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Abstract

Production decisions in a manufacturing supply chain are no longer driven by manual

systems based on instinct and experience.  They are regulated interactions between

analysts, production managers and their collective manipulation of policies within the

production information system.  This paper studies the demand behavior in

manufacturing supply chains and its relationships to the logic of production information

systems pertaining to order batching, multiple schedule releases, bill of material

processing, and resource leveling.  The analysis helps us to understand the possible

causes of demand amplification, the dependencies and mutual sensitivities of

production decisions over multiple supply tiers, and the possible effects of production

lot sizes, product design, and capacity levels.  Main results include that multiple

schedule releases may be used to stabilize supply chain operations, production batching

may amplify demand variations across supply tiers, and that operating close to capacity

tends to dampen demand variation downstream.

Subject Categorizations:
Production/Scheduling, planning: manufacturing supply chain operations
Manufacturing, performance/productivity: demand behavior analysis
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1. Introduction

Demand variation is a major source of uncertainty in manufacturing supply

chains.  A lack of understanding in demand processing may lead to unjustifiably high

inventory, excess capacity, or overly nervous operational policies; all translate into

significant capital and costs.  Leading manufacturers seek to improve the consistency of

their supply chain demand information using EDI and integrated production information

systems.  After aggressive development over a decade, it is now common place in the

automotive industry to use integrated order management systems to handle

production/demand information across tiers of manufacturing plants and suppliers.  In

this environment, demand is communicated along the supply chain as production

schedules posted for its immediate suppliers, i.e., a customer’s schedule represents

demand at that particular point in time.  A supplier uses this information to generate its

own production schedules, and then posts its schedule for its supply base to use.

Sophisticated as they are, these information systems are not without problems. It is well

known in the industry that these schedules change frequently and sometimes erratically.

Many supplier failures can be traced to a customer schedule change that is

unmanageable for that particular supplier at that particular time.  On the other hand,

customer schedule changes can often be traced to a supplier performance failure.  This

spiraling effect in the context of a massive production information system forms the

complex structure of modern manufacturing supply chains.

This paper examines demand behaviors in a manufacturing supply chain by

characterizing the basic decision logic of the production information system. A basic

thesis of the paper is that the process driving the decisions in manufacturing supply is a

regulated interaction between analysts, production managers and their collective

manipulation of the production information system.  By examining the operational logic

of batching, multiple schedule releases, product structure, capacity utilization and its

effects on demand propagation, we will be able to gain basic insights on supply chain

demand behavior.



3

Research in supply chain demand analysis has attracted a lot of attention in

recent years.  The work by Lee et al. (1997), for instance, brings to the forefront of

research the pathological demand behavior known as the bullwhip effect.  Although the

behavior is well known to the practitioners, its underlying processes were not well

understood.  This approach of studying basic supply chain phenomena under

generalized setting (c.f. Sterman, (1989), Slats et al (1995), Lee and Billington (1992))

is important in that they provide managerial insights under rather mild assumptions.

Once understood, a decision-maker can improve performance by isolating and avoiding

the source of the problem. Another line of research concentrate on identifying policies

to avoid the undesired supply chain behavior (Takahashi, et al, (1987); Towill, (1992),

Lee, (1996)). To date, much of the research in supply chain management has been

focusing on retail applications, transportation logistics, distribution channel design, or

service part logistics. This paper will focus on the production pipelines in the

manufacturing supply chain.

Multi-level lot sizing models and solution methodologies form the backdrop of

modern manufacturing planning systems. These models loosely define the so-called

“MRP logic.”  The lot sizing models are studied intensively over the past 30 years.

Various reviews of the literature are available (c.f., Bahl et al. (1987), Maes and van

Wassenhove (1988), Nam and Logendran (1992), Kimms (1997)).  Although most of

these models are intended for facility-level production planning, they have been

generalized in recent years to handle broader scopes of production planning (Bhatnagar

et al. 1993, Thomas and Griffin (1996), Vidal and Goetschalckx (1997)).  Several

researchers focus on broader information technology aspects of supply chain

implementation (Camm et al. (1997), Geoffrion and Power (1995), Gunasekaran and

Nath (1997), and Singh (1996)).  And many documented industry cases (Lee and

Billington (1995), Martin et al. (1995), Robinson et al. (1993), Arntzen et al. (1995))

and supply chain implementation topics.

The focus of this paper is supply chain demand behavior. It differs from a

majority of manufacturing planing research in that we are not interested in a

prescriptive model that produces some optimized global solution that minimizes costs.
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Such solution is unlikely to be adopted by the diverse manufacturing facilities in the

supply chain and is therefore of no direct decision value.  Rather, we are interested in

understanding the behavior of systems operating under such manufacturing planning

systems. Since most existing systems today operate under some enterprise resource

planning (ERP) structure using different variations of the MRP logic, we believe it is

possible to characterize at an aggregate level the operational behavior of manufacturing

supply chains.

