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Abstract

Production planning policies have a direct impact on demand propagation and

the overall performance of manufacturing supply chains. The relationship between

production planning and supply chain behavior is important because the planning

decisions play a major role in determining how demand propagates through the supply

tiers. In this paper, we study supply chain demand behavior via computational

experiments. The purpose of our study is to examine the experimental results against the

propositions from (Wu and Meixell, 1998), and to gain a better understanding of the

demand behavior and the operational costs. For the purpose of studying supply chain

behavior, we first develop a solution method for the multi-level, multi-period lot-sizing

model on which the supply chain demand model is based. This is followed by a

discussion on the hypotheses pertaining to supply chain behavior, and a compendium of

the results from the computational experiments. Each of the experiments is evaluated

relative to the propositions posed in (Wu and Meixell, 1998).  We conclude from the

study several managerial insights and practical recommendations that may improve

supply chain performance.

1 A Solution Method for the Supply Chain Production Model

We first describe a particular version of the multi-level, multi-period lot-sizing

model to study demand propagation in manufacturing supply chains. This model is a

special instance of the general model discussed in (Wu and Meixell, 1998). The
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objective we use here follows a conventional lot-sizeing cost objective, minimizing

setup and inventory costs.
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Indices:

i = 1,…, N   index of products and items
j = 1,…, N   index of products
t = 1,…., T index of planning periods
k = 1,…,K index of facilities
Ik = index set of items that are produced at facility k

Parameters:

hi = inventory of holding cost ($ per unit of item i)
ci = set-up cost ($ per set-up of item i)
Li = minimum lead time for item i
fi = yield of item i (fraction)
aij = number of units of item i required for the production of one unit of item j
rit = demand for item i in period t
bik = capacity utilization rate of item i at facility k (capacity units per unit)
sik = set-up utilization of facility capacity k by item i (capacity units)
CAPkt    = capacity of facility k at time t (units of capacity)
qit = upper bound on the production of item i that can be initialized in period t

Variables:

yit = inventory of item i at the end of period t
δit = 1 if item made in period t, 0 otherwise
xit = production of item i initialized in period t
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1.1 Computation Complexity of Multilevel Lot-sizing Algorithms

The multi-level lot-sizing problem is computationally very difficult to solve.

Many authors have shown that even finding feasible solution in some cases is NP-

Complete. In the case of lot-sizing problems with setup times, Maes, et al, (1991) stated

that it is "a very difficult task, far more difficult than has been suggested in the

literature." They show that finding a feasible solution to this problem is NP-complete.

At best, setup costs are sometimes used as a Lagrangean substitute for setup times.

Maes and his co-authors use an LP-based heuristic with a rounding routine to solve a

production lot size problem for the assembly structure case.

Salomon (1991) addressed the complexity of algorithms for a variety of

lotsizing sub-problems, and ultimately proceeds to use heuristic search techniques to

solve his lotsizing problem. Importantly, Salomon notes that a problem with multiple

facilities and multiple items with general production costs but no setup costs or setup

times is polynomially solvable. This problem is equivalent to a transportation problem,

which is solvable in polynomial time. Salomon also shows that in the case of a single

facility with multiple items, the problem is NP-hard if either setup times or setup costs

are present. He notes that the un-capacitated item-level problem has a polynomial time

dynamic programming algorithm that could be useful in solving this style of problems.

This well-known algorithm is attributed to Wagner & Whitin, and in its original

version, has O(n2) complexity. Federgruen and Tzur (1991) and Wagenmans, et.al

(1992) have each published the results of their research that improves on this

complexity with algorithms that solve the general dynamic lot size problem in O(n log

n) time, with a special case that solves in O(n) time.
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Florian, et al (1980) address the complexity of algorithms for special cases of

the single-item, capacitated production planning problem without setup times. When the

capacities are equal for this single-item problem, and when a concave cost function is

specified (e.g. a setup cost exists), a polynomial algorithm of O(n4) does exist (Florian

& Klein, 1971). If the capacities are not equal, however, the single item problem is NP-

hard. In fact, Garey and Johnson (1979) list the related feasibility problem as one of the

set of known NP-complete problems.

From this brief survey it is easy to conclude that the existence of a polynomial

time algorithm for our manufacturing supply chain model is extremely unlikely.

Alternatively, a good approximation algorithm is needed.

1.2 A Solution Method for the Supply Chain Production Model

The complexity results are at first discouraging in terms of finding a good

solution method for the supply chain production model. But as we will show, they are

useful in selecting an approach to solving the production planning model that serves as

a driver for the demand model we develop here. A number of authors (Tempelmeier &

Derstroff (1996), Shapiro (1993), Diaby, et.al. (1992), Billington, et. al. (1986), Thizy

& Wassenhove (1985)), have shown that a Lagrangean-based heuristic is a promising

approach for solving the lot-sizing problem. Kimms (1997) discusses Lagrangean

relaxation as a useful approach for multi-level lot sizing when standard MIP solvers

cannot find a solution in reasonable time. Lagrangean relaxation both provides a lower

bound value for evaluation purposes, and a starting point solution for a feasibility-

restoring heuristic. We too rely on a Lagrangean-based heuristic with good average-case

efficiency for the computational studies of this supply chain demand model.
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A number of options exist for simplifying this problem via Lagrangean

relaxation. One approach is to relax only the capacity constraint, yielding M single end

item multi-level un-capacitated lot sizing problems. Unfortunately, no efficient

algorithm exists for this sub-problem, and although our research objective is to study

the behavior of supply chain demand, this approach is not good enough.  A second

strategy is to relax only the balance constraint, resulting in a single level capacitated

problem. This problem will likely be multi-item, and possibly multi-facility. Again, no

efficient algorithm exists for this sub-problem.

Attempts have been made to solve the multi-item, multi-level lot-sizing problem

by relaxing both the capacity and balance constraint. (Billington, et al, (1983)

Tempelmeier and Derstroff, (1996) and Thizy & Wassenhove (1985)) This generates a

set of single-item, un-capacitated subproblems with a known efficient algorithm.

Unfortunately, the duality gap that result from this relaxation can be quite large, and so

the routine that is needed to restore feasibility to the solution will be quite involved and

may wander quite a distance from the relaxed solution.

Here, we choose to relax only the capacity constraint and extract the dependent

demand term from the balance constraint. This unlinks the items in a single chain and

allows for a single item un-capacitated subproblem. The dependent demand is computed

and summed within the Lagrangean loop. This detail will be discussed further in the

next section on the solution method.

A situation that results from this handling of the dependent demand term is the

impact of the lower bound. We no longer have a "true" lower bound when a term is

extracted from a constraint of the original problem. We test the quality of this
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"surrogate" lower bound and report on the results in Section 4 on the performance of

this heuristic.

The supply chain problem, then, is an optimization problem that for practically

sized problems is too big to be solved with exact methods. Even small supply chains

can consist of hundreds of items, across several facilities and tiers. Accordingly, we

develop and use a heuristic that decomposes the master problem into smaller sub-

problems. The procedure is a Lagrangean-based heuristic that solves a relaxed version

of the original problem, compares it to a feasible upper bound solution, and iterates by

re-computing multipliers and re-solving the problem until a good solution has been

found. Although this sub-problem is readily solvable using a number of techniques, we

use the CPEX MIP solver for the 25 period sub-problems. This heuristic procedure,

outlined in Figure 1, is described in greater detail in this section.

