Time Value of Money

Mathematics of Finance Compounding and Discounting

Copyright ©2003 Stephen G. Buell

Reasons for interest

Lender's side

- · Reward for postponing consumption
- Compensation for risk
 - Default risk
 - Purchasing power risk (inflation)
 - Liquidity risk

Borrower's side

- Productivity of capital
- Reinvest the funds at a higher rate

Copyright ©2003 Stephen G. Buell

Mathematics of finance

- $P_0 = principal at time 0$
- $S_t =$ future sum at time t
- n = number of compounding **years**
- i = interest rate **per year**

Lump-sum compounding

$$\begin{split} S_1 &= P_o + P_0 i \\ S_2 &= S_1 + S_1 i \\ S_2 &= P_0 (1 + i)^2 \\ S_n &= P_0 (1 + i)^n \\ (1 + i)^n &= (FVIF - i\% - n) \\ (FVIF - i\% - n) &= Future Value Interest Factor for i\% and n years \end{split}$$

Copyright ©2003 Stephen G. Buell

Simple example

 $\begin{array}{l} \text{If P}_{0}=\$25,\,n=5\text{ and }i=6\%\\ \text{S}_{5}=25(1.06)^{5}=33.46\\ \text{S}_{5}=25(\text{FVIF}-6\%-5)\\ \text{S}_{5}=25(1.3382)=33.46 \end{array}$

Using a financial calculator: 25→PV 6→I/yr 5→n FV=33.46

25 invested today at 6% will grow to 33.46 in 5 years

Copyright ©2003 Stephen G. Buell

Frequency of	of compou	unding
--------------	-----------	--------

Bonds	Semiannually	2 times/yr
Savings	Quarterly	4 times/yr
Car Loans &	Monthly	12 times/yr
MC/Visa	Daily	365 times/yr

Quarterly compounding

$$\begin{split} S_n &= P_0 \ (1+i)^n \\ i &= \text{interest rate } \textbf{per period} \\ n &= n \text{umber of } \textbf{periods} \\ \text{Passbook offers 8\%/yr comp quarterly} \\ i &= 2\%/\text{period and } n = 4 \text{ periods/yr} \\ S_{1Q} &= P_0(1.02) \\ S_{2Q} &= P_0(1.02)(1.02) \\ S_{4Q/1yr} &= P_0(1.02)^4 \\ &\\ \text{Copyright 02003 Stephen G. Buell} \end{split}$$

Effective Annual Rate

 $EAR = \frac{\$Interest}{Principal} = \frac{S_{1yr} - P_0}{P_0}$ $EAR = \frac{P_0(1.02)^4 - P_0}{P_0} = (1.02)^4 - 1 = 8.24\%/yr$ $EAR = (1+i)^n - 1 \iff KEY!!$ where : i = interest rate per period n = number of periods in a year Copyright O2003 Stephen G. Buell

Why EAR?

Twoalternative investments :

A: APR = 21%/ yr compoundedsemiannually B: APR = 20%/ yr compoundeddaily EAR_A = $(1 + \frac{.21}{...)^2} - 1 = 22.10\%/yr$

$$EAR_{\rm B} = (1 + \frac{.20}{.365})^{.365} - 1 = 22.13\%/{\rm yr}$$

Dealer offers financing at 12%/year, compounded monthly

What rate are they really charging?

 $EAR = (1 + .01)^{12} - 1 = 12.68\%$

Copyright ©2003 Stephen G. Buell

Discounting and present value

Reciprocals of compounding and future value \$33.46 to be paid in 5 yrs is worth how much today if the interest rate is 6%/yr? $S_n = P_0(1 + i)^n$ $P_0 = S_n/(1 + i)^n = 33.46/(1.06)^5$ $1/(1+i)^n = (PVIF - i\% - n)$ (PVIF - i% - n) = Present Value Interest Factor for i% and n periods

Copyright ©2003 Stephen G. Buell

Solution (Cont'd)

 $P_0 = 33.46/(1.06)^5 = 33.46(PVIF-6\%-5) = 25.00$

Using a financial calculator: $33.46 \Rightarrow FV \quad 6 \Rightarrow I/yr \quad 5 \Rightarrow n \quad PV = 25.00$

\$25 invested today at 6% will grow to \$33.46 in 5 years

Still 5 years so now n = 10 periods $P_0 = 33.46/(1.03)^{10} = 33.46(PVIF-3\%-10) = 24.90$

Find EAR: EAR = (1.03)?? - 1 What's the ??

Copyright ©2003 Stephen G. Buell

It's NOT 10

It's EAR = $(1.03)^2 - 1$ periods = 2, not 10

Remember it's $E\underline{A}R$ and the \underline{A} is "annual" and there are 2 periods in a year if it's semiannual compounding

Irrelevant that it's a 5 year investment

Important missing piece

Who is the guy? Mom says it's her brother but can you be sure?

Expected inflation rate over the next 6 years?

How much do we need money in the next couple of years?

How much can we sell the gifts for now?