2. Manufacturing Supply Chain Structure

A manufacturing supply chain is a network of facilities k=1,…,K and processes

needed to manufacture a variety of products, i=1,…,N. Flow in a supply chain is bi-

directional. Information concerning demand and production planning flows down, while

material and subassemblies to support upper tier manufacturing processes flow up. The

final product for the supply chain is represented as the top tier in the chain, and

customer sales for that item make up the demand. There can be multiple tiers of

“intermediate products” or components in the network, organized by the number of

levels each is removed from the final product at the top tier. The first tier suppliers ship

directly to final assembly, the second tier ships to first tier, and so on. Each product in

each tier has its own set of components, following the form of its bill-of-material

(BOM) structure.  Product structure is a network characterized by matrix [aji], where aji

represents the number of units of component j required for the production of one unit of

item i.  One or more BOM structures are embedded in the manufacturing supply chain

structure where a facility k supplies to multiple customers and is served by multiple

suppliers. Components Ik made within the facility is a collection of nodes from multiple

product structures.  A component j may be shared by multiple products i in several

different BOM structures.  Thus, the planned production xjt for an upper tier product i

imposes a demand  (ajixit) on its lower tier components j.
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2.1 Demand Dependency in the Supply Chain

One central characteristic of supply chains is the dependency in demand throughout

the chain. Demand for end items is an input to the scheduling process at the final

manufacturing tier, and supplier schedules are generated to meet the schedule requirements.

These supplier orders then comprise the demand for products at the next tier. This “orders

to schedule to requirements” process is common in manufacturing supply chains.  As

mentioned earlier, in the automotive industry, “just-in-time delivery” is the common

practice where suppliers generate their production schedules based on their customer’s

schedule posted electronically.  A delivery is made strictly based on the customer’s demand

as described in the schedule, i.e., a planned production xit for product i triggers a series of

orders with size (ajixit), to the designated supplier of each component j.  Although a two to

three week inventory buffer is normally kept, the dependency on demand changes is

significant. This sensitivity to demand changes underlines the importance of planning

coordinating within the chain.

Under the above operational assumptions, schedules along a supply chain are

dependent on the previous tier. However, the perceived internal demands within a

manufacturing supply chain vary along the chain. Overall demand perceived at tier k-1

might differ from those at tier k, which differ from those at tier k+1. This variation

exists even though demand in a supply network is dependent on the next higher tier

because schedules are constantly changing and progressively modified as they pass

through each tier in a supply chain.  In reality, the perceived demand for item i at time

epoch J is determined from the announced production xJjt for product j at an upper tier

facility, with “proper adjustment” by local production planning staff.  This results in a

nonnegative order size of (aijx
J

jt+D+
jt!D!

jt)
+ where D+

jt represents a positive adjustment

(padding) for item j in period t and D!
jt represents a negative adjustment (shrinking).

Consider further the existence of an external demand rit for item i in period t, a facility

at a particular time epoch J will try to satisfy the following equation for each of its

products in each foreseeable future periods. We assume that a product is held in

inventory only at the facility that produces it.  Let yit denote the inventory of product i at
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the end of period t and Li  the lead time required to produce item i. Thus we have the

following equality:

it
r

jtjtjt
x

N

j ijaity
iLtixiftiy +−−++∑

=
=−−+− )

1
(,1, ρρτ , ti,∀ (1)

Note this equation takes the form of a well-known inventory balance equation, which

maintains the dynamic Leonteif structure (Veinott 1969). It states that the internal and the

external demands for item i in period t (the right hand side terms) are satisfied by inventory

carried over from the end of period t-1 and the production planned in period t-Li, minus the

inventory to be carried at the end of period t.  In traditional analysis, the terms related to

adjustment ρ+ and ρ- are not present, assuming no adjustment to the announced production

orders.

2.2 Demand Amplifications in the Supply Chain

We next define in this section the notion of demand amplification. Numerous

effects influence the pattern of which demand propagates through the supply chain.

Consider an item i and its component j. The production lot-size established for item i

imposes a consolidated demand quantity for its component j. The policy under which

these lot-sizes are determined at each tier determines, to a large extend, the demand

behavior in a supply chain. We will define three types of demand amplification in

supply chains. The first is the degree to which demand varies from an item to its

immediate component within a single schedule release.

Definition 1. (Item-Component Demand Amplification- Single Release, DAs
ij ) For an

item i and its immediate component j, item-component demand amplification, DAs
ij, is

the change in coefficient of variation between item i demand and component j demand
in a single schedule release. Specifically,

)()( DCVXCVDAs
ij −= (2)

where random variable D represents the demand of item i over periods t=Li+1,...,T, and
random variable X represents non-zero internal demand generated from D over periods
t=1,...,T−Li  , using some lot sizing policy.
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Thus, DAs
 measures the demand amplification between an item and its

component within one single schedule release.  Since a schedule release covers multiple

time periods, DAs pertains to multiple periods in the planning horizon.  Suppose a

leveled schedule is used in the system then the demand would be a constant quantity

and CV’s will be 0. Any other policy carries some level of variation.

In a manufacturing supply chain the production schedule is updated frequently

via multiple schedule releases. In the following, we define a second type of demand

amplification applies to this multi-release environment.

Definition 2. (Item-Component Demand Amplification- Multiple Releases, DAm
ij )

For an item i and its immediate component j, item-component demand amplification,
DAm ij, is the change in coefficient of variation between item i demand and component j
demand in multiple schedule releases. Specifically,

)()( mmm
ij DCVXCVDA −= (3)

where random variable Dm represents the demand of item i over periods t=Li+1,...,T, in
schedule releases τ=1,..,Θ , and random variable Xm represents non-zero internal
demand generated from D over periods t=1,...,T−Li  ,in corresponding releases
τ=1,..,Θ, using some lot sizing policy.

Thus, DAm 
 measures the demand amplification between an item and its component over

multiple schedule release.  Similar to DAs, DAm pertains to multiple periods in the

planning horizon.  A third type of demand amplification measures the changes in

demand variation over two supply tiers.  Consider a segment of a supply chain that is

comprised of two supply tiers k and l where some items i’s are produced in tier k and

some of i’s components are produced in tier l.

