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Abstract

Efficient generation of assembly plans has significant implications on manufacturing costs, however, the underlying
mathematical problem is both theoretically and computationally intractable.  In the previous paper (Part I), we
developed a graph-theoretic framework for the general problem, and we described a constraint satisfaction construct
that generates correct assembly precedence graphs given  establishment conditions. In this paper, we develop additional
components for the framework:  a problem decomposition scheme which decomposes a general set of establishment
conditions  into generalized 2-SAT problems. After mapping these satisfiability problems  into specialized decision
graphs, we develop a branch-and-bound algorithm which generates optimal precedence graphs and optimal assembly
plans from the decision graph.  Our method generates  assembly precedence graph(s) which satisfy two basic criteria:

(i) All sequences defined by the precedence graph are feasible according to design specifications,  
(ii) Given any graph-computable performance measure (sparsity, number of node-disjoint paths etc), the
precedence graph is optimal. 

The latter links the graph-theoretic framework to practical applications where performance criteria motivated by line
balancing and scheduling can be directly associated to assembly plan generation. Computational results show that the
proposed algorithm can solve moderate-size problems within seconds. Finally, we investigate alternative decomposition
schemes and explore their theoretical and computational implications, including redundancy, dominance, and global
optimality.

1. Motivations

Assembly Planning problems have received a lot of attention over the past fifteen years. The problems encompass
modeling and representation of assembly constraints, (e.g. Bourjalt, 1984), generation of feasible assembly plans
(Homem de Mello and Sanderson, 1990) and selection of assembly plans for final assembly (Bonneville et. al., 1995)..
Any mechanical assembly process can  be decomposed into a set of tasks, where each task involves joining two or more
components or subassemblies together. Given a set of establishment conditions ( precedence constraints), the sequence
generation problem involves generating one or more sequences in which all the tasks in this set can be performed in
order to feasibly assemble the product. Similarly, the precedence graph generation problem involves generating
precedence graphs, such that all assembly sequences defined by them are feasible. 

The sequence of tasks in which assembly is performed can have a significant impact on cost and efficiency through
both quantitative and qualitative measures. Quantitative measures may be derived from resource allocation, line
balancing, scheduling, or more direct measures such as number of re-orientations and number of tool changes required.
Qualitative measures, or perhaps measures difficult to quantify may include ease and stability of assembly, fixturing
requirements and complexity of operations.

In this paper, we focus our attention on the optimal generation of precedence graphs. We generate and select optimal
precedence graphs from a correct and complete set. The word complete implies that all possible assembly sequences
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can be obtained from this set of precedence graphs. The word correct implies that all these sequences are feasible, i.e.
they satisfy all the stated establishment conditions or assembly constraints. A basic thesis of this paper is that a
precedence graph holds more merit as an assembly “plan” than a fully specified assembly sequence. This is true because
a precedence graph permits flexible execution of activities while delaying “less critical” decisions to the last minute
(Wu et. al.,1999). This view is carefully examined and justified in the previous ( Part I) paper (Naphade et al.,  1999),
where we propose a theoretical framework for the correct generation of precedence graphs given establishment
conditions.

2. Problem Definition

The problem of primary interest in this paper, is the Precedence- Graph Optimization Problem or POP. Embedded
within POP is the constraint satisfaction problem or CSP. CSP determines a “correct” precedence graph - a precedence
graph that satisfies the specified set of assembly constraints.  A correct precedence graph in term defines a set of correct
assembly sequences.  POP refers to the problem of determining a precedence graph that is not only correct but also
optimal given a performance criterion of interest. 

The method developed in this paper requires that the performance measure be “graph-computable”, i.e. it can be
uniquely derived from the structure of the graph. Examples of such performance measures include sparsity, number
of node disjoint paths, average nodal in-degree etc.  Many resource allocation and scheduling criteria however are not
only graph based but also sequence based. For instance, in order to optimize the expected performance of an assembly
plan in the context of assembly line balancing or resource constrained project scheduling, sequence based criteria are
necessary. 

We now define CSP and POP more formally. Assume that the product to be assembled contains m parts. A typical
assembly task connects (or establishes a liaison between) two or more of these m parts. Let there be n such liaisons or
assembly tasks involved in fully assembling the product. Clearly, some sequences for performing these tasks may be
infeasible. Similarly, if each assembly task represents a node on a precedence graph, all precedence graphs constructed
on n nodes may not necessarily feasible. Precedence constraints are imposed by spatial or functional limitations such
as accessibility, stability and resource requirements during the assembly. Thus, CSP and POP can be stated as follows:

CSP: Generate a precedence graph with assembly tasks as nodes and task precedence as arcs that satisfies all
establishment conditions. 

POP: Given a minimizing  performance criterion Z(H) on precedence graph H, generate a precedence graph H
that satisfies all establishment conditions and Z(H)#Z(H) for all feasible precedence graphs H.

3. Literature Review and Need for Optimization Methodologies

Bourjalt(1984) started research in assembly sequence generation. Through a question and answer method, he obtained
establishment conditions for assembly tasks. DeFazio and Whitney(1987) improved Bourjalt’s method by reducing the
number of questions needed. They developed the “diamond graph” method  to generate all assembly sequences through
a directed state-transition graph in which the nodes represent partial assembly states. Later Baldwin et. al.(1991)
developed an integrated computer aid to generate and evaluate sequences using the method provided by DeFazio and
Whitney (1987). Homem de Mello and Sanderson(1990)  introduced the use of AND/OR graphs to solve the sequence
generation problem. We assume that the establishment conditions are input to our method. Baldwin et. al. (1991),
Bourjalt (1984), DeFazio and Whitney (1987) etc. provide methods for generating these conditions. Homem de Mello
and Sanderson(1991a) demonstrate the equivalence between different representations of assembly constraints and also
provide mappings of the  different representations onto one another. 