Assume an interest rate of i = 10%

Which gift is worth more?
$PV_{A,D} = \frac{100}{(1.10)^1} + \frac{100}{(1.10)^2} + \frac{100}{(1.10)^3} + \frac{250}{(1.10)^6} = 389.80$
$PV_{B,0} = \frac{325}{(1.10)^5} + \frac{325}{(1.10)^6} = 385.25$
$FV_{A.6} = 100(1.10)^{5} + 100(1.10)^{4} + 100(1.10)^{3} + 250 = 690.56$
$FV_{B,6} = 325(1.10)^1 + 325 = 682.50$
Note that $\frac{690.56}{(1.10)^6} = 389.80$
Copyright ©2003 Stephen G. Buell

What_	happe	ens to	<u>the \$3</u>	<u>89.80</u> ?
Time	Inflow	Interest	Outflow	Value
0	389.80	-	-	389.80
1	-	38.98	-100	328.78
2	-	32.88	-100	261.66
3	-	26.17	-100	187.83
4	-	18.78	-	206.61
5	-	20.66	-	227.27
6	-	22.73	-250	L
	Copyr	ight ©2003 Stepher	n G. Buell	

Observations

You could duplicate your uncle's gift by investing \$389.80 for 6 years at 10%

You could sell your uncle's gift to your brother today for \$389.80 and he would earn 10%

If the interest rate were low, say 2%, then B is a lot more attractive than A

If the interest rate were high, say 50%, then A is a lot more attractive than B

Copyright ©2003 Stephen G. Buell

Annuities

Constant amounts, regular fixed intervals

Series of equal amounts, received or paid, at regular constant intervals

Ordinary annuity → payments are at the <u>end</u> of each period. Annuity begins one period prior to the first payment

$(PVIF_a - i\% - n)$

 $(PVIF_a-i\%-n)$ is the present value interest factor of an annuity of \$1.00 per period for n periods discounted at i% per period

It is a commonly used short-hand notation

Copyright ©2003 Stephen G. Buell

PV of annuity example

Find the PV of a 10 year annuity that pays \$50 every six months. Use an interest rate of 6% a year, compounded semiannually

PV = 50(PVIFa - 3% - 20)Using a financial calculator: $50 \Rightarrow PMT \ 3 \Rightarrow I/yr \ 20 \Rightarrow n \ PV = 743.87

Copyright ©2003 Stephen G. Buell

Monthly car payments

Buy a car for \$15,000 by putting \$5,000 down and borrowing \$10,000 from dealer. It is a 4 year loan with monthly payments. Interest rate is 12%/yr, compounded monthly

 $10,000 = R(PVIF_a-1\%-48)$ $10000 \Rightarrow PV 1 \Rightarrow I/yr 48 \Rightarrow n PMT=263.34

Perpetual Annuity

You have \$200 at time 0.

You invest it for 1 period at 10%/period

You now have 220 = 200 (1.10) You withdraw the 20 interest payment leaving you with the

original 200 principal

You invest it for another period at 10%

You now have 220 = 200 (1.10)

You withdraw the 20 interest payment leaving you with the original 200 principal

You can continue to do this for ever if you do not touch the original principal

Copyright ©2003 Stephen G. Buell

Perpetual Annuity

PV=200 and i=.10, then R=(200)(.10)=20

If R = (PV)(i), then PV = R/i

\$20/period for $n \rightarrow 8$ discounted at 10% is PV=20/.10=200

$(FVIF_a - i\% - n)$

(FVIF_a-i%-n) is the future value interest factor of an annuity of \$1.00 per period for n periods compounded at i% per period

It is a commonly used short-hand notation

Sinking fund example

Goal is to save \$10,000,000 in 10 years by making 10 equal annual deposits into sinking fund that pays 12% interest. First deposit is in one year. Find annual deposit.

FV=10,000,000=R(FVIF_a-12%-10)

Using a financial calculator: 10000000→FV 12→I/yr 10→n PMT=569,841.64

Copyright ©2003 Stephen G. Buell

Sinking fund (cont'd)

What if firm can deposit only \$500,000 per year for 10 years? Must earn higher than 12% to achieve \$10,000,000 goal. Find i.

500000(FVIF_a-i%-10)=10000000

Using a financial calculator:

500000→PMT 10→n -10000000→FV i=14.69%

Copyright ©2003 Stephen G. Buell

Putting it all together

- Your uncle gives you \$100 today, your 20th birthday. He promises to give you \$100 on your 21st, 22nd, 23rd, 24th and 25th birthdays as well. You invest all gifts in a savings acct paying 5% interest in order to someday buy a new stereo.
- On your 23rd birthday, your old stereo dies. Your brother offers you a lump sum on that day if you sign over to him the two remaining gifts (24th and 25th birthdays) when they come in but he wants a 12% return for his generosity.
- What's the most expensive stereo you can buy on your 23rd birthday using your savings and your brother's advance?

$\frac{100 \quad 100 \quad 100 \quad 100 \quad 100 \quad 100}{20 \quad 21 \quad 22 \quad 23 \quad 24 \quad 25}$ Stereo=100(FVIFa - 5% - 4) + 100(PVIFa - 12% - 2) Stereo=431.01+169.01=\$600.02