Definition 3. (Tier-to-Tier Demand Amplification, TAkl) For supply tiers k and l, tier-
to-tier demand amplification TAkl, is the change in coefficient of variation between tier
k and tier l in a single schedule release. Specifically,

)()( kl
kl DCVXCVTA −= (4)

where random variable Dk represents the demand of all items at tier k over all periods
t=1,...,T, and random variable Xl represents the demand of all items at tier l  over all
periods t=1,...,T.

Using the basic manufacturing supply chain structure and the notion of demand

amplification we will now explore several analytical insights concerning demand behavior.
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In (Meixell and Wu, 1998), we conduct computational testing based on these theoretical

results which provide empirical insights on more complex cases.

2.3 The Leontief Structure

The Leontief structure is an important structural property for mathematical

models minimizing a concave function over the solution set of a Leontief substitution

system.  Lot sizing models are well known to belong to this class of problems (Veinott,

1969, Shapiro, 1993).  A matrix is Leontief if it has exactly one positive element in each

column and there is a nonnegative (column) vector x for which Ax is positive (i.e., has

all positive components).   Consider a supply chain production model using the

objective function of the following form:

)
1 1

(min itit xC
it

y
N

i

T

t
i

hv +∑
=

∑
=

=

where

  0                   0      
0        

=
>+=

it

itiitit
it xif

xifKxc
C (5)

subject to the inventory balance constraints (1) and any other linear constraints.  We

have the following results from the Leoteif Structure.

Lemma 2.1. The inventory balance constraint (1)

ti
it

rxaity
iLtixiftiy

N

j
jtjtjtij ,,     )(,1,

1

∀=−+−−−+− ∑
=

−+ ρρ

is a Leontief substitution system so long as the gross adjustment made through the supply

tiers create nonnegative internal demands, i.e., 0)(
1

≥−+ ∑
=

−+
N

j
jtjtitr ρρ  and

 0)(
1

≥−+∑
=

−+
N

j
jtjtjtij xa ρρ .  ð

The above result can be shown by rewriting equation (1) as follows:



9

ti
jtjt

N
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it
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jt

x
N

j ijaity
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11,1, ∀−−+∑
=

+=∑
=

−−−+− ρρ

With known tier-to-tier adjustment ρ the right hand side is just a non-negative constant.

Thus, the matrix of coefficients is Leonteif according to the results in Veinott (1969).

As argued in Veinott (1968), the optimal solution for such a system is an extreme point

solution. Furthermore, if one variable appears with a positive coefficient in the same

balance constraint, only one of the variables can be positive in the optimal solution.

Thus, from Lemma 2.1 we have the following application of Theorem 6 of Veinott

(1968).

Corollary 2.1 If equation (1) holds, and internal demands after adjustment is
nonnegative, no production of item i will be scheduled if there is inventory carried over
from a previous period, i.e., 0,1, =−⋅− iLtixtiy

This result stipulates that either there is inventory for item i entering period t, (yi,t-1>0)

or there has been production initiated in period t-Li (xi,t-Li>0), but not both. A system

would not incur an additional setup for the same demand quantity if sufficient capacity

was available to build it in a period that already incurred a setup. So, as capacity is

added to a system, and production in the desired period could be incurred, xi,t-Li , no

inventory would be held for production in that period.

3. The Impact of Setup/Inventory Cost Ratio on Demand Amplification

3.1 The Effect on Item-Component Demand Amplification in a Single Release

We now consider the effect of setup/inventory cost ratio on demand

amplification.  Without loss of generality, we will first consider the case where capacity

is non-binding. We will later provide a separate analysis for the capacity-restricted

cases. Consider the following proposition:

Proposition 1. When the setup/inventory cost ratio 0→hδ  for item i and its
component j (i.e., when the inventory costs always dominate setup) and capacity is not
binding, there will be no item-component demand amplification, i.e., DAs

ij = 0.
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Proof:  From Corollary 2.1 the Leontief property states that xt-Li⋅yt-1=0. When capacity

is not biding and the inventory cost dominates the setup cost, a facility will build each

order as needed and carry no extra inventory (xt-Li>0 and yt-1=0).  As a result, the

demand for the end item, rit, translates through the supply chain (based on the product

structure matrix [aij]) un-altered by production scheduling, and becomes the internal

demand for a component, xj,t-Li. Denote xj1, xj2,…,xjT, the occurrences of random variables

X1,…,XT (internal component demands), and ri1, ri2,…,rT the occurrences of random

variables D1,…,DT (external item demands), respectively

Thus,

E(X) = aji E(D) and Var(X) = a2
ji Var(D) , therefore

0
)(

)(

)(

)(

)()(
2

=−
⋅

⋅
=

−=

DE

DVar

DEa

DVara

DCVXCVDA

ji

ji

s
ij

 ð

Proposition 1 states that when the inventory cost dominates, the supply chain

will build order as needed and there will be no item-component demand amplification

in a single schedule release.  On the other hand, when the inventory cost does not

dominates the setup all the time the Leontief property (xt−Li⋅yt−1=0) from Corollary 2.1

implies that the supply chain will consolidate orders and build ahead, (yt-1>0 and xt-

Li=0). Suppose v is the number of periods of orders are built ahead. This quantity v is

bounded by u, the total number of periods with non-zero demand. Exactly how many

periods of orders the facility will consolidate into one batch vary depending on the cost

ratio hδ , but when hδ >1 the number of consolidated periods v ranges from 2 to u.

We will first start with the following proposition where the demands for item i

are independent.