1.2.1 Generating a Feasible, Initial Upper Bound Solution

An upper bound solution is computed at the start of this algorithm with a

procedure that mimics a decentralized MRP system. We solve for each item in the

product structure from top to bottom, by first computing the total demand, solving the

dynamic lot size problem, and then computing the remaining capacity at each facility.

This procedure continues until the capacity in the current period is exhausted.  We than

make use of capacity from earlier periods, “building ahead” by fulfilling demands using

earlier period capacities.
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As shown in Figure 1, the first step in this procedure is to compute demand for

the first item - the external and the internally generated demands. The external demand

is an input to the procedure. The derived demand can be computed using the dependent

demand term, .
1 jt

x
N

j ija∑
=

 It is important in this procedure that the items are sequenced

so that parent items are always computed before component items.

The resulting dynamic lot size problem is then solved for the single item. The

capacity constraint treats each item as though it is the only item produced at that

facility. Once a production plan is derived for the item, the "remaining capacity" for the

Step 1. Compute an initial upper bound solution
For each item in i=1..N

Compute demand for item i
Solve the item-level dynamic lot-size problem using remaining capacity
Re-compute remaining capacity at facility k

    End For
Step 2. Find the lower bound solution form the capacity-relaxed supply chain
problem (Subgradient Search)

2.1 For each item in i=1..N
Compute demand for item i
Solve the item i sub-problem

End For
2.2 Compute the lower bound
2.3 Re-compute gradients, step sizes, multipliers
2.4 Check the stopping criteria, terminate if satisfied, keep iterating if not

Step 3. Restore feasibility (Upper Bound Calculation)
3.1 Identify capacity in-feasibilities for all facilities for all time periods

3.1.1 Find item produced at facility k in period t
3.1.2 Search backward in time for period where item can be built ahead
3.1.3 Adjust production plan for item i at facility k in period t

3.2 Identify balance in-feasibilities resulting from capacity-based plan
adjustments for all items in all time periods
3.2.1 Re-run item-level sub-problem

Figure 1: The Lagrangean Heuristic for the Supply Chain Problem
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facility is computed and used for the remaining item problems. This step ensures that

capacity feasibility is maintained. RCAPkt is thus defined as:

where: RCAPkt capacity of facility k at time t after items 1-M have been
produced

j = 1,…, M   index set of parent products and items for i

The upper bound sub-problem, then, is:
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Also needed are constraint sets (4) through (7).

1.2.2 The Lagrangean Relaxed Problem

The next step of the heuristic is to solve the relaxed version of the original

problem, compare it to a feasible upper bound solution, and iterate until a good enough

solution is found. At each stage of this iteration, the algorithm re-computes multipliers

and re-solves the relaxed version of the problem.

The capacity constraint but not the balanced constraint, is relaxed and pulled

into the objective function in this formulation. This is done for two reasons. The balance

constraint in a supply chain problem is a critical constraint. In practice, a customer

facility in a supply chain cannot begin production of any product unless all the

components are available in-house. The balance constraint is, then, in effect, a material
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availability constraint. By leaving it intact in the sub-problem, we can assure that the

material availability constraint is given higher priority. A second reason for relaxing

only one set of constraints is to maintain high quality heuristic solutions.

This leaves the issue of the dependent demand term in the balance constraint,

which bundles the constraints by linking the item sub-problems. We handle this

complicating term by extracting and then embedding it in the loop that executes the sub-

problems within each Lagrangean relaxation iteration. Treating the balance constraint in

this way carries a penalty, however. The lower bound generated by the heuristic is a

lower bound to the specific problem only, not to the master problem that we’re

ultimately trying to solve. The stopping criteria ensure proper handling of the

multipliers. But the quality of the final heuristic solution in some problem

implementations may be affected.

In this way, the supply chain production planning problem is broken down into a

set of manageable item-level sub-problems. This sub-problem is:
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< constraints (4) through (7)>.

The Lagrangean multipliers are computed using sub-gradient optimization. The

gradient Gkt is the difference between the capacity and the time required for setup and

production at each facility in each time period. Specifically, it is computed as follows:
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The step size for multiplier update is computed as follows:

( ) ∑−=Γ
t

ktLBUB Gzz 2π

The multipliers are updated at each iteration as the sum of the previous multiplier value,

λ′kt, and the product of the step size and the gradient. Since the capacity constraint is an

inequality, the multiplier value must always be non-negative. Specifically,

( )ktktkt G⋅Γ+= ',0max λλ

The procedure iterates until no further improvement can be found, an optimal

solution is found, or a maximum number of iterations is reached.

1.2.3 Restoring Feasibility to the Lower Bound Solution

The third step of the heuristic is to restore feasibility to the solution generated by

the Lagrangean relaxation. This is accomplished by first identifying and resolving

capacity violations, followed by a step that identifies and resolves balance violations.

The algorithm identifies facilities that have capacity violations by scanning all

periods for each facility in the product structure. As each violation is detected,

backward scheduling is used to eliminate the violation. The routine searches through the

list of items produced at that facility and finds the first one that has production

scheduled in that violated time period. Then, the excess production for that item is

shifted to the next earliest time period with available capacity.

The use of backward scheduling in this routine is consistent with how violations

are handled in practice. Since backordering or adding capacity is not allowed, producing

an item early is the only allowable action for an over-scheduled facility. The excess

demand is “built ahead” to ensure that customer demand is met on time.
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Shifting production for any item in the supply chain certainly changes the

demand pattern for that facility’s suppliers, and possibly drives a need to change the

supplier’s production plan as well. In this way, a schedule change propagates down the

chain. Therefore, once a production plan has been modified for capacity shortfalls, the

algorithm searches for balance violations. These balance violations are corrected by re-

computing the schedule for that specific violated item. This routine iterates through all

facilities, items, and time periods to ensure that the resulting solution is fully feasible.

1.2.4 Performance of the Heuristic

Table 1 illustrates the performance of the heuristic procedure relative to the

optimal solution. Sixteen smaller problem instances were randomly selected for this

comparison, each with 10 items, 4 demand periods scheduled across 8 time periods in 3

facilities. The table illustrates the following statistics for these problem instances:

• Initial upper bound
• Value of the heuristic solution using the surrogate lower bound.
• Value of the optimal solution for the problem,
• Deviation of the heuristic solution using a surrogate lower bound vs. optimal
• Value of the heuristic solution using the true lower bound
• Deviation of the heuristic solution using the surrogate lower bound vs. true lower

bound

Three comparisons can be drawn from Table 1. First, the heuristic improves the

initial feasible solution in almost all cases. Recall that the initial UB resembles a local

optimization routine, where each item in turn across the entire supply chain is

optimized. The items are solved from the top of the product structure to the bottom, in a

manner similar to a typical MRP driven process. The improvement versus the UB is

important in this study in part because the computational effort of the heuristic is
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justified, but also because the initial feasible solution gives an estimate of the

performance of an uncoordinated supply chain. This comparison suggests that

coordinating across even a small supply chain can improve performance.