As noted in the Part I paper, CSP is by itself is NP-Complete. Adding an optimization problem on top of the CSP
makes the overall problem even more challenging. Perhaps for this reason, research on automated selection or
optimization of assembly plans has been limited. Lee and Raz (1989) solve an integrated sequencing and robot selection
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Figure 1
The Hierarchical Graph-Theoretic Framework 

problem, but assume the availability of a precedence graph. Homem de Mello and Sanderson (1991c) present an
integrated assembly sequence generation and optimization algorithm by  maximizing the number of parallel tasks. This
algorithm is based on the AND/OR graph representation. A similar procedure is developed by Lapierre and ElMaraghy
(1994).  Bonneville et. al. (1995) provide a genetic algorithm to generate and evaluate assembly plans. They start off
with a set of feasible assembly plans provided by an expert and generate more plans by combining plans from the initial
set. Since they assume the prior availability of several feasible plans, the NP-completeness of CSP is not an issue for
their methodology. Minzu and Henrioud (1993) adopt a two stage approach to solve the POP. They first systematically
generate all valid assembly plans for the product and then determine for each one, all possible assembly systems
(sequences or line balancing configurations).  This is a total enumeration approach which becomes impractical as the
problem size increases. 

4. The Graph-Theoretic Framework- A Summary of Previous Results

We first summarize main components of the graph-theoretic framework described in the Part I paper.  Basic to the
framework is an extended predicate calculus operator  (÷) (reads “must precede”). Basic properties of this operator
are  as follows: 

1. Transitivity : 
((A÷B) and (B÷C)) implies A÷C.  

2. Distributive Properties :
(i) A÷(B and C) is equivalent to (A ÷B) and (A÷C). 
(ii) A÷(B or C)  is equivalent to (A ÷B) or (A÷C)
(iii) (A or B) ÷ C is equivalent to (A÷C ) or  (B÷C)
(iv) (A and B)÷C is equivalent to (A÷C ) and  (B÷C)
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3. Negation : We shall use the tilde (~) sign for negation in this paper. If  ~ (A÷B) is true, then either (B ÷A) is true
or there is no constraint between tasks A and B. (They may be performed simultaneously). 

Overall scheme of the graph-theoretic framework for assembly planning is summarized in Figure 1. The  framework
consists of three basic steps:  Problem Decomposition, Mapping, and Partitioning.  In the Problem Decomposition step,
we convert a given set of establishment (assembly design) conditions into a set of generalized two-satisfiability (2-SAT)
problems. To solve each of these subproblems, we map each 2-SAT onto a “decision graph” such that a proper
partitioning of the graph would correspond to a “feasible and consistent” assembly precedence graph. The problem
decomposition and the partitioning steps of this framework are the main foci of this paper. In the following, we
describe the main essence of these two steps.

Problem Decomposition

Given a set of establishment conditions (P) we decompose them into N subproblems Q  . Each Q  is an instance of ai i

generalized 2-SAT problem, where all clauses in their normal form are either single literals or a disjunction of two
literals. A sub-problem Q  is a generalization of the 2-SAT problem in that a literal (representing an arc between nodesi

a, b on a precedence graph) can assume three, rather than two, values: a÷b, b÷a and a/ b where a/ b implies that
there is no arc between nodes a and b on the precedence graph. The simple scheme described in the following can be
used to solve a generalized 2-SAT problem where a literal could take an arbitrary number of values, and different
literals may take different numbers of values. 

Some  establishment conditions in (P)  are conjunctive precedence constraints (e.g. 3÷4), some are disjunctions of
length 2 (e.g. 2 or 3 ÷ 4) and the others are disjunctions of length 3 or more (e.g. 1 or 2 or 3 ÷ 4). Problem P is
decomposed as follows. Disjunctive constraints of length three or more are split arbitrarily into subconstraints of two
literals each. For example:

 (1 or 2 or 3 ÷ 4) is split as (1 or 2) ÷ 4
  3 ÷ 4

(4 or 5 or 6 or 7 ÷ 8) is split as (4 or 5) ÷ 8  
(6 or 7) ÷ 8  

Thus for every long (length > 3) establishment condition, we form a group of subconstraints. A subproblem Q  isi

defined as follows: 

a) Q  inherits all constraints of length 1 and 2 from P.i

b) From each group of subconstraints associated with long establishment conditions in P, one and only one
constraint is included in Q .i

The following example clarifies the above decomposition rules:

P:  1 ÷ 2 
(1 or 4) ÷ 5 
(3 or 4 or 5)÷ 6 Group of subconstraints: (3 or 4)÷ 6; 5 ÷ 6
(3 or 5 or 6 or 7) ÷ 9 Group of subconstraints: (3 or 5)÷ 9; (6 or 7)÷ 9

Q 1 ÷ 2 ; (1 or 4) ÷ 5; (3 or 4)÷ 6; (3 or 5)÷ 9 1:

Q 1 ÷ 2 ; (1 or 4) ÷ 5; 5÷ 6; (3 or 5)÷ 9 2

Q 1 ÷ 2 ; (1 or 4) ÷ 5; (3 or 4)÷ 6; (6 or 7)÷ 9 3

Q 1 ÷ 2 ; (1 or 4) ÷ 5; 5÷ 6; (6 or 7)÷ 9 4

In the Part I paper, we proved that this simple decomposition scheme satisfies the following properties:
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Figure 2
Feasibly Partitioned Decision Graph

(a) A solution that is feasible for P is feasible for at least one Q .i
(b) A solution that is feasible for any Q  is feasible for P.i

In other words, the set of all solutions for all the 2-SAT problems
Q   is identical to the set of solutions of the original satisfiabilityi

problem P.  Hence a correct and complete generation of solutions
for each of the subproblems will constitute a correct and complete
generation of solutions for the original problem. While the above
simple scheme is correct, it does not address issues of
computational efficiency.  Alternative decomposition schemes
will be the subject of discussion in Section 7 which considers
computational efficiency and potential redundancy.   

As detailed in the Part I paper, the after decomposition the
generalized 2-SAT can be mapped  into a unique decision graph.
The next step is to partition this decision graph. 

Partitioning the Decision Graph

Suppose a node I in the decision graph represents a precedence
constraint a÷b, denote its two complements b÷a and a /b by
nodes I  and I  respectively. We further define a complement setc O

C  which contains the complements of I. For instance theI

complement set for node I contains the nodes I  and I , theo c

complement set for node I  contains the nodes I and I . Theo c

following propositions summarize important properties of the
partitioning problem.

Proposition 1 
A feasible and consistent partition of G  into sets R  and A must satisfy the following properties: *

Property 1 : From the set of nodes {I, I , I  } one and only one node must be in set A. The other two nodes musto c

be in set R
Property 2 : ò arc IJ0 G  with I0A and J0 R *

Property 1 ensures that for every decision, exactly one alternative is accepted. Property 2 ensures that decision
dependent constraints are not violated.(If I implies J, and I is accepted, then J must be accepted). The graph
partitioning problem can now be defined as follows:

Partition graph G  into two sets R and A, such that one and only one alternative (node) for each decision belongs to*

set A and any directed arcs that cross the partition, are directed from set R to set A.

Figure 2 shows an example of a decision graph partitioned according to the above requirements.

For every node I on graph G , let R  be the set of all nodes J such that there is a directed path from node I to node J.*
I

Let us define the set R  as the union of the complement sets of all nodes J in set R . Similarly, let T  be the set of all’
I I I

nodes K such that there is a directed path from node K to node I. 

Proposition 2
If I 0 A then R  d A and hence  R  d R. I I

’

Proposition 3 
If I0 R, then T  d R. I
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Proposition 2 states that the acceptance of alternative I completely resolves the decisions associated with nodes in R .I
Proposition 3 statest htat the rejection of alternative I forces the rejection of alternatives in T . Note that this does notI

completely resolve the decisions since there may be two other alternatives from which one needs to be accepted.

The above conclusions suggests a simple partitioning algorithm as follows: 

Proc_Part(I):
1. Place node I in set A. 
2. Place  nodes belonging to  R   in set  A and nodes belonging to  R  in set R. I I

’

3. For all nodes K placed in set R at this point, place nodes belonging to  T  in set RK

4. If Inconsistency found, STOP. 
Else 

If there are any decisions with just one node not assigned to any set and all other nodes assigned to set R,
then place those nodes in set A in order to satisfy Property 1. As a result of this some nodes may be newly
introduced into set A. For each such node I, GOTO Step 1. 

Else STOP.

Proposition 4
Step 1 of Proc_Part(I) places a node I in set A and propagates its effect on the decision graph. This stipulates three
possible outcomes: 

Case 1: An inconsistency. Hence placing node I in set A is not a feasible decision.
Case 2: The graph is completely partitioned without inconsistency. This results in a feasible partition
Case 3: The graph is partially partitioned without inconsistency. In this case the remaining unpartitioned portion
of the graph is independent of the partitioned subgraph. As a result, the partitioning procedure can now be
applied recursively to the remaining subgraph.

Proc_Part terminates in O(m) time where m is the number of arcs on the decision graph.

This concludes the summary of the graph-theoretic framework consisting of the problem decomposition, mapping and
partitioning components . We now use the partitioning procedure Proc_Part(I) to find an optimal precedence graph
using a branch-and-bound algorithm.

5. The Branch-and-bound Method

In this section we discuss the generation of all feasible precedence graphs and selection of an optimal assembly plan
from a given decision graph. Since the branch-and-bound procedure operates on a single decision graph, for cases
where problem decomposition is necessary, the procedure has to be separately applied to each subproblem or decision
graph. The specific decomposition scheme chosen could substantially affect the efficiency of the overall solution. We
discuss issues related to decomposition schemes in section 7. 

5.1 Branch and Bound Tree Representation. 

We first describe the tree representation for the branch and bound algorithm. Complete generation of this tree is
equivalent to generating all feasible precedence graphs, or equivalently, evaluating all partitions of a decision graph.
The tree representation is based on the fact that every unique feasible combination of decision alternatives leads to a
unique feasible precedence graph. 

Node: A node in the branch and bound tree represents a partial or complete set of resolved decisions. Specifically, we
associate with each node, a partially or completely partitioned decision graph. 

Root Node: The root node of the branch and bound tree represents a state in which no decisions are taken. Associated
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with the root node is the completely unpartitioned decision graph.

Leaf Nodes: An unfathomed leaf node represents complete feasible solutions: decision graphs that are fully and feasibly
partitioned. 