Proposition 2. Suppose (as a result of order batching) v periods of orders for
component j are combined to satisfy the internal demands imposed by item i, i.e., xj,t−Li

= aji (rit + ri,t+1 +…+ri,t+v-1), for t=Li+1,…,T-Li. If the demand stream ri1,…,riT are
drawn from iid random variables then the following are true after batching:
(1) the mean and variance of component j’s internal demand will increase by a factor of
aji v and a2

ji v, respectively
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(2) the item-component demand amplification DAs
ij decreases by a factor of  )1

1
( −

v
Proof. Denote xj1, xj,v+1,…,xj,T-v+1, the realization of random variables X1,…,XT-v+1,

and ri1, ri2,…,rT that of random variables D1,…,DT, respectively, where xj,t−Li = aji (rit +

ri,t+1 +…+ri,t+v-1), for t=Li+1,…,T-Li. D1, D2,…,DT are iid random variables with

expected value E(D) and variance Var(D).  As a result of lot-sizing, v periods of orders

for component j are combined to satisfy the internal demands imposed by item i , this

results in a stream X1, Xv+1,…,XT-v+1  for non-zero production periods where

X1=aji(D1+D2+…+Dv), Xv+1=aji(Dv+1+…+D2v), …, XT-v+1= aji(DT−v+1+…+DT).  The

distribution of X is the convolution of that of Dt’s.  Since Dt’s are iid random variables,

we have

E(X) = aji v E(D) and Var(X) =  a2
ji v Var(D)

This confirms statement (1).

Now, the item-component demand amplification is

DAs
ij

= CV(X) −CV(D)

)()1
1

(

)(

)(

)(

)(2

DCV
v

DE

DVar

DEva

DVarva

ji

ji

⋅−=

−
⋅⋅

⋅⋅
=

This confirms statement (2) ð

The above result suggests that if the demands are independent, increasing the batch size

in any production period increase the mean and variance of internal demands at the

component level.  Since both the variance and the total volume increase by a factor of v,

the item-component demand amplification reduces as the lot size increases.  However, it

is important to note that DAs
ij is defined such that we compute the coefficient of

variation only over the periods where component j has non-zero production.  All

periods with no production (for j) after batching are dropped from the calculation, i.e.,

random variable X is a simple summation of random variable D every v periods, and we

are only computing the variance and the CV of X.  In Section 6 we will discuss the
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more complicated multi-item cases where both the non-production and the production

periods for component j are included in the analysis.

We now present the results when demands are correlated.

Corollary 3.1. Suppose the demands ri1,…,riT are drawn from correlated random
variables with a coefficient of correlation ρ  and the same variance, then the following
are true after batching:

(1) item-component demand amplification DAs
ij change by a factor of 








−

−+
1

1

v

v ρρ

(2) when ρ=1, there is no item-component demand amplification, i.e., DAs
ij=0

Proof.  The proof is similar to that of Proposition 2 except that now

E(X) =  aji v E(D) but

Var(X) = Var (aji D1 +ajiD2+…+ajiDv)

∑∑
≤<≤=

⋅+⋅=
vst

stjit

v

t
ji DDCovaDVara

1

2

1

2 ),(2)(

if D1, D2,…,DT have the same variance i.e., Var(Dt)=Var(D), then Cov(Dt ,Ds)=ρVar(D)

and

Var (X) )()1()()()( 2222 DVarvvaDVarvvaDVarva jijiji ρρρ −+=⋅⋅−+⋅⋅= , we have

)(1
)1(

)(

)(

)(

)()1(

)()(
2

DCV
v

vv

DE

DVar

DEva

DVarvva

DCVXCVDA

ji

ji

s
ij

⋅









−

−+
=

−
⋅⋅

⋅−+⋅
=

−=

ρρ

ρρ

This confirms statement (1).  Statements (2) follows by setting ρ=1.  ð

It should be noted that when demands are negatively correlated, the measure DAs

becomes problomatic when v≥ 2.

3.2 The Effect on Item-Component Demand Amplification in Multiple Releases

Now, we will look at the impact of batching to demand amplification when the

demand of an item is a random variable across a series of schedule releases τ=1,…, Θ

over multiple production periods t=1,…,T.  Consider a particular schedule release τ, let
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rτ
it be the demand of item i in period t, and xτ

j,t-Li be the internal demand imposed on i’s

component j in period t-Li.  Suppose, after order batching, v periods of orders for

component j are combined to satisfy the demands of item i, i.e., ., xτ
j,t−Li = aji (rτ

it +

rτ
i,t+1 +…+rτ

i,t+ v). We first present the proposition for the independent case.

Proposition 3. Suppose (as a result of batching) v periods of orders for component j are
combined to satisfy the internal demands imposed by item i, i.e., xτ

j,t−Li = aji (r
τ
it + rτ

i,t+1

+…+rτ
i,t+ v), for t=Li+1,…,T-Li and τ=1,…,Θ. If the demands r1

i1,…,r
1

iT,…,rΘ
i1,…,rΘ

iT

are drawn from iid random variables then the following are true:
(1) the mean and variance of component j’s internal demand will increase by a factor of
aji v and a2

ji v, respectively

(2) the item-component demand amplification DAm
ij will change by a factor of  )1