The heuristic solution using a surrogate lower bound deviates from the optimal

solution for this set of problem instances by 16% on average. For this set of small

supply chain problems, the optimal solution can be found by solving the full supply

chain problem as a single MIP. The range of deviation from optimal is displayed in

column 5.

The table also shows that using a surrogate lower bound instead of a true lower

bound in the Lagrangean relaxation carries a very small penalty. Recall that we chose

an item-level subproblem that did not fully de-couple the problem constraints. We

artificially removed the dependent demand term in the balance constraint and computed

its value in-between the sub-problem iterations. Most of the problems (75%) we

analyzed here had the same solution regardless of whether the surrogate or true lower

bound was used. The average objective value penalty was 1%.

Problem
Instance

Initial
UB
Solution

Heuristic
Solution
(surrogate
LB)

Optimal
Solution

Deviation
From
Optimal

Heuristic
Solution
(true
LB)

Deviation
From
True LB

G1 2,479 2,262 2,019 .12 2,262 .00
G2 5,906 5,646 5,278 .07 5,646 .00
G3 6,152 5,970 5,190 .15 5,970 .00
G4 5,900 5,900 5,678 .04 5,900 .00
G5 6,893 6,436 6,214 .04 6,436 .00
G6 6,152 5,970 5,107 .17 5,763 .04
G7 1,803 1,803 1,712 .05 1,755 .03
G8 1,975 1,925 1,721 .12 1,811 .06
A1 2,000 2,000 1,217 .64 2,000 .00
A2 15,648 13,101 10,681 .23 13,534 .03
A3 10,323 5,243 5,196 .01 5,243 .00
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Problem
Instance

Initial
UB
Solution

Heuristic
Solution
(surrogate
LB)

Optimal
Solution

Deviation
From
Optimal

Heuristic
Solution
(true
LB)

Deviation
From
True LB

A4 6,052 5,097 4,992 .02 5,097 .00
A5 14,724 11,608 9,026 .29 11,608 .00
A6 15,485 11,117 10,547 .05 11,117 .00
A7 4,921 4,853 3,273 .48 4,853 .00
A8 6,974 5,935 3,707 .14 5,935 .00

Average= .16 Average= .01

2 Computational Studies

In (Wu and Meixell, 1998), some theoretical results are discussed pertaining to

various demand behaviors in the supply chain.  Specifically, we analyze the effects of

order batching, multiple schedule releases, product design and capacity leveling.  To

verify and refine the theoretic results in a more complex and realistic setting, we

constructed a set of computational experiments using the supply chain model described

earlier.  We implement the Lagrangean-based heuristic procedure using AMPL/CPLEX

and use the heuristic solution to drive the supply chain decisions through the tiers.  This

provides us with a “best of conditions” simulation of production decisions in action.

The experiments are ran in a 200 MHz Pentium PC with 64 MB RAM.  Details of this

study are presented in the following sections.

2.1 The Design of the Supply Chain Experiments

We use analysis of variance and multiple regression analysis to investigate the

relationship between manufacturing planning and supply chain performance. For each

of three experiments, we identify the factors that we believe will explain the differences
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in the response variables, and then estimate the size of these differences. Both main

effects and their interactions are studied. Blocking is used wherever possible to increase

the precision of the experiments, and randomization is used in cases with no known

source of variation to block. In all cases, the structure of the model errors are evaluated

and verified by inspecting the residual plots and the normal probability plots, with

statistical consistency checks where necessary.  The three main experiments are

summarized as follows:

1. The first experiment is a screening experiment where we use demand amplification

and total supply chain inventory as response variables.  Four main factors examined

are product structure, capacity utilization , coefficient of variation (c.v.) for end item

demand  and setup cost.

2. In the second set of experiment we study the influence of end item order

patterns on supply chain performance. For this experiment, we used a multi-factor

design, building on the results of the screening experiment, with four treatment levels to

examine the magnitude and direction of the factor effects.

3. In the third experiment, we investigate the influence of schedule release policies

on supply chain performance. This experiment also builds on the result of the screening

experiment, adding a factor to examine two schedule release policies: using the most

recent schedule release as internal demand, vs. using the mean of all releases up-to-date.

2.2 Test Problems

Data that represents a wide variety of supply chain environments are necessary

to study behavior of manufacturing supply chains. For this reason, we used the data that

Tempelmeier and Derstroff developed to test a multi-item, multi-stage production
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model (Tempelmeier and Derstroff, 1996). This data contains a large number of

randomly generated problem instances that vary systematically in:

• product and operation structure,
• setup time,
• time between order profile,
• capacity utilization,
• CV of end item demand, and,
• setup cost.

We use their definition of stages to define the tiers in supply chains. We selected at

random from the 1200 available instances the set of problem instances necessary to

populate our experimental design. Figure x illustrates the two product structures

contained in this database.

The problems each consist of 40 items with 16 period demand, produced at 6

different facilities, distributed across 5 tiers in a manufacturing supply chain. In all

cases, lead-time is set equal 1 and the initial inventory is 0. The factors we focused on

that were present in the database include product structure, capacity utilization, CV

demand, and setup cost. To this set, we added two additional characteristics of interest

in this study - order pattern type and multiple schedule releases type. In this way, we

supplemented the original database to suit our experimental needs.

We used a demand series for each end item as determined by Tempelmeier &

Derstroff. These series were generated by fixing the mean of demand for each end item

and a specified CV={.1,.9}. A truncated normal distribution was then used to generate

one demand series for each end item in each of the two product structures. All

component demand in the system is derived demand, so other demands are computed as

the solution is executed.
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The utilization data we selected contained two different capacity utilization

profiles, with each facility's target utilization p={50%, 90%}. Available capacity for

each problem is computed to be the mean demand divided by this target capacity

utilization assuming a lot-for-lot system. In a system with setup times, it is impossible

to preset the utilization a priori to knowing the solution to each problem. Tempelmeier

& Derstroff computationally derived an appropriate adjusted utilization level for each

subclass of problem instances that approximates the desired target utilizations. This is

the capacity utilization level used in these computational studies.

The feasibility of the demand series relative to capacity was also verified by

Tempelemeier & Derstroff to ensure that the cumulative sum of demand over time for

each time period does not exceed the cumulative sum of capacity. When this occurred,

demands were exchanged in the series to eliminate the violation, as it creates an

infeasible problem instance. These exchanges cause an increasing trend in the demand

series when setup times exist with heavy capacity utilization.

3.3 Experiment 1: Determine the Effects of Main Factors

The first set of experiments examines the effects of product structure, planned

capacity utilization, end-item demand variation and setup costs. The experiment is set

out to address the following questions:

1) Which of these factors have a significant influence on demand amplification?

2) What combination of factor levels lead to better supply chain performance?

3) Can supply chain performance be managed with a design factor alone, and if so,
how?
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This experiment is a screening experiment where we use demand amplification and

total supply chain inventory as response variables. Total demand amplification TDA is

computed as the maximum difference in demand variation between any two tiers from

the second through the fifth. Tier-to-tier demand variation between tier k and l is

computed as follows:

 TDA= Maxk,l {CV(X l)−CV(D k)}

where X l  and Dk are the demands for all items over all time periods in tiers l and k,

respectively. The first tier demand is excluded from the calculation because the

variation in end-item demand will influence the result while being exogenous to the

system. A factorial design with three factors and two levels is used. For each of the

eight treatment combinations, there are eight replicates in each design block, selected

randomly across the un-controlled parameters in this experiment.

