned} \& \mathrm{R}

\& \mathrm{n}\end{aligned}\)
$\mathrm{PV}_{\mathrm{A}}=\frac{\mathrm{R}}{(1+\mathrm{i})^{1}}+\frac{\mathrm{R}}{(1+\mathrm{i})^{2}}+\cdots+\frac{\mathrm{R}}{(1+\mathrm{i})^{\mathrm{n}}}$
$\mathrm{PV}_{\mathrm{A}}=\mathrm{R}\left[\frac{1}{(1+\mathrm{i})^{1}}+\frac{1}{(1+\mathrm{i})^{2}}+\cdots+\frac{1}{(1+\mathrm{i})^{n}}\right]$
$\mathrm{PV}_{\mathrm{A}}=\mathrm{R}\left[\frac{(1+\mathrm{i})^{\mathrm{n}}-1}{\mathrm{i}(1+\mathrm{i})^{\mathrm{n}}}\right]$
$\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]=\left[\right.$ PVIF $\left._{a}-i \%-n\right]$

$$
\left(\mathrm{PVIF}_{\mathrm{a}}-\mathrm{i} \%-\mathrm{n}\right)
$$

($\mathrm{PVIF}_{\mathrm{a}}-\mathrm{i} \%-\mathrm{n}$) is the present value interest factor of an annuity of $\$ 1.00$ per period for n periods discounted at $i \%$ per period

It is a commonly used short-hand notation

PV of annuity example

Find the PV of a 10 year annuity that pays $\$ 50$ every six months. Use an interest rate of 6% a year, compounded semiannually
$\mathrm{PV}=50(\mathrm{PVIFa}-3 \%-20)$
Using a financial calculator:
$50 \rightarrow$ PMT $3 \rightarrow \mathrm{I} / \mathrm{yr} 20 \rightarrow \mathrm{n} \quad \mathrm{PV}=\$ 743.87$

Copyright ©2003 Stephen G. Buell

Monthly car payments

Buy a car for $\$ 15,000$ by putting $\$ 5,000$ down and borrowing $\$ 10,000$ from dealer. It is a 4 year loan with monthly payments.
Interest rate is $12 \% / \mathrm{yr}$, compounded monthly

$$
\begin{aligned}
& 10,000=\mathrm{R}\left(\mathrm{PVIF}_{\mathrm{a}}-1 \%-48\right) \\
& 10000 \rightarrow \mathrm{PV} \quad 1 \rightarrow \mathrm{I} / \mathrm{yr} \quad 48 \rightarrow \mathrm{n} \quad \mathrm{PMT}=\$ 263.34
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Deferred Annuity

			10	10	10
0	1	2	3	4	5

$\mathrm{i}=5 \%$
First find $\mathrm{PV}_{2}=10\left(P V I F_{a}-5 \%-3\right)=27.23$
Then discount the 27.23 back two more periods
$\mathrm{PV}_{0}=\frac{10\left(P V I F_{a}-5 \%-3\right)}{(1.05)^{2}}=24.70$

Perpetual Annuity

You have $\$ 200$ at time 0 .
You invest it for 1 period at $10 \% /$ period
You now have $220=200$ (1.10)
You withdraw the 20 interest payment leaving you with the original 200 principal
You invest it for another period at 10%
You now have $220=200$ (1.10)
You withdraw the 20 interest payment leaving you with the original 200 principal
You can continue to do this for ever if you do not touch the original principal

Perpetual Annuity

$\mathrm{PV}=200$ and $\mathrm{i}=.10$, then $\mathrm{R}=(200)(.10)=20$

If $\mathrm{R}=(\mathrm{PV})(\mathrm{i})$, then $\mathrm{PV}=\mathrm{R} / \mathrm{i}$
\$20/period for $\mathrm{n} \rightarrow 8$ discounted at 10% is $\mathrm{PV}=20 / .10=200$

Deferred Perpetual Annuity

0	1	2	3	4	5	6

Assumean interest rate of 5\%
$P V_{4}=\frac{50}{.05}=1000$
$P V_{0}=\frac{1000}{(1.05)^{4}}=822.70$
$P V_{0}=\frac{\left[\frac{50}{.05}\right]}{(1.05)^{4}}=8=822.70$