1
( −

v
Proof. Denote x1

j1,, x1
j,v+1…, x1

j,T-v+1,…,x
Θ

j1,,…,xΘ
j,T-v+1 the realization of random

variables X1
1, X1

v+1,…,X1
T-v+1,…,XΘ

1,…,XΘ
T-v+1, and r1

i1,.…,r1
iT,…,rΘ

i1,…,rΘ
iT that of

random variables D1
1,…,D1

T,…,DΘ
1,…,DΘ

T, respectively, where xj,t−Li = aji (rit + ri,t+1

+…+ri,t+v-1), for t=Li+1,…,T-Li. Suppose D1
1,…,D1

T,…,DΘ
1,…,DΘ

T are iid random

variables with expected value E(D) and variance Var(D).  Similar to Proposition 2, we

have

E(X) = v E(D) and Var(X) = v Var(D)

Therefore

),...,1,,...,1,(),...,1,,...,1,( ,,1
, TLtrCVLTtxCVDA i

k
iti

k
Ltj

m
ijt i

+=Θ=−−=Θ== +
− ττ ττ

= CV(X) −CV(D)

)()1
1

( DCV
v

⋅−= ð

The above result suggests that when the multiple releases are mutually

independent, item-component demand amplification behave the same way as in the

single release cases.  However, a more interesting issue arises in a multiple release

environment since different policies are possible in using the multiple schedule releases.

A common practice in the industry can be described as a “freeze-up-to” policy as

follows: freeze the period-t schedule from the customer at the end of period (t−k), use

this schedule as the internal demand and determine the production for period t.



14

Similarly, the release in period t-k+1 is used to determine period t+1 production, and T-

k is used for period T, etc., only one period from each schedule is actually used while

the remaining periods are discarded.  Common as it is, this may not be a good policy if

schedules continue to change up till the very end of period t-1.  We will pursue this

argument more rigorously by introducing the following formalism. Consider each order

release for item i as a vector-valued random variable as follows:

Θ=













= ,...,1

1

τ
τ

τ

τ for
D

D
D

T

M

After batching v periods of orders for production, this order release (customer’s

production schedule) is translated into scheduling releases as follows:

Θ=













=















++

++
=

+−−

,...,1
...

...

1

11

τ
τ

τ

ττ

ττ

τ for
X

X

DD

DD
X

vTTvT

v

ML

Each vector-valued random variable Xτ represent a schedule release.  If we write all the

Xτ ’s together over multiple releases, we have a matrix as follows:





















=

Θ
+−+−

+

+

Θ

Θ×+−

1
1

1

3
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2
1

1
1
1

)1(

vTvT

v

v

vT

XX

X
X

XX

M

L

O
M

L

Suppose a release index τ is always k periods ahead of the time index, i.e., t=τ+k, then

we may represent the schedule using the above “freeze-up-to” policy as the diagonal

terms of matrix M which is a random vector as follows:

















=



















=
Θ

+−

+

vTvT

v

S

S
S

X

X
X

S

/

2

1

1

2
1

1
1

MM

Consider an alternative policy where instead of following the schedule of the most

recent releases we follow the expected value of all the available releases.  In other

words, we compute from matrix M a vector
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We will now present the following important result.

Proposition 4. Given multiple schedule releases from an upper tier customer,
represented by matrix M, if the freeze-up-to schedule represented by random vector S
has a variance of Var(S).  Then an alternative policy that uses the expected value of all
up-to-date releases (as defined by vector X ) will reduce the variance by a factor of v
for all but the first period.
 Proof.  For the freeze-up-to schedule, define the first period X1

1 =S1 , and define the

rest of the period by the vector-valued random variable 

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The mean and variance of S are as follows:
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and Var(S) is a matrix Σs = [σij] where each entry σij=Cov (Si , Sj)

but, Cov (Si , Sj)=0 for i≠j and  Cov (Si , Sj)=Var(Si) for i=j

Therefore, Σs is a scalar matrix and Var(S) = Σs=Var(X)⋅ I

 Similarly, the mean and variance of random vector X  are as follows:

E( X ) = E(S), for the very first period, Var ( 1X )= Var(S1), from the (v+1)th period on
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Where c is a fixed vector. Therefore, Var( X )=Var(S)⋅c/v. ð

The above result is important since it suggests that the practice of following a “most

recent” schedule release is subject to a much higher (v times) variance then one which

compute the schedule from the expected values of up-to-date releases.

4. The Impact of Product Structure on Demand Amplification

Up to this point, we have been focusing our attention on the demand amplification for a

particular item-component pair.  In an assembly product structure (see Figure 1) where

each component feeds exactly one item, it is quite easy to generalize this analysis to

multiple tiers.  In a general product structure (also in Figure1), however, a component

may feed into multiple items.  In other words, the demands of multiple upper tier items

may have a joint effect on components in a lower tier.  This particular issue is important

since many manufacturing supply chains are going through steps to consolidate their

product designs such that a higher percentage of common components may be shared

among different products.  While this makes intuitive sense, some further analysis is

necessary to understand the influence of product structure on demand amplification. We

will examine this effect in the context of order batching established earlier.