The factors and their levels are product structure (assembly/general), capacity

utilization (.95/.55), and variation in end item demand (.9/.1). The assembly and general

product structures are the same as those defined in Tempelmeier and Derstroff (1996),

and are described in Figure 2. The capacity utilization is the planned level – for each

experiment, we average demand at each facility, and compute the necessary capacity to

drive an average utilization level as defined for each experiment. The end item demand

variation is the coefficient of variation of the 16-period demand stream.

3.3.1 Results for Experiment 1: The Effect of Product structure, Utilization and
Setup Cost on Demand amplification

The screening experiments look at the impact of the three initially selected

planning factors - product structure, capacity utilization, and CV(end item demand) - on
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both response variables - demand amplification and inventory cost. The impact of

setup cost is then evaluated using regression analysis for each of these measures. This

experiment shows that of the three selected production planning factors, only product

structure is significant at a confidence level of 95%. The mean of the response variable,

demand amplification, is 0.55 for general product structures and 0.33 for assembly

product structures. The analysis of variance also indicates that none of the factor

interactions is significant. Table 2 displays the details of these ANOVA results.

Residual plots and the normal probability plot are displayed in Appendix x. The

residuals appear structure-less and normally distributed.

A graph of the CV of demand across tiers (Figure 3) further illustrates the

significance of product structure, and leads to an extension of this analysis. Note how

the CV of demand appears to be larger for general product structures than for assembly

product structures.

Table 2.  ANOVA Results for the Production Planning Screening Experiment –
Demand Amplification Variable

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
  A: Utilization
  B: CV_Demand
  C: Product Structure

0.2853
0.0001
0.7843

1
1
1

0.2853
0.0001
0.7843

2.07
0.00
5.68

0.1559
0.9812
0.0205

INTERACTIONS
  AB
  AC
  BC

0.0110
0.1819
0.0083

1
1
1

0.0110
0.1819
0.0083

0.08
1.32
0.06

0.7788
0.2558
0.8067

RESIDUAL 7.866 57 0.1400

TOTAL
(CORRECTED)

9.1370 63
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 At a first glance, it appears that there is a higher but more consistent level of

variation in assembly supply chains. Closer review of the included cases indicates,

however, that the problem instances chosen for assembly differ from those chosen for

general in setup cost.  There are 3 low setup cost and 11 high setup cost instances for

assembly, and 9 low setup cost and 3 high setup cost instances for general product

structures. It is conceivable that more high setup cost cases populating the assembly

product structure set would influence the variation in demand. Although this factor was

not included in the original screening experiment, we now include an extension to study

the impact of setup cost on demand amplification.

Since the experimental data in this analysis is unbalanced for setup costs, a

multiple regression analysis is done to study the influence of product structure,

utilization, and setup cost on demand amplification. CV demand of the end item was

evaluated and found to be not significant at the 90% confidence level, and so was

removed from the model. The regression results for the 3-factor model are listed in

Table 3, followed by the analysis of variance for the unbalanced model in Table 4. Note

Figure 3. Comparing Total Demand Amplification between Assembly and General
Production Structures
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that the P-value for the model is 0.01, suggesting a high confidence level (99%) that

the variables selected provide a valid description of demand amplification. The adjusted

R2 for this model is 58.4%. The Drubin-Watson statistic, used to test the residuals for

autocorrelation, is 1.64, sufficiently higher than the critical statistic 1.4.

Table 3. Multiple Regression Analysis for the Demand Amplification Screening
Experiment

Parameter Estimate Standard
Error

T
Statistic

P-Value

CONSTANT
ind_sucost
ind_utilization
ind_product structure

-0.1496
0.5881
-0.1980
0.2886

0.1083
0.1048
0.0761
0.1018

-1.3808
5.6141
-2.6013
2.8345

0.1826
0.0000
0.0171
0.0102

Table 4. ANOVA for the Demand Amplification Screening Experiment

Source Sum of
Squares

Df Mean
Square

F-Ratio P-Value

Model

Residual

1.1619

0.6584

3

20

0.3873

0.0329

11.76 0.0001

TOTAL
(Corrected)

1.8203 23

Figures 4 through 7 provide further insight relative to the behavior of demand in

supply chains. The regression analysis suggests that setup cost is a significant factor in

demand amplification, and we see how that is manifested in Figure 4. High setup costs

appear to drive more variation as demand propagates through a supply chain for both

general and assembly product structures.
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Demand Amplification by Setup Cost and Utilization
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At first glance, it appears that there is a higher but more consistent level of

variation in assembly supply chains. Closer review of the included cases indicates,

however, that the problem instances chosen for assembly differ from those chosen for

general in setup cost.  The analysis also indicates that utilization is a significant factor in

demand propagation. At low utilization, more demand amplification occurs in supply

chains than with high utilization cases. Figure 6 illustrates this point. Note that for both

assembly and general product structures, the high utilization line falls below the low

utilization line. The analysis also suggests that product structure influences demand

amplification, as we can see from Figure 5. For low setup costs, a slight demand de-

amplification is observed for general product structure- there is less variance at lower

tiers than higher tiers in the supply chain.  However, this de-amplification behavior does

not occur in assembly product structures.

Figure 4. Demand Amplification by Setup Cost and Utilization
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Figure 5.  Demand Amplification by Setup Costs and Utilization
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Also note the tendency for variation in demand to reach a limit, or “cap”, especially for

the high setup cost cases, and level off. For high setup costs for both product structures

types, this demand variation cap is in the range of 1.7-1.9. This cap on variation

naturally occurs in a manufacturing supply chains because of manufacturing capacity.

Lot sizes are limited by the amount of manufacturing capacity available in any one

production period, since we do not allow setups to carryover between production

periods.

Demand Amplification by Setup Cost 
and Utilization
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3.3.2 Results for Experiment 1: The Effect of Setup Cost and Utilization on
Inventory performance.

A second response variable is also investigated relative to manufacturing supply

chain performance, and shows that of the three selected production planning factors

both product structure (at 95% confidence level) and utilization (at 90% confidence

level) are significant. The mean of the response variable, total inventory in the chain

equalized by total demand, is 0.44 for general product structures and 0.65 for assembly

product structures. This inventory measure is 0.46 for low utilization case and 0.63 for

Figure 6. Demand Amplification by Setup Cost and Utilizaiton
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the high utilization case. The analysis of variance indicates that none of the factor

interactions is significant. A plot of the residuals and the normal probability plot are

displayed in Appendix x.  The residuals appear structure-less and normally distributed.

Table 4 displays the details of these results.