Fathomed Nodes: Nodes in the tree may be fathomed because of sparsity cutting or feasibility cutting
described below. 

Intermediate Nodes: Intermediate nodes in the tree represent partially solved problems: decision graphs that are
partially partitioned due to the partitioning procedure having terminated with case 2 of proposition 4.   

Transition: A Transition from a parent node to a child node represents the process of adding an independent decision
(say alternative I) to the set of alternatives associated with the parent node. The partitioning procedure with alternative
I as the argument is invoked for the decision graph associated with the parent node. This further partitions the decision
graph to yield the decision graph associated with the child node. If one child is formed by adding alternative I to the
accepted set of the parent node, the other two children are formed by adding the nodes I  and I  respectively.o c

Accepting alternative I and invoking the partitioning procedure leads  to three possibilities according to Proposition
4:
1. An inconsistency:  In this case, the node is pruned  through “feasibility cutting” described below.
2. A completely partitioned decision graph: In this case, the child node is a feasible leaf. 
3. A feasibly but partially partitioned decision graph: In this case, there are some more decisions to be resolved and
the node is a potential parent, or an open node. In such a case, we must select the next decision to branch upon or the
next node to partition. This creates a branching choice.

Branching: An unresolved decision is selected for branching. A child node is created for every  decision alternative.
If the decision is completely unresolved, three child nodes will be created. If the decision has been partially resolved
due to  elimination of one decision alternative, two child nodes will be created. 

To select a decision to branch upon, we heuristically select an alternative (node on the decision graph) that is the “most
influential”, i..e. affects a large number of other decisions. In so doing, a large number of decisions could be resolved
through the partitioning procedure, leaving us with a smaller unpartitioned subgraph. Hence a smaller branch and
bound tree may result from using this criterion. The specific criterion used for this purpose is :

selected_node =  argmax(I) { ( intra-subgraph outdegree of node I  + 

j (intra-subgraph indegree of complements of node I) }

Recall that the unpartitioned subgraphs are independent of the partitioned portion of the graph. Hence a selected node
influences only those decisions that are present in its own subgraph. The first term represents a lower bound on the
number of decision alternatives that will have to be accepted if node I is accepted. For every complement of node I, the
indegree represents a lower bound on the number of decision alternatives that are eliminated if node I is accepted. Thus
the above criterion is a heuristic myopic indicator of the influence of selecting node I as an accepted alternative.

Feasibility Cutting: A large part of the branch and bound tree can be cut when the co-existence of  any pair of
alternatives is infeasible. Suppose that an intermediate node in the tree represents a partially partitioned decision graph
with alternative A as a part of its accepted set, the next decision selected for branching is decision C and C forces A .c.

Since C forces A C and A  cannot co-exist. Thus any child node represents accepting C (and A) is infeasible and thec,  c  

branch can be pruned. We call this “Feasibility Cutting”.

Sparsity Cutting: Branches in the tree can also be pruned based on the following concept: Suppose the nodes I, I andc 

I  on the decision graph represent the decision alternatives A÷B, B÷A,  A/B respectively for nodes (A, B) on theo
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precedence graph. Let us assume that the alternative I  is feasible. Also assume that the nodes I, I and I   areo c o

independent of the remaining decision graph, i.e.,  the alternatives I  I and I  are not forced by or do not force any other0, c

alternative. In this case, accepting alternative I  and rejecting I and I does not violate the completeness requirement.o c 

The reason for this is that selecting I or I  adds constraints to the precedence graph whereas selecting  I  does not. Thec o

graph obtained by selecting I   is a less constrained graph and hence contains all solutions that would accrue from theo

graphs generated using I or I . (A less constrained space always contains all the solutions in more constrained space.)c

This concept is used to cut entire sub-trees at a time, as follows:
If the set of nodes I, I and I   have a zero intra-subgraph degree, the decision I does not influence any other remainingc o

decisions. In such a case we select the alternative (I ) that does not add an arc to the precedence graph, to form theo

child node. The siblings (precedence graphs obtained by selection of I or I ) of this child node are fathomed. We callc 

this “sparsity cutting”. A more detailed discussion of sparsity and its merits occurs in Section 5.2.

Preprocessing: The concept used for sparsity cutting can also be used in a more generalized form for the root node or
the completely unpartitioned decision graph. Let nodes I , I I represent the alternatives of a decision and let I  be theo , c o

no-arc alternative. If node I (or I ) has exactly the same predecessors and successors as node I , then node I(I ) can bec o c

eliminated from the decision graph. The reason for this is that node I(I ) and node I have an identical influence on thec o 

remainder of the decision graph. Hence any solution with node I(I ) in the accepted set will be feasible if node I(I ) isc c

swapped across the partition with node I . Since this is true, consideration of node I(I ) is not necessary using the sameo c

logic as in sparsity cutting. This can be applied only for optimization of regular performance measures as will become
clear in the next subsection.

Tree Generation Method: The tree is generated using a standard depth first search with backtracking method,
incorporating the above branching and pruning strategies.

Initial Feasible Solution: An initial feasible solution may be obtained using the partitioning procedure of Naphade et.
al.(1997) or using a depth first search to locate a feasible leaf. 

Termination: This tree generation terminates when all branches have been completely explored and no further
branching is possible.

Bound based Cutting: The above paragraphs describe the procedure for obtaining all feasible partitions of a decision
graph. For solving the POP, additional bound-based cutting schemes based on the relevant objective function can be
used, as we will describe in section 5.3.