Using the same notations, we define the assembly structure as the case where the

production of component j, say xjt will be used to satisfy the demand for exactly one

type of item i, i.e., xj,t−Li = aji (rit + ri,t+1 +…+ri,t+v-1), for t=Li+1,…,T-Li where xj1,

xj,v+1,…,xj,T-v+1, are the realization of random variables X1,…,XT-v+1, and ri1, ri2,…,rT are

that of random variables D1,…,DT, respectively. We know from Proposition 2 that if

item demands D1,…,DT, are iid, E(X)=aji v E(D) and Var(X)=a2
ji v Var(D).  In a general

product structure, the production of component j, say xjt will be used to satisfy the

demand for multiple items i1,…,in, for each item i, in other words,
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)...(...)...( 1,1,, 1111 −+−+− ++++++=
nnnn vtitijivtitijiLtj rrarrax  , for t=L+1,…,T-L,

For notational convenience, we assume a common lead time L for all items, and v1,…,vn

are the lot sizes for items i1,…,in, respectively. We will now present the main result:

Proposition 5: Supply chain C1 has an assembly product structure and supply chain C2

has a general structure, as defined above. Suppose in C2 the production of each
component j is used to satisfy the demand for n items i1,…,in,. Then the following are
true when comparing C1 and C2’s internal demands at the component level:
(1) If item demands are iid random variables, the internal demand for a next-tier

component j in C2 has a variance n times larger than that of C1

(2) if item demands are correlated random variables with coiefficient ρ and the same
variance, the internal demand for a next-tier component j in C2 has a variance
n(1+nρ−ρ) times that of C1’s

Proof.  We first distinguish the assembly and the general product structure as follows:

For component j and item i in an assembly structure, define

xj,t−Li = g0 where  g0= aji (rit + ri,t+1 +…+ri,t+v-1);

g0  is the realization of random variable G0.

For component j and items i1,…,in in a general product structure, define

)...(  where... 1,1, −+− ++=++=
kkkk vtitijiknLtj rragggz , zj1, zj,v+1,…,zj,T-v+1, are the

realization of random variables Z1,…,ZT-v+1 and g1,…,gn are the realization of random

variables G1,…,Gn, respectively.

Thus, we have

E(Z) =  ∑
=

n

k
kGE

1

)(  and

Var(Z) = Var (G1 +G2+…+Gn)

∑∑
≤<≤=

+=
nlk

lkk

n

k

GGCovGVar
11

),(2)(

if G0, G1,…,GT are iid random variables, then Cov(Gk ,Gl)=0 and Var(Gk)=Var(G0),

therefore, Var(Z)=n Var(Gk)=n Var(G0), this confirms statement (1).

if G1, G2,…,GT are correlated, since kGVarGVar k ∀= )()( 0
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Var (Z)= ∑
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⋅+⋅
nlk
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1

0 )()(2)( ρ

)()1()()()( 00
2

0 GVarnnGVarnnGVarn ρρρ −+=⋅⋅−+⋅= , this confirms statement

(2). ð

Corollary 4.1. In a supply chain with general product structure where the production of
each component j is used to satisfy the demand for n items i1,…,in,., suppose item
demands are correlated random variables with coiefficient ρ and the same variance, the
item-component demand amplification DAs

ij between items i1,…,in and component j

change by a factor of 







−

−+
1

1

n

n ρρ
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Proof.  The item-component demand amplification

DAs
ij=CV(Z)−CV(G)

nGE

GVar

GE

ZVar
n

k
k

n

k
k ∑∑

==

−=

11

)(

)(

)(

)(
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5. The Impact of Capacity Levels on Demand Amplification

We now consider the effects of binding capacity constraints.  Considered in

isolation from other influences, when resource capacity is binding in any time period

the size of production batches tend to reduce which potentially reduces the demand

variation in lower tiers of the supply chain. To pursue this intuition with more rigor, we

consider a simplified case where all resource capacities are used to produce a particular

item, the capacity is preset at a constant level for all periods without dynamic changes.

Consider three possible capacity settings: (1) maximum capacity, set to the maxinum
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period demand in the planning horizon, denote this capacity level Capmax ,(2) averaged

capacity (or minimum capacity), set to total demand in the planning horizon divided by

the number of periods, denote this capacity level Capavg. Note that this is the minimum

“workable" capacity level, as any point less than this will be insufficient to maintain

production in excess of demand.  (3) actual capacity, set in between Capavg and Capmax,

denote Capact. Clearly, Capmax ≥ Capact ≥ Capavg.  Figure 2 illustrates a representative

demand pattern, along with the three capacity levels.

Demand vs .  Capac i ty

0
5 0

100
150
200
250
300
350

1 3 5 7 9 1 1 1 3 1 5

Demand
Cap-max
Cap-actua l
Cap-average

c

Figure 2. An Example of the Three Capacity Settings Relative to Demand

We now define a capacity smoothing coieficient ε using the terms defined above:

)(

)(

max

max

avg

act

CapCap

CapCap

−
−

=ε

When ε = 1, the actual capacity is set equal to the average capacity (which is

the minimum capacity).  This implies that the amount of production must be identical

across all periods, and in each period the production consumes all resource capacity.

This results in a complete smoothing of production over all periods. Note that this 100%

utilization of the capacity may not be desirable since discrete lot sizes would have to be

broken apart.  Conversely, when ε = 0, the actual capacity is set to the maximum

capacity.  This represents the cases where the capacity is not binding, as is the

assumption for the analysis in Sections 4.2.  Under this condition, there is no smoothing

necessary due to capacity limitations. When 0< ε < 1, the actual capacity is placed

between the maximum and the minimum.  Furthermore, the closer the actual capacity is

set to the minimum, the closer ε is to 1, and the greater the smoothing effect is likely to

be. We now present the main capacity smoothing results.
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Proposition 6. Suppose component j of item i is manufactured in a facility, which has a
capacity smoothing coefficient ε . If the setup/inventory cost ratio is not a factor for
order batching (i.e., when the ratio is close to zero), ε has the following effect on item-
component demand amplification (DAs

ij):

(1) when ε =0, there is no demand amplification

(2) when ε =1, the demand amplication is −CV(D)

(3) when 0<ε<1, the demand amplication reduces by ( ) 1
)(

)(
  where, 1 <=−

DVar

XVar
cc

Proof.  When ε =0 capacity is non-binding, thus, from Proposition 1 there is no demand

amplification (DAs
ij=0). This confirms statement (1).