Table 4.  ANOVA Results for the Production Planning Screening Experiment –
Inventory Response Variable

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
  A: Utilization
  B: CV_Demand
  C: Product Structure

0.4691
0.3446
0.7616

1
1
1

0.4691
0.3446
0.7616

3.45
2.53
5.60

0.0685
0.1170
0.0214

INTERACTIONS
  AB
  AC
  BC

0.0226
0.1218
0.0015

1
1
1

0.0226
0.1218
0.0015

0.17
0.90
0.01

0.6851
0.3480
0.9167

RESIDUAL 7.7531 57 0.1360

TOTAL
(CORRECTED)

9.4744 63

Again, we specify and fit parameters for the model using regressions analysis to

fit a linear model with unbalanced data, to determine the influence of setup cost on the

inventory response variable. An analysis of the P-values indicates that the product

structure and end item demand variation indicator variables were not statistically

significant at the 90% confidence level, and so both were removed from the model. The

remaining variables - setup cost and utilization - do have a significant influence at the

99% confidence level on the inventory in the type of supply chains studied in this study,

as indicated by the results of the regression analysis. The adjusted R2 for this model is

81.2%. The Durbin-Watson statistic, used to test the residuals for autocorrelation, is

1.93, sufficiently higher than the critical statistic 1.4.
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Table 5. Multiple Regression Analysis for the Inventory Screening Experiment

Parameter Estimate Standard
Error

T
Statistic

P-Value

CONSTANT
ind_sucost
ind_utilization

0.1063
0.7468
-0.2007

0.0599
0.0716
0.0714

1.7758
10.4241
-2.8093

0.0890
0.0000
0.0100

Table 6. ANOVA for the Inventory Screening Experiment

Source Sum of
Squares

Df Mean
Square

F-Ratio P-Value

Model

Residual

3.5658

0.7446

3

23

1.7829

0.0324

55.07 0.0000

TOTAL
(Corrected)

4.3104 26

Consequently, we can reject the null hypothesis that the inventory means are

equal for setup cost and utilization with 99% confidence, but we cannot reject the null

hypothesis that the means are equal for the product structure and CV of end item

demand factors.

3.3.3 Results from Experiment 1: Discussion

We will now examine the questions posed earlier regarding Experiment 1.

1. Which of the production planning factors has the greatest influence on demand
amplification?

− Product structure appears to have a significant influence on supply chain
performance. In fact, we see that in general product structures, demand variance
may actually be reduced both for single release (due to negative correlation and to
the effect of a summation of random upstream lot sizes) and for multiple release
demand series.

− Setup cost also appears to significantly influence supply chain performance.
Because high setup costs tend to increase batch size, they also tend to increase
demand variance along a chain.
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− Utilization appears to influence supply chain performance too, because binding
capacity in any period at any facility reduces the lot size and so reduces downstream
demand variation.

2. What combination of factor levels lead to better supply chain performance?

− General product structures with low setup cost and high utilization drives a lower
amount of demand amplification. These are the favorable conditions for minimum
demand amplification.

− Low setup cost and low utilization drives the least amount of inventory in supply
chains, regardless of product structure. Some inventory must be incurred, then, if
utilization is high, even when setup costs are low. Inventory and demand
amplification do not have identical response to these design factors.

− Another attractive combination of factor levels is a level order pattern with low
setup costs and low utilization. In this case, regardless of the product structure, a
zero variation demand pattern at the end item level will translate without alteration
throughout the supply chain. Note that this alternative requires an operational
control – leveling the order pattern – in addition to the design factors.

3. Can supply chain performance be managed with a design factor alone, and if so,
how?

− Designing a supply chain with a general product structure, low setup cost, and high
utilization throughout a supply chain can reduce or eliminate demand amplification.
This finding is supported by both the propositions from (Wu and Meixell, 1998) and
the experimental evidence presented here in this paper.

In the following, we summarize the experimental results in light of the theoretic

results from (Wu and Meixell, 1998).

1. The effects of order batching. Propositions 1states that when there is no incentive

to consolidate batches in the supply chain there will be no item-component demand

amplification. In the experiments, the incentive for batching is provided by high

setup costs as related to the inventory holding cost.  Thus, the experimental results

strongly support the above point (see Figures 4 and 5); in the low setup cost cases

there is almost no demand amplification across the tiers.  On the other hand,

Proposition 2 and Corollary 3.1 state that when demands are consolidated into

production batches over time, the mean and variance for a lower tier component will



- 27 -

both increase. As evident from the experimental results (Tables 4-6), when the setup

cost is high,  more inventory is carried in the chain because of the larger variance in

internal demands. When tier-to-tier demand amplification is used, as is the case in

the experiment, Propositions 7.1 and 7.2 predict that demand amplification

increases from one supply tier to another as a function of the lot size. While

Proposition 6 predicts that the setup capability of the system and the system

capacity will limit the batch size, therefore the amount of amplification. The

experimental results (see Figures 4 and 5) strongly support the theoretic prediction.

Not only does the tier-to-tier demand amplification increase drastically after first

batching occurs from Tier 1 to Tier 2, the amplification taper off at the third tier

since limited capacity prevent larger lot sizes to be formed.

2. The effects of product design and component sharing. Proposition 5 and Corollary

4.1 states that when the components manufactured in the supply chain are shared by

a large number of upstream products, the fluctuation in end-item demands tends to

create a more significant level of variance. However, when putting into the

perspective of total volume, the amplification effect for products with general

structure is less then that of the assembly products.  The experimental results

support this point, showing that the general product structure tend to experience a

much less significant demand amplification then that of the assembly products.

When order batching is not a factor (in the low setup cost cases), the general product

structure demonstarte a negative trend in demand amplication.  This is again

supported by Corollary 4.1., which predicts a negative demand amplification for

general product structure when the upper tier demands are independent.

3. The smoothing effects of limited capacity. Propostion 6 states that when the effects

of order batching is excluded from consideration, limited capacity has a smoothing

effect on demand amplification. When manufactured in a capacity-bounded facility,

the orders eminated from the facility will invariably have a lower variance than the

orders entering it.  As pointed out above in 1, this phenomenon explains a tapered
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demand amplification below a certain level of the supply tier.  Since the test problems

used in the experiments have indeed a capacity level close to its true expected

demand, the observed amplificaiton profile is well explained by the Proposition.

Also, we see from the results in Section 3.2 that high capacity utilization drives

more inventories in a supply chain, regardless of product structure. When the

capacity is limited, some items must be built ahead that would otherwise be built in

a later production period. Since demand is realized in a later production period, it

follows that higher capacity utilization drives more inventory in a supply chain.

3.4 Experiment 2: The Influence of End Item Order Pattern on Supply Chain
Performance

In this set of experiments we study the influence of end-item demand patterns to

demand amplifications and total inventory levels in the supply chain.  We test four

different end item demand patterns (see Figure 7) to determine which order pattern, if

any, may potentially improve overall supply chain performance. These patterns could

be induced by a variety of mechanisms, such as a demand management mechanism that

prices or provides other motivation to customers to place orders according to this

pattern. Also, the end item manufacturers could carry finished inventory to cause this

pattern to occur.

Order pattern can be also influenced at the end item level via scheduling and

inventory mechanisms, such as order leveling, a common practice in the industry: if a

particularly large number of orders with a critical component are received in the current

time period, delay some of these orders and schedule them in the next time period (and

possibly incur late or expedited delivery), or in the previous time period, if known with

sufficient lead time (incurring inventory costs). On the other hand, order balancing can

be accomplished by scheduling a specific version for a critical component in every
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other, or possibly every third period. Again, inventory or late delivery charges may

apply here.