5.2 Graph Subsets and Regular Performance Measures

The branch and bound method of section 5.1 can be used to solve the POP with a “regular” performance measure by
introducing appropriate bounds. In other words, if Z is a regular performance measure, we can find a graph H such
that Z(H ) # Z(H) for all feasible or correct graphs H. As defined in Section 2, a graph H is feasible if graph H and
hence all the sequences defined by it satisfy all establishment conditions

Let F be a graph that contains all the arcs contained in a certain feasible graph H, and some more additional arcs
(constraints). Graph F is feasible because graph H is feasible. If Q  is the set of sequences defined by graph H and QH F

is the set of sequences defined by graph F, then Q  d Q  In other words, all sequences defined by graph F can beF H. 

generated from graph H, but not vice versa. We then say that graph F is a subset of graph H. If S  is the set of subsetsH

of graph H, then F 0 S . H

For a minimization problem, we define a regular performance measure as follows : A performance measure Z is regular
if for any feasible precedence graph H, F 0 S  implies that  Z(H) # Z(F). In other words, if a graph H is feasible, andH

if we obtain a new graph F by adding arcs to graph H, the performance measure either remains the same or deteriorates.
Section 8 contains some examples of regular performance measures that can be used to generate “good” precedence
graphs. 
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In the tree representation described in section 5.1, as a new child is formed from a node, the precedence graph
associated with the child node is either the same as the precedence graph associated with the parent, or is a subset of
it. If the performance measure of interest is a regular performance measure, it will either remain the same or
deteriorate. Under no circumstances will it improve as one travels down a branch. This is a key property for the  branch
and  bound tree. Note however, that regularity is not at all a restrictive requirement, since for most scenarios it is
difficult to imagine a performance measure that would improve by adding arcs (constraints) to the precedence graph.
In the next section we describe in detail the solution of the POP with minimization of the number of arcs on the graph
(maximizing sparsity) as the objective.

5.3 Solving the POP with Sparsity as the Objective

In this section, we demonstrate the use of the branch and bound algorithm to obtain the sparsest possible precedence
graph that satisfies all establishment conditions. The objective Z to be minimized in this case is the number of arcs on
the graph. Minimizing the number of arcs has benefits from the resource allocation or scheduling perspective. A
sparser graph implies that fewer activities are precedence constrained. Hence more activities are likely to be performed
simultaneously, leading to better resource utilization. Also, since sparser graphs are less constrained, in general they
provide greater flexibility in scheduling tasks on resources. It is obvious that the number of arcs on a graph is a regular
performance measure. In order to implement the algorithm to minimize the number of arcs, we use the following
bounds: 

Global Upper Bound: An initial feasible solution is obtained by repeatedly applying the partitioning procedure describe
in Naphade et. al. (1997). The number of arcs on that precedence graph is a global upper bound (GUB). Whenever a
new feasible leaf node is reached, GUB may be updated (tightened) if the number of arcs on the new leaf node is less
than the previous GUB. 

Local Lower Bound: Every intermediate node represents a partially partitioned decision graph which maps on to a
(probably infeasible) precedence graph. The number of arcs on this precedence graph is  a lower bound of the number
of arcs that will be obtained at any leaf node of which this node is an ancestor. This is obvious as the precedence graph
for every child node is obtained by adding zero or more extra arcs to the precedence graph of its parent. Thus at every
intermediate node, we have a local lower bound (LLB ). If the local lower bound at an intermediate node is greater ori

equal to the global upper bound ( LLB  $ GUB), the node is fathomed and the tree is pruned at that point. i

Global Lower Bound: The establishment conditions for the problem contain several conditions without any “or”
clauses (e.g. A ÷ B). These conditions represent precedence constraints that must be satisfied by all precedence graphs.
Every such condition imposes one  conjunctive precedence arc on the precedence graph. Thus the number of
conjunctive establishment conditions provides a global lower bound (GLB1) on the number of arcs in a feasible
precedence graph. This lower bound can be further tightened as follows. In general, a decision graph may consist of
several mutually disconnected subgraphs. Every such subgraph represents a system of linked establishment conditions.
To satisfy one such system, at least one arc must be imposed on the precedence graph. Since the decision subgraphs
are disconnected, they are independent of one another (Proposition 4) and must each be separately satisfied. Hence if
the total number of mutually disconnected subgraphs is D, then GLB2=GLB1+D $ GLB1 is a tighter global lower
bound. 

Termination: The branch and bound algorithm terminates in either of two cases. In the first case, if all possible
branches are either pruned or completely expanded, the latest updated GUB is the optimal solution. In the second case,
if at a new leaf node,  the tightened GUB becomes equal to GLB2 the GUB is an optimal solution.

5.4 Sparsity as a separable cost function

When sparsity is the objective, a dramatic improvement to the algorithm can be achieved by taking advantage of the
fact that the number of arcs is a “separable” cost function. This is further explained as follows. While discussing the
calculation of GLB2, we noted that within a given decision graph, the mutually disconnected subgraphs are



10

independent of one another. Each subgraph represents a set of decisions, or maps to a set of possible arcs that may be
imposed on the precedence graph. The fact that the subgraphs are independent implies that these sets of precedence
arcs are not only mutually disjoint but also independent, i.e. the existence of an arc from one set has no relation to the
existence of an arc from another set. 

If we separate all the mutually disconnected subgraphs and partition each of them optimally using the branch and
bound algorithm described above, we will obtain the optimum contribution to the number of arcs from each subgraph.
Due to independence, the total number of arcs will be the sum of these individual contributions plus the original
conjunctive arcs. This separability property dramatically improves the performance as we will now solve much smaller
problems. 