Use the notation similar to before and denote random variables X1,…,XT  the production

quantity for component j after scheduling, and random variables D1,…,DT  denote the

demands for item i. Denote xj1, xj2,…,xjT, the occurrences of random variables X1,…,XT,

and ri1, ri2,…,riT  that of D1,…,DT . For simplicity, assume aji=1.

When ε =1, the production quantity for each period must be set equal to the capacity

Capact which is set to Capavg , i.e., xj1=xj2=…=xjT = ∑
=

T

t
itr

T 1

1
=Capavg =Capact

Thus, E(X) = Capact =E(D) and Var(X) = 0 , therefore

)(
)(

)(
0

)()(

DCV
DE

DVar

DCVXCVDAs
ij

−=−=

−=

this confirms statement (2).

When 0<ε <1, the capacity is binding for at least one demand period, i.e. ∃ rik,

(rik−Capact) = ξik > 0.  As a result, the demand rik will be produced in two parts, (rik−ξik)

and ξik.  Or, more precisely, demand rik will be satisfied by at least two productions

xjl≤(rik−ξik) and xjm≥ξik and xjl+xjm=rik. Essentially, to satisfy demand ri1, ri2,…,riT with

production xj1, xj2,…,xjT, we need to deal with two subsets of demands, say K and L: for

k∈ K, we have (rik−Capact) = ξik > 0 and for l∈L, we have (ril−Capact) = ξil ≤ 0.  In other
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words, we use excess capacity (∑l∈Lξil) in some periods to cover excess demands (∑k∈K

ξik) in some others.  It is then easy to see that the variance for production will be smaller

than the vairance for demands, i.e.,Var(X) <Var(D) if set K is nonempty. Set

1
)(

)(
<=

DVar

XVar
c , then we have

( ) )(1
)(

)(

)(

)(

)()(

DCVc
DE

DVar

DE

DVarc

DCVXCVDAs
ij

⋅−=−
⋅

=

−=

This confirms statement (3). ð

The above results suggests that when resource capacity is binding (0<ε≤1), the

demands emanating from a facility will have less variation than the demand entering the

facility. Considering demand amplification in a multi-item environment is more

complex. Binding capacity constraints still limit the lot-sizes, but the capacity levels

relative to the average demand for each item are not so tight because the capacity is

established relative to the total demand for all items at that facility.

Corollary 5.1. When overtime or outsourcing are used to increase capacity the effect of
capacity smoothing reduces, i.e., the capacity smoothing coieficient ε reduces, and the
item-component demand amplificaiton increases.

It is not difficult to see the above result since overtime or outsourcing increase Capact to

be closer to Capmax which in turn reduces ε.  The intuition behind this is simply that

when more capacity options are available at the upstream of the supply chain, while the

overall production performance may improve, a higher level of demand amplification

may result.

6. Demand Amplification for Multiple Items

Up to this point, we have been concentrating on our analysis on non-zero

production periods (i.e., t=1, v+1,..., T-v+1) for the item-component pair under
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consideration.  However, in the more general multiple-item cases, each production

period may be populated with non-zero production of different components. It is of

practical importance to know the collective demand amplification of all items in a

particular supply tier.  To do this, we first need to know for each item the demand

variation of its production over all (zero and non-zero production) periods.  Suppose the

batch size of all items is v.  Now consider a particular item-component pair (i ,j).

Denote xj1, xj2,,..., xjT  the demand stream for component j drawn from random variables

Y1,…,YT , and ri1, ri2,…,rjT the demand stream for item i drawn from random variables

D1,…,DT, respectively.  For any block of v periods in the planning horizon 1,...,T, there

is exactly one non-zero production period for component j, i.e., Yt = aji (Ds +...+ Ds+v),

t<s, and all other periods in the block do not produce j, or Yt=0, we may define random

variable Y  as follows:
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Suppose D1,,…,DT have expected value E(D) and variance Var(D), then random

variables Y  has the expected value E(Y)=ajiE(D).

Lemma 6.1. Under the above setting, suppose the batch size is v and each production

period within a v-period block has equal probability v
1  to be chosen for producing

one batch of j, then
(1) the variance for random variable Y, is (v-1)E(Y)2

(2) the coefficient of variation CV(Y)= )1( −v

Proof.

Without loss of generality, let aji=1, denote µ=E(Y)=E(D)
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From Lemma 4.1 we can conclude the following for a single item.

Proposition 7.1 If the demands ri1, ri2,…,rjT are drawn from iid random variables, then
the tier-to-tier demand amplification is an increasing function of the lot size as follows:

v

vv )1()1( −−
.

Proof.  Since the demands are drawn from iid random variables D1,…,DT, we know that

Var(Y)=a2
ji v Var(D).  Without loose of generality, let aji=1,denote µ=E(Y)=E(D)

then from Lemma 4.1 we have )(.)1()( 2 DVarvvYVar =−= µ

Thus, 
v

v
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2)1(
)(
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= , and  

v

v
DCV

1
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−
=

Therefore, the tier-to-tier demand amplification is

v
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DCVYCVTAkl
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1
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Obviously the above term is an increasing function of the lot size v>0. ð

Now consider N item-component pairs, denote D1,...,DN random variables

characterizing the item demands, and Y1,...,YN characterizing the corresponding

component production over the planning periods.  Thus the production orders in the

next tier for all components is the sum of random variables Y1+...+YN.  Suppose for

each component µ =E(Yi)=E(Di), thus E(Y1+...+YN)=Nµ. We now present the

following result:

Proposition 7.2 Under the above setting, if the item demand for all N items are iid

random variables, then the following are true at the component tier

(1) the variance of production orders is N(v-1)µ2

(2) the coefficient of variation is 
N

v 1−
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(3) the tier-to-tier demand amplification is an increasing function of the lot size while

an decreasing function of N as follows: 



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vN

v 1
1

1

Proof.