The first of the four patterns tested represents random demand, as orders might

flow direct from customers. This random demand case shows a moderately small

amount of variation across the sixteen period planning horizon. To create the second

pattern, the level demand case, we set each period demand equal to the average demand.

The balanced demand case is the third pattern, created by batching orders into four,

four-period blocks, across the planning horizon, staggered to provide synchronized

order flow over all order types. The fourth case, positively correlated demand, batches

each of these four-period blocks into the same time slot – a worst case alternative. Lee,

et al (1997) analyzes these same order batch rules.

It is the goal of this experiment to address questions pertaining to:

1. Is production leveling, a cornerstone in JIT production systems, a useful tool for
reducing demand amplification in a multi-tier environment?

2. Does balancing demand for end items improve supply chain performance?

3. How does such a case compare to the extreme scenario when all orders arrive
together (the correlated demand case)?

4. How do each of these alternatives compare to the base scenario, the random case?

In this set of experiments, we study the influence of end item order patterns on

supply chain performance. We measure the response in terms of demand amplification

and total supply chain inventory, equalized for differences in total demand between the

two product structure problem sets. We use a multi-factor design, building on the results

of the screening experiment, with four treatment levels to examine the magnitude and

direction of the factor effects. The four levels of order pattern (Figure 7)- random, level,
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balanced, and positively correlated - each contain twelve replicates, identical except

for the values that comprise the end item demand array.

3.4.1  Results from Experiment 2: The Effect of End-Item Order Patterns on Demand
Amplification

This experiment explores the benefit that might be gained by controlling the end

item demand patterns at the top tier in a supply chain. We tested the significant factors

from the screening experiments for demand amplification – product structure, setup

cost, and utilization – along with the order pattern factor. We found numerous

significant interactions between the main effect factors. Table 7 presents the analysis of

variance for the demand amplification response variable. A plot of the residuals and the

normal probability plot are displayed in Appendix x. Again, the residuals appear

structure-less and normally distributed.

Table 7. ANOVA Results for the Demand Amplification/Order Pattern
Experiment

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
  A: Order Pattern
  B: Product Structure
  C: Setup Cost
  D:Utilization

INTERACTIONS
  AB
  AC
  AD
  BC
  BD
  CD

0.2049
1.3581
2.2356
0.4569

0.1726
0.1735
0.0618
0.8119
0.0554
0.4244

3
1
2
1

3
6
3
2
1
2

0.0683
1.3581
1.1178
0.4569

0.0575
0.0289
0.0206
0.4059
0.0554
0.2122

2.99
59.40
48.89
19.99

2.52
1.26
0.90
17.76
2.42
9.28

0.0521
0.000
0.000
0.0002

0.0833
0.3117
0.4559
0.0000
0.1333
0.0011

RESIDUAL 0.5258 23 0.0229

TOTAL
(CORRECTED)

6.4809 47
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Table 7 shows that order pattern is not significant due to the fact that product

structure, setup cost and utilization have a significant effect on lot sizing. After

examining the interaction plot for order pattern and product structure it appears that the

interaction occur with the negatively correlated order pattern. This behavior supports

Corollary 4.1, which states that a negatively correlated demand will reduce demand

amplification for general product structure.  So, the negative correlation at the end item

tier initially causes de-amplification, and a reduced level of demand variation. The

negative correlation pattern is immediately absorbed in tier 2 of the supply chain,

followed by the usual batching and capacity smoothing effects. In other words, the

benefit seems to merely delay the point where demand amplification starts.

As a result, we do not see an overall improvement in supply chain behavior

driven by any of supposedly beneficial end item order patterns. Common belief is that

balancing or leveling orders with respect to critical components at any level in a supply

chain will reduce amplification across a single release. We see here, however, that

demand amplification does not differ among the end item order pattern types.

At a first glance, the weak influence of order pattern on demand amplification

maybe counter-intuitive. After some further examination it is clear that the lot sizing

decisions at each supply tier absorb the ultimate effect of end-item demand variation.

Where setup costs are sufficiently high to warrant batching orders from future periods,

any value due to beneficial order patterns at the end item level will not translate down

the chain. Likewise, the capacity smoothing effects tend to mitigate the influence of

end-item demand pattern.  This failure to translate order patterns is beneficial when top

tier patterns are undesirable. The positively correlated order pattern is quickly
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distributed across production weeks at the top tier, and so bottom tiers see little or no

effect. Demand patterns are constantly absorbed in middle tiers of the supply chain.

What eventually translates through to the last tier is the long term trend in total volume.

This suggests that lower tiers suppliers do not experience and do not need to react to

short term peaks and valleys.

In conclusion, we can not reject the null hypothesis that the mean for demand

amplification across different order patterns are the same. This is likely due to the role

of the lot sizing policy, which absorb the initial order pattern within one or two supply

levels.

3.4.2 Results from Experiment 2: The Effect of End-Item Order Patterns and
Inventory

Our experimental results again show a significant factor interaction on the

inventory response between order pattern and setup cost at the 95% confidence level.

Utilization shows to be a significant factor again in this inventory response measure. A

plot of the residuals and the normal probability plot are displayed in Appendix x. The

residuals appear structure-less and normally distributed. Table 8 is the ANOVA table

summarizing these results.

Table 8. ANOVA Results for the Inventory/Order Pattern Experiment

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
  A: Order Pattern
  B: Setup Cost
  D: Utilization

INTERACTIONS
  AB
  AC
  BC

2.7000
97.2337
9.0679

7.2656
1.4236
0.2574

3
2
1

6
3
2

0.8999
48.6168
9.0679

1.2109
0.4745
0.1287

2.54
137.06
25.56

3.41
1.34
0.36

0.0754
0.0000
0.0000

0.0109
0.2807
0.6987
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RESIDUAL 10.6413 30 0.3547

TOTAL
(CORRECTED)

128.589 47

This experiment illustrates that the lower the level of planned capacity

utilization the lower the inventory cost. Lower utilization means that orders are built

ahead infrequently, and so the total inventory cost is lower.

Similar to the demand amplification response, the interaction plot reveals that

the interaction occurs for level and random order patterns for the inventory response

variable. The gap in inventory is wider between high and low setup costs for both the

level and the random order patterns. For the level pattern, for low setup costs, the

inventory is lower than expected. For the random order pattern, for high setup costs,

inventory is higher than expected. This interaction muffles the results of the analysis of

variance.

A closer inspection of the experimental results illustrates some interesting

behaviors of supply chains. Figure 8 shows three statistics for two types of systems with

level end item order pattern. Relative inventory is the average inventory at each tier,

adjusted for demand. Equalized lot size is the average number of weeks of demand built

in a single lot, and is computed for each tier. The third measure is the CV of demand at

each tier, and it reflects the amplification in the system. Note that the level order pattern

with both low utilization and low setup costs illustrated in Figure 8 mimics the behavior

of a well-structured JIT system. End item orders are level across all production periods,

and since sufficient capacity is available at all facilities, the level order patterns
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translates perfectly down the chain. There is no variation in demand, lot-for-lot

production is economical, and consequently, there is no inventory in this system.