Unfortunately not all performance measures are separable. For instance the longest path on the precedence graph (non-
resource-constrained makespan) is a non separable cost function as it depends on the combination of arcs chosen for
each subproblem and it is not possible to calculate independent contributions to makespan from each subproblem or
each arc. The same is true for most other resource or scheduling based objective functions such as resource utilization,
cycle times, and total tardiness.

6. Computational Insights for the POP
6.1 Object Oriented Design

The branch-and-bound algorithm was tested on  several real assembly examples. In this section, we briefly describe
the details of the implementation. All experiments were carried out on a personal computer with a 200 MHZ Intel
pentium processor and 64 M RAM in a Windows 95 environment. The code was developed in C++ and compiled on
Borland C++ v 5.01.  Six classes or object types used in the code were Gstar, Node, List, Item, bb_tree , bb_node. The
Gstar class represents the decision graph G . The Node class represents nodes on the decision graph. Each Node object*

has associated with it a linked list (class List) of predecessors and a linked list of Successors. The class List is
essentially a linked list of Items, where each Item contains an integer that is the number of the predecessor or successor
node and a pointer to the next Item. The partitioning algorithm coded for Gstar essentially consists of a number of calls
to functions  that identify the predecessors or successors of a given node. These are coded using the breadth first search
algorithm provided in Ahuja et. al. (1993). There are additional supporting functions for checking feasibility computing
bounds and evaluating objective functions where appropriate. The other two classes bb_tree and bb_node represent the
branch-and-bound tree and nodes in the tree. The algorithm is coded as a depth first search with backtracking using
recursion, as suggested in  Horowitz et. al. (1995).

6.2 Computational Results
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Table 1
Computational Results for Generation of All Precedence Graphs

Problem Parts Tasks NG* AG* NPP NT NF NL CPU Time

Ball Pen 6 6 6 4 2 5 1 2 0.0 s

F. Wheel 9 9 12 12 2 12 2 4 0.0 s

R. Wheel 10 9 18 24 0 22 0 8 0.0 s

Valve 13 13 6 4 2 5 1 2 0.0 s

AFI 1 11 18 60 56 19 1217 329 288 1.49 s

AFI 2 11 18 57 56 18 989 259 240 1.21 s

AFI 3 11 18 57 56 18 989 259 240 1.21 s

AFI 4 11 18 54 52 17 969 247 240 1.26 s

Table 1 provides a summary of the computational results on generation of all precedence graphs for the example
assemblies. Table 3 provides the results for optimization of sparsity for the same assemblies. The assemblies and the

constraints for each assembly are described in detail in Naphade(1997). The notation used in the tables is as follows:

N : Number of Nodes on decision graphG*

A : Number of Arcs on decision graphG*

N : Number of nodes preprocessed.PP

N : Total Number of nodes in the BCM treeT

N : Number of nodes fathomed by sparsity cuttingF

N : Number of nodes pruned because of bound based cutting (LLB>GUB)P

N : Number of Leaf Nodes in the tree (equal to the number of precedence graphs generated)L
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Table 2
The number of sequences and graphs on n nodes 

n n! N2

3 6 4

4 24 38

5 120 728

6 720 26704

7 5,040 1,866,256

8 40,320 251,548,592

9 362,880 66,296,291,072

The table provides a comparison of the different problems in terms of problem size parameters (such as number of
nodes on the decision graph) and the size of the branch-and-bound tree. In Table 1 note that we have generated over
19000 precedence graphs for the AFI. This seems like an unreasonably large number since it is known that the AFI
has only 440 total sequences. (De Fazio and Whitney, 1987). This number can be somewhat understood by taking a
look at the total number of precedence graphs possible for an assembly of n tasks. We are interested in N1 which is
the total number of acyclic labeled weakly connected digraphs on n nodes. An exact enumeration of such graphs is an
intractable problem and is not available in the current combinatorial enumeration literature, to the best of our
knowledge. However a  lower bound for this number is available. The number N2 of connected labeled graphs on n
nodes is a lower bound of N1. This is the case, since N2 enumerates all the non-directed graphs. From every graph
included in N2, an exponential number of acyclic directed graphs can be obtained by adding a direction to each arc.
Hence N2 is a lower bound of N1. Table 2 lists the values of N2 for n nodes along with the value of n! The value of
N2 has been taken from Harary and Palmer (1973). We observe that the lower bound N2 explodes enormously even
for small numbers.  From this perspective, the 1000 graphs obtained for AFI is not a very large number. Also not that
in addition to the establishment conditions, there are other factors such as pre-processing and fathoming which have

significantly reduced the number of graphs generated. In other words, we eliminated as many dominated graphs (or
graphs that are subsets of generated graphs) as possible. On the other hand, all these graphs are indeed counted towards
estimating N1. 