Since Y1,...,YN  are iid random variables, by applying Lemma 4.1 the variance of

production orders (Y1+...+YN) is

Var (Y1+...+YN)=Var (Y1)+...+Var(YN)

2)1( µ−= vN  this confirms statement (1).
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The above term is an increasing function of the lot size v, while a decreasing function of

N, the number of components under production. ð

6. Insights from the Analysis

To summarize the above analysis and put the main results into the right managerial

context, we will make a few observations as follows.

1. The effects of order batching. When there is no incentive to consolidate batches in

the supply chain there will be no item-component demand amplification.  When

demands are consolidated into production batches over time, the mean and variance
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for a lower tier component will both increase. When demands are positively

correlated, the variance increases further, while the converse is true for negative

correlation.  An interesting result from Propositions 1, 2 and Corollary 3.1 is that

while the variance of a lower tier component may increase significantly after order

batching, but since the mean also increases by the same factor the coefficient of

variation decreases. As a result the item-component demand amplification reduces.

While the item-component demand amplification (Definitions 1 and 2) measures the

change in variation for a particular item-component pair, the tier-to-tier demand

amplification (Definition 3) measures the change in variation from one supply tier to

another over all items. As shown in Propositions 7.1 and 7.2, the tier-to-tier demand

amplification increases from one supply tier to another as a function of the lot size.

When an increasing number of items are processed simultaneously, this

amplification effect reduces. However, the setup capability of the system and the

degree of process similarity among the items limit the number of items that could be

realistically processed at the same time.

2. The effects of multiple schedule releases. When upper tier customers make

multiple schedule releases, it is preferable to follow the expected demand over all

up-to-date releases rather than following any particular single release.  Multiple

schedule releases is a common source of frustration in manufacturing supply chains

where a release may change several times by an upper tier manufacturer before

actual execution.  As stated in Proposition 4, it is advisable to follow the expected

value of the multiple releases rather than following any particular one.  On the other

hand, as stated in Proposition 3, if the releases and the period-to-period demands are

iid, multiple releases do not differ from single release in terms of demand

amplification. These results imply that it is possible to reduce the variance created

by multiple schedule releases.  The key is to focus on the underlying population of

schedules that will be released rather than any particular single release.  Such

population can be estimated using some empirical distribution (e.g., such as the

simple policy stated in Proposition 4), or perhaps making use of historic order data

to construct a priori distributions.



26

3. The effects of product design and component sharing. When the components

manufactured in the supply chain are shared by a large number of upstream

products, the fluctuation in end-item demands tends to create a more significant

level of variance. When the product demands are positively correlated, this variance

will be further exaturated. Conversely, when the demands are negatively correlated,

the variance decreases by comparison.  An analysis comparing the general and

assembly product structures reveals the relationship between the nature of

component sharing and demand variance.  As stated in Proposition 5 and Corollary

4.1, the more products sharing a common component the higher volume and

demand variance the component experiences.  Again, when putting into the

perspective of total volume, the amplification effect for products with general

structure is actually less significant then that of the assembly products.  In the case

where product demand are negatively correlated, demand fluctuations of different

products tend to “cancel out” with each other, a smaller variance and demand

amplification are to be expected for the general prodcut structure. The result here

provides some insights when considering a redesign or condolidation of existing

product designs in the supply chain to include common components. For instance, if

the end-product demands tend to be positively correlated (such is the case in the

computer industry) the demand variance will amplify through the supply tiers and

prompting an unreasonably high level of reserved capacity in downstream facilities.

4. The smoothing effects of limited capacity. When the effects of order batching is

excluded from consideration, limited capacity has a smoothing effect on demand

amplification. When manufactured in a capacity-bounded facility, the orders

eminated from the facility will invariably have a lower variance than the orders

entering it.  This phenomenon explains a regularly (artificially) smooth order pattern

commonly observed downstream in the manufacturing supply chain despite of the

fluctuation in end-item demand.  This suggests that the supply chain behaves in a

more stable and consistent manner over time when its capacity is close to its true

expected demand.  Setting capacity based on peak demands, for instance, is likely to

create a much higher level of variance in the system. However, the capacity issues
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become much more complex when strict product due-dates are imposed and various

expediting and outsourcing activities come into play.

7. Conclusions

Demand propagation is a fundamental behavior of manufacturing supply chains,

a deeper understanding of this phenomenon is essential to the overall improvement of

its performance. In this paper, we present the idea that using the basic logic of which the

production information system use to drive supply chain operations, some important

aspects of supply chain behavior can be explained by fundamental principles. The study

focuses on a make-to-order environment where the production scheduling system is

used to link production plans across the tiers in a supply chain, a typical mechanism of

inter-facility, inter-supplier production management in automotive and electronic

industries today. In a related study (Meixell and Wu, 1998) the main analytical results

are tested empirically using Monte Carlo experiments.
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Figure 1. Examples of an Assembly and a General Product Structure
(Tempelmeier and Derstroff, 1996)