Contrast this with the high utilization, high setup cost environment for the level

order pattern depicted in Figure 8. Even though the same “perfect” order flow is

introduced to the chain, demand amplifies, lot sizes are large and growing, and

inventory is relatively high.

Supply Chain Behavior: Level Order Pattern 
Low Utilization, Low setup cost

0.00

0.20
0.40

0.60

0.80
1.00

1.20

1 2 3 4 5

Tier

E
q

u
al

iz
ed

 lo
t 

si
ze

, 
C

V
 d

em
an

d

0.00

0.50

1.00

1.50

2.00

R
el

at
iv

e 
In

ve
n

to
ry

CV_demand Eq. Lot Size Series2

Supply Chain Behavior: Level Order Pattern 
High Utilization, High Setup Cost 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

1 2 3 4 5

Supply Chain Tier

E
q

u
al

iz
ed

 lo
t 

si
ze

, C
V

 
d

em
an

d

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R
el

at
iv

e 
In

ve
n

to
ry

CV_demand Eq. Lot Size Inventory

Figure 8. Level Order Pattern with Low and High Setup Costs
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3.4.3 Results from Experiment 2: Discussion

We will now examine the questions posed earlier regarding Experiment 2.

1. Is production leveling, a cornerstone in JIT production systems, a useful tool for
reducing demand amplification in a multi-tier environment?

− Level production is a useful tool to reduce amplification only if both low setup costs
and low utilization are in place in a supply chain. Otherwise, a level order pattern
will not translate through a supply chain due to lot sizing.

2. Does balancing demand for end items improve supply chain performance? How
does this alternative compare to the base scenario, the random case?

− It appears that balancing demand, that is, creating a negatively correlated demand
pattern, has a de-amplification effect on demand on supply chains. De-amplification
is not induced by a random order pattern. The balanced order pattern, however, is
quickly absorbed in the supply chain, followed by the usual setup cost, capacity
smoothing, and product structure lot sizing effects.

3. How does the balanced demand case compare to the extreme scenario when all
orders arrive together (positively correlated demand)? How does this alternative
compare to the base scenario, the random case?

− The interactions detected from the experiments suggest that positively correlated
demand does appear to influence inventory, but not demand amplification, for the
low-setup-cost cases. When setup costs are relatively low and orders arrive in a
positively correlated manner, more inventory is carried in the chain than would
otherwise be required with random order pattern.

Although none of the propositions posed in (Wu and Meixell, 1998) address

end-item demand patterns directly, some related issues deserve discussion here:

1. The Effect of Order Batching. We see in this experiment additional effects of order

batching.  It is the high setup costs that drive the growth in lot sizes, and as a result

the effects of end-item order pattern are absorbed in upper supply tiers. Also

interesting in the high utilization/high setup cost system is the inventory behavior.

The inventory never bottoms out as with the low utilization, low setup cost case, but

it does drop to less than 1/3rd of the peak before increasing again. The reduction in

inventory occurs because batching at a higher tier limits the range of lot-sizing

opportunities at the lower tiers. Tier 1 batches orders in this example equivalent to

about 3.5 periods of demand. Tier 2, and the others down the chain, are compelled

to build these same lot sizes, as the cost structure provides no opportunity for
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breaking down large orders into smaller lot sizes. The tiers down the chain carry less

inventory because their order sizes are essentially lot-for-lot.

2. The Effect of Capacity Limitation. Note that in the high-setup high-utilization case

in Figure 8, the demand variation reaches a limit, imposed by the capacity of the

system, and levels off, here at about tier 2.  At the same time, the inventory first

drop off due to the lot-for-lot production suggested above, until the point where

capacity is no longer sufficient to build these lot sizes in the same period.  In which

case it starts to build ahead and thence increase the inventory level.

In conclusion, we find that we could not reject the null hypothesis that the mean

for inventory across the order pattern levels are the same. There are again a number

significant supply chain effects in play here, as stated in the propositions. We did not

find that order pattern influences either deamnd amplification or inventory as a main

effect, but that interactions do influence the results.

3.5 Experiment 3:The Influence of Multiple Schedule Releases on Supply Chain
Behavior

In the third experiment, we investigate the influence of multiple schedule

releases on supply chain performance.  How sales and production planners at each tier

in the supply chain view and process demand also influences demand amplification.  In

practice, planners typically process each order release from their customers as a

complete, and deterministic, description of demand.  Alternatively, planners can treat an

order release as a single instance of the probability distribution that describes demand.

In this experiment, we investigate the importance of treating demand as random in

reducing demand amplification and inventory costs by addressing these questions:

1. Is it better to treat demand as a random variable, and schedule supplier production
using the expected value of that demand?
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2. Is there a supplier scheduling policy that would improve supply chain
performance?

In conducting the experiments, two responses were tested - demand

amplification and total supply chain inventory. This experiment also builds on the result

of the screening experiment, adding a factor to represent the two types multiple

schedule release policies: LR, the last release, and MN the mean of the distribution of

demand, each with twelve replicates. LR corresponds to the freeze-up-to policy

discussed in (Wu and Meixell, 1998), and MN correspond to the policy using expected

demand of all available releases.

The data for the LR experimental runs are created assuming that demand is

normally distributed (µ,σ). We exclude, however, from the sampling space any values

less than the mean value, µ, to avoid a backordered condition. This is, in effect, a “half

normal” distribution. Four variates were selected from this distribution for each of the

twelve replicates. Conceptually, then, these variates represent four instances of the “last

customer release”, and are used here to contrast to the behavior of a supply chain when

the expected value of the demand distribution is used. The mean demand case is then

adjusted to the true expected value of this truncated distribution.

This third experiment explores the benefit that might be gained from processing

the expected value of the distribution of demand instead of the latest demand signal

generated by the customer’s MRP system. We look at the influence of this factor on

both demand amplification and on inventory.
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3.5.1 Results from Experiment 3: The Influence of Schedule Release Policy on
Demand Amplification

We first consider the effect of multiple schedule releases along with product

structure on demand amplification. Here schedule release policy does not significantly

influence demand amplification at the 90% confidence level, and so we cannot reject

the null hypothesis that the mean values of the treatment levels are equal. The analysis

of variance also indicates that the factor interactions are not significant. A plot of the

residuals and the normal probability plot are displayed in Appendix x. The residuals

appear structure-less and normally distributed. Table 9 displays the details of these

results.

Table 9.  ANOVA Results for the Multiple schedule releases Experiment
    Response: Demand Amplification

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
  A: Release Policy
  B: Product Structure

INTERACTIONS
  AB

0.0002
0.0614

0.0237

1
1

1

0.0002
0.0614

0.0237

0.01
1.11

0.43

0.949
0.304

0.520

RESIDUAL 1.106 20 0.0553

TOTAL
(CORRECTED)

1.19092 23

To consider setup cost along with multiple schedule releases, we use regression

analysis since the data from the experiment is unbalanced when setup costs are

included. We see that no gain can be demonstrated in terms of demand amplification at

the 90% confidence level. Table 10 displays this demand amplification result. The

adjusted R2 for the demand amplification model is 5.3%. The Durbin-Watson statistic,
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used to test the residuals for autocorrelation, is 1.48, nominally higher than the critical

statistic 1.4.