This observation uncovers a disadvantage of generating precedence graphs - there are many of them. However we see
that the computation time required is quite manageable, at least the example problems studied here. This is because,
even though every tree generates 800 nodes, each node on the tree requires only a linear computation. 
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Table 3
Computational Results for Sparsity Optimization

Problem NT NF NP NL Z* CPU Time

Ball Pen 5 1 0 2 1 0.05 s

F. Wheel 12 2 0 4 3 0.0 s

R. Wheel 22 0 0 8 6 0.0 s

Valve 5 1 0 2 1 0.05 s

AFI 1 839 198 96 134 9 1.1 s

AFI 2 689 153 80 116 9 0.88 s

AFI 3 689 153 80 116 9 0.88 s

AFI 4 793 175 64 160 9 1.05 s

In Table 1 we reported the results from generation of all precedence graphs. In the next set of computations we generate
precedence graphs with the least sparsity. This enables us to prune a large part of the branch-and-bound tree and obtain
solutions much more quickly. We note here that for this set of experiments,  the lower bound GLB2 was not used (Refer

section 5.3). Also, we did not solve the problems by separately solving subgraphs to take advantage of the separability
of the cost function (Section 5.4). Rather we simply used the branch and bound method  on the decision graph with
depth first search. The first leaf  provided the initial upper bound and the lower bound at every node was simply the
number of added arcs on the precedence graph corresponding to that node (LLB). In spite of this more primitive
implementation, we were still able to achieve computation times of less than 2 seconds for the largest problem solved.

6.3 The Disjunctive Paradox

We offer the following paradox related to this problem: 
Given a set of n tasks and e establishment conditions, suppose that there are s feasible sequences and p feasible
precedence graphs. If an extra constraint (in the form of a disjunctive establishment condition) is added to this
problem, s will decrease; however, it is also quite possible that p will increase ! 

For example suppose the original set of establishment conditions does not contain any constraints between tasks A,B
and tasks A,C. All p precedence graphs for this problem will have no arc between A,B or between A,C. Some of the
s sequences will contain A before B and/or C and some of the sequences will contain B and/or C before A. Now let us
add the establishment condition B or C ÷ A. As far as the sequence set is concerned, all sequences that contain A
before both B and C, will become infeasible, reducing s. However, each graph previously containing no arc (A,B) (A,C)
will now be replaced by two graphs, one with the arc  A÷B, and one with the arc A÷C.  This is assuming that the
decisions (A,B) and (A,C) are independent and do not force any other decisions on the graph. Thus it is quite possible
that a larger number of graphs is required to generate a smaller number of sequences. 

7 Problem Decomposition, Redundancy and Global Optimality
7.1 Alternative Decomposition Schemes and Redundancy
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D1 D2

Subproblem Constraints Included Subproblem Constraints Included

D1S1 (3 or 8) ÷ 9 , (3 or 8) ÷ 9 D2S1 (3 or 8) ÷ 9, (5 or 8) ÷ 9 

D1S2 (3 or 8) ÷ 9 , (5 or 6) ÷ 9 D2S2 (3 or 8) ÷ 9, (3 or 6) ÷ 9

D1S3 (4 or 6) ÷ 9 , (3 or 8) ÷ 9 D2S3 (4 or 6) ÷ 9, (5 or 8) ÷ 9

D1S4 (4 or 6) ÷ 9 , (5 or 6) ÷ 9 D2S4 (4 or 6) ÷ 9, (3 or 6) ÷ 9

Table 4
Alternative Decomposition Schemes

In Sections 5 and 6, we discussed methods to generate all precedence graphs or to find the optimal precedence graph
from one subproblem or decision graph. Recall (from Section 4) that when the original establishment conditions has
long (length > 2) clauses, we must decompose the problem into multiple 2-SAT subproblems. The branch and bound
method described in Section 5 then needs to be applied to each of these subproblems in order to generate a complete
set of precedence graphs, or to find an optimal precedence graph. Thus, how one decomposes a long clause could have
significant computational consequences.  In Section 4, we briefly described the issue of problem decomposition and
stated a simple-minded decomposition scheme. Now we are in the position to discuss this subject in much greater
details. 

Throughout the following discussion, we will refer to one disjunctive string of literals as an establishment condition.
For example we call the constraint “(3 or 8 or 4 or 6) ÷ 9" an establishment condition. There may also exist a different
establishment condition for the same task 9, say “(3 or 7) ÷ 9".  A problem decomposition method may have two
general steps as follows::

1. Split a long (length > 2) establishment condition i into several length 1 or length 2 sub-constraints. 
2. Select one sub-constraint belonging to each original establishment condition i and add this set of constraints
to the already existing length two constraints 

For instance, consider the following set of establishment conditions: 

(3 or 8 or 4 or 6) ÷ 9 (7.1) 
(3 or 8 or 5 or 6) ÷ 9 (7.2)

Let us assume that these are the only establishment conditions in the problem. We explain two decomposition schemes
(D1 & D2) as follows: 

D1: Split (7.1) as : (3 or 8) ÷ 9 ; (4 or 6) ÷ 9
Split (7.2) as : (3 or 8) ÷ 9 ; (5 or 6) ÷ 9

D2: Split (7.1) as : (3 or 8) ÷ 9 ; (4 or 6) ÷ 9
Split (7.2) as : (6 or 5) ÷ 9 ; (3 or 6) ÷ 9
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Figure 5
Redundancy

Table 4 lists the subproblems that
one would obtain using these
schemes. The first concept we
introduce is that of subproblem
elimination. Compare problems
D1S1 and D1S2. Recall that both
these subproblems will produce
precedence graphs which are
feasible. Observing D1S1, we may
conclude that the constraint (3 or 8)
÷ 9 by itself is sufficient to
guarantee feasibility. Thus the
graphs generated by D1S2 will be
overly constrained. According to the
definition of graph subsets in section
4.2, every graph generated by
solving  D1S2 will be a subset of
some graph generated by solving
D1S1. We are not interested in such
subset graphs because they do not
produce any new sequences, and they
do no better than their superset
graphs for regular performance
measures. Hence we can eliminate
D1S2 from consideration. We call
this process subproblem elimination. Note that D1S3 will be eliminated for the same reason. Thus if we use
decomposition scheme D1, we will need to solve only two subproblems, D1S1 and D4S4.