Future Value of an Annuity

$$
\begin{aligned}
& \mathrm{A} \begin{array}{ccccc}
& \mathrm{R} & \mathrm{R} & \mathrm{R} \\
\hline 0 & 1 & 2 & 3
\end{array} / \frac{\mathrm{R}}{\mathrm{n}-1} \quad \mathrm{R} \mathrm{n} \\
& \mathrm{FV}_{\mathrm{B}}=\mathrm{R}(1+\mathrm{i})^{\mathrm{n}-1}+\mathrm{R}(1+\mathrm{i})^{\mathrm{n}-2}+\cdots+\mathrm{R}(1+\mathrm{i})^{1}+\mathrm{R} \\
& F V_{B}=R\left[(1+i)^{n-1}+(1+i)^{n-2}+\cdots+(1+i)^{1}+1\right] \\
& \mathrm{FV}_{\mathrm{B}}=\mathrm{R}\left[\frac{(1+\mathrm{i})^{\mathrm{n}}-1}{\mathrm{i}}\right] \\
& \left(\frac{(1+\mathrm{i})^{\mathrm{n}}-1}{\mathrm{i}}\right)=\left(\mathrm{FVIF}_{\mathrm{a}}-\mathrm{i} \%-\mathrm{n}\right)
\end{aligned}
$$

$$
\left(\mathrm{FVIF}_{\mathrm{a}}-\mathrm{i} \%-\mathrm{n}\right)
$$

($\mathrm{FVIF}_{\mathrm{a}}-\mathrm{i} \%-\mathrm{n}$) is the future value interest factor of an annuity of $\$ 1.00$ per period for n periods compounded at $\mathrm{i} \%$ per period

It is a commonly used short-hand notation

Sinking fund example

Goal is to save $\$ 10,000,000$ in 10 years by making 10 equal annual deposits into sinking fund that pays 12% interest. First deposit is in one year. Find annual deposit.
$\mathrm{FV}=10,000,000=\mathrm{R}\left(\mathrm{FVIF}_{\mathrm{a}}-12 \%-10\right)$
Using a financial calculator:
$10000000 \rightarrow \mathrm{FV} \quad 12 \rightarrow \mathrm{I} / \mathrm{yr} 10 \rightarrow \mathrm{n}$ PMT $=569,841.64$

Sinking fund (cont'd)

What if firm can deposit only $\$ 500,000$ per year for 10 years? Must earn higher than 12% to achieve $\$ 10,000,000$ goal. Find i. $500000\left(\mathrm{FVIF}_{\mathrm{a}}-\mathrm{i} \%-10\right)=10000000$
Using a financial calculator:
$500000 \rightarrow$ PMT $10 \rightarrow \mathrm{n}-10000000 \rightarrow$ FV
$\mathrm{i}=14.69 \%$

Putting it all together

- Your uncle gives you $\$ 100$ today, your $20^{\text {th }}$ birthday. He promises to give you $\$ 100$ on your $21^{\text {st }}, 22^{\text {nd }}, 23^{\text {rd }}, 24^{\text {th }}$ and $25^{\text {th }}$ birthdays as well. You invest all gifts in a savings acct paying 5\% interest in order to someday buy a new stereo.
- On your 23rd birthday, your old stereo dies. Your brother offers you a lump sum on that day if you sign over to him the two remaining gifts ($24^{\text {th }}$ and $25^{\text {th }}$ birthdays) when they come in but he wants a 12% return for his generosity.
- What's the most expensive stereo you can buy on your $23^{\text {rd }}$ birthday using your savings and your brother's advance?

Stereo $=100\left(\right.$ FVIF $\left._{\mathrm{a}}-5 \%-4\right)+100\left(\mathrm{PVIF}_{\mathrm{a}}-12 \%-2\right)$

Stereo $=431.01+169.01=\$ 600.02$

[^0]: Copyright ©2003 Stephen G. Buell