Table 10. Multiple Regression Analysis for the Demand Amplification/Multiple
schedule releases Experiment

Parameter Estimate Standard
Error

T
Statistic

P-Value

CONSTANT
ind_Release policy
ind_Product structure
ind_Setup cost
ind_Utilization

0.0209
-0.0062
-0.0851
0.2108
-0.0966

0.0909
0.0904
0.0922
0.1054
0.1085

2.5409
-0.0682
-0.9226
1.9992
-0.8903

0.0199
0.9463
0.3678
0.0601
0.3844

Table 11. ANOVA for the Demand Amplification/Multiple schedule releases
Experiment

Source Sum of
Squares

Df Mean
Square

F-Ratio P-Value

Model
Residual

0.2590
0.9319

4
19

0.0674
0.0491

1.32 0.2985

TOTAL
(Corrected)

1.1909 23

Scheduling the mean instead of the last release appears to have no impact on

demand amplification. Consequently, we cannot reject the null hypothesis that the

means for demand amplification across the two schedule release policies are the same.

Note that the design of the experiment is to test for amplification effects when demand

is random across multiple releases. The set of “last releases” for each observation

models the random nature of demand. The style of demand amplification considered

here in our demand amplification measurement considers variation growth across a

single release.
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3.5.2 Results from Experiment 3: The Influences of Schedule Release Policy on
Inventory Performance.

The second part of Experiment 3 considers the effect of multiple schedule

releases and product structure on inventory. Here schedule release policy is significant

to the inventory response, and so we reject the null hypothesis that the mean values of

the treatment levels are equal with 95% confidence. The analysis of variance also

indicates that the factor interaction is not significant. A plot of the residuals and the

normal probability plot are displayed in Appendix x. The residuals appear structure-less

and normally distributed. Table 12 displays the details of these results.

Table 12.  ANOVA Results for the Multiple schedule releases Experiment
    Response: Inventory Cost
Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
  A: Product Structure
  B: Release Policy

INTERACTIONS
  AB

140.8
902.0

6.156

1
1

1

140.8
902.0

6.156

1.23
7.90

0.05

0.280
0.011

0.819

RESIDUAL 2284.1 20 114.203

TOTAL
(CORRECTED)

3333.07 23

To consider setup cost along with multiple schedule releases type, we use

regression analysis since the data in the experiment are unbalanced when setup costs are

included as a factor. The results of the regression analysis do state with 99% certainty

that inventory is influenced by the schedule release policies in a manufacturing supply

chain. The inventory cost for scheduling the last release for this set of representative

supply chain problems is 23.1 across the entire chain, contrasted with 11.8 when the

mean is used. This is a 55% reduction in inventory.
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Table 13 displays the inventory result. The adjusted R2 for the demand

amplification model is 66.5%. The Durbin-Watson statistic, used to test the residuals for

autocorrelation, is 1.80, sufficiently higher than the critical statistic 1.4.

Table 13. Multiple Regression Analysis for the Inventory/Multiple schedule
releases Experiment

Parameter Estimate Standard
Error

T
Statistic

P-
Value

CONSTANT
ind_Product Structure
ind_Release Policy
ind_Setup Cost

12.569
4.845
-12.261
14.829

2.844
2.844
2.844
2.844

4.419
1.703
-4.311
5.214

0.0003
0.1040
0.0003
0.0000

Table 14. ANOVA for the Inventory Multiple schedule releases Experiment

Source Sum of
Squares

Df Mean
Square

F-Ratio P-Value

Model

Residual

2362.33

970.74

3

20

787.445

48.537

16.22 0.0000

TOTAL
(Corrected)

3333.07 23

Using the mean instead of the last release does appear to drive better inventory

performance. We can therefore reject the null hypothesis with 99% confidence that the

means for inventory across the two schedule release policies are the same. The results

of this study indicate, then, that it is beneficial for a production planner to use the

expected value of the demand quantity in lieu of the latest release.

3.5.3 Results from Experiment 3: Discussion

We will now examine the questions posed earlier regarding Experiment 3.

1. Is it better to treat demand as a random variable, and schedule supplier production
using the expected value of that demand?

− Scheduling the mean instead of the last release does not appear to have a significant
impact on demand amplification, however, it does have a significant impact to the
inventory performance. This suggests that using the expected demand values
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reduces the variance in demand down the supply tiers thence reduces the needs for
keeping a high level of inventory.

2. Is there a supplier scheduling policy that would improve supply chain performance?

− There is experimental evidence that suggests that scheduling the mean of the
distribution of demand instead of the latest release will improve inventory
performance.

As related to the propositions from (Wu and Meixell, 1998), we have the following

observation. Propositions 3 and 4 suggest that when upper tier customers make multiple

schedule releases, it is preferable to follow the expected demand over all up-to-date

releases rather than following any particular single release. As stated in Proposition 4,

following the expected value of the multiple releases rather than following any

particular schedule release will result in a much lower variance. On the other hand, as

stated in Proposition 3, if the releases and the period-to-period demands are iid,

multiple releases do not differ from single release in terms of demand amplification.

Both propositions are supported strongly from the experiments.  While the experiment

shows no significant difference in demand amplification between the two policies, the

difference in inventory performance is significant.  This corresponds to the prediction

that a higher variance is to be expected for the LR policy, which results in a higher

inventory level.

4. Conclusions

Demand propagation is a fundamental behavior of manufacturing supply chains.

Understanding this phenomenon is essential to improving manufacturing supply chain

performance. The growth of variation in supply chains – demand amplification - is

particularly detrimental to performance because it adds unnecessary cost to the system
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and drives un-reliability in delivery. In this chapter, we study these behaviors of

manufacturing supply chains using an optimization-based modeling framework. Major

findings of the experiments can be summarized as follows:

1. Setup cost, product structure, and capacity utilization (roughly in that order) have a

significant influence on supply chain performance in terms of demand amplification

and inventory level.

2. General product structures with low setup cost and high utilization drives a lower

amount of demand amplification. These are the favorable conditions for minimum

demand amplification.  Low setup cost and low utilization drives the least amount of

inventory in supply chains, regardless of product structure. Some inventory must be

incurred, then, if utilization is high, even when setup costs are low. Inventory and

demand amplification do not have identical response to these design factors.

3. Designing a supply chain with a general product structure, low setup cost, and high

utilization throughout the chain can reduce or eliminate demand amplification. This

finding is supported by both the propositions from (Wu and Meixell, 1998) and the

experimental evidence presented here in This paper.

4. The end-item order patterns appear to be quickly absorbed in the first one or two

tiers in the supply chain due to order batching.  As a result, manipulating end-item

order patterns appears to be quite fruitless unless the supply chain has both low

setup costs and low utilization. A combination unlikely to be adopted by

manufacturers.

5. Schedule release policy that uses the mean of the distribution of demand instead of

the latest release will improve inventory performance due to a reduction in demand

variance.  However, no significant effect should be expected in terms of demand

amplification.

.
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Figure 7. End Item Demand Patterns
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