On the other hand we note that such subproblem elimination is not possible in D2.  If we compare any pair of
subproblems in D2, we find that one of them will produce at least one precedence graph which is not a subset of any
precedence graph produced by the other. So D1 is a preferable decomposition scheme because we need solve only two
subproblems as against four in D2.  

A second undesirable property exhibited by D2 is the existence of redundancy between subproblems. We say that there
is redundancy between two subproblems when they produce some common precedence graphs or one of them produces
some precedence graphs that are subsets of those produced by the other. According to this definition, there is a
redundancy in D1 between D1S2 and D1S1. However because this is a total redundancy as explained above, D1S2 can
be completely eliminated. There is obviously no redundancy between D1S1 and D1S4.  The same is not true for
decomposition scheme D2. We demonstrate the redundancy in D2 in Figure 5. The graphs in the intersection of set
S1 and Set S2 are generated by both the problems. If this redundancy was total as in D1, it could be eliminated.
However D2S1 generates some precedence graphs that are not generated by D2S2 (set S1-S11S2) , and vice versa (S2 -
S11S2). So to obtain a complete solution, one must solve both S1 and S2. This implies that some computational effort
is wasted in generating the same precedence graphs twice. 

Several questions regarding redundancy arise that we now pose - What is the cause of redundancy? Does the possibility
of redundancy always exist? If not, under what conditions does redundancy never exist ? If the possibility of redundancy
exists, is it possible to obtain a redundancy-free decomposition for any problem ? We address these questions in the
next subsection. 

7.2 Redundancy-free Decomposition Schemes

Clearly it is desirable to develop decomposition schemes that are free from redundancy . In this section we start our
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exploration by first investigating the reasons for redundancy.

Proposition 5
Redundancy exists only if the following necessary conditions are true:  

1. There is at least one long (length > 2) establishment condition. 
2. There are at least two establishment conditions for the same task, at least one of which is long, and they share

some common literals. 

Proof:

The reason for the first condition is obvious. For the second condition, let us now define commonality. We say that
there is commonality between two constraints if the same  arc or set of arcs can satisfy both constraints, e.g. the
constraints (A or B or C)  ÷ Z and (A or B or D) ÷ Z have a commonality of two, as either of the two arcs : A ÷ Z
and B ÷ Z satisfy both the constraints. Let us now turn our attention to condition 2 above which guarantees the non-
existence of redundancy in the absence of commonality.

Let us first assume that there is only one establishment condition for a task Z and it is long. Let the condition be 
(A or B or C or D) ÷ Z. (7.3)

If we decompose the condition as follows :

D3: Split establishment condition as (A or B) ÷ Z ; (C or D) ÷ Z 

D3S1 : (A or B) ÷ Z 
D3S2: (C or D) ÷ Z 

There is no redundancy above as D3S1 will have either A ÷ Z or B ÷ Z and D3S2 will have either C ÷ Z or D ÷ Z.
Thus it is clear that at least two conditions for the same task will be needed for redundancy to exist. 

Similarly it is easy to see that there must be commonality in the establishment conditions for redundancy to exist.
Consider the conditions below: 

(A or B or C) ÷ Z (7.4)
(D or E or F) ÷ Z (7.5)

and the following decomposition scheme :

D4 : Split 7.4 As (A OR B) ÷ Z ; C ÷ Z
Split 7.5 As (D OR E) ÷ Z ; F ÷ Z

D4S1 (A OR B) ÷ Z, (D OR E) ÷ Z
D4S2 (A OR B) ÷ Z, F ÷ Z
D4S3 C ÷ Z ; (D OR E)  ÷ Z
D4S4 C ÷ Z ; F ÷ Z

Since there is no commonality between constraints,  every precedence graph generated by each subproblem contains
at least one arc that is not imposed by any other subproblem and vice-versa. 

It is also true that no subproblem will generate a precedence graph that is a subset of a precedence graph generated by
another problem. Thus there will be no redundancy. This is true regardless of the length and number of long
constraints. We have thus proven that 
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For a given problem instance, there is no redundancy resulting from decomposition unless 
(1) There are at least two establishment conditions for the same task
(2) At least one of them is long 
(3) There is commonality of literals between the two conditions.

The above gives us a sufficient condition for a redundancy free decomposition. However it is not a necessary condition.
In other words, because of the possibility of subproblem elimination, one may be able to obtain redundancy free
decompositions even if the above three conditions exist. An example of this was demonstrated in Table 4. 

Proposition 6
If there are one or more pairs of establishment conditions with commonality, and there is no commonality in
between pairs, there is always a redundancy free decomposition.  

Proof:
To prove this, we use the tool of intermediate decomposition

Suppose two establishment conditions are as follows : 
(A  or A  or ...... or A  or B  or B  or .... or B ) ÷ Z (7.6)1 2 c 1 2 m

(A  or A  or ...... or A  or C  or C  or .... or C ) ÷ Z (7.7)1 2 c 1 2 n

The following intermediate decomposition DI suggests itself : 

DI : Split 7.6 as (A  or A  or ...... or A  ) ÷ Z 1 2 c

(B  or B  or .... or B ) ÷ Z                                                                     1 2 m

              
Split 7.7 as  (A  or A  or ...... o1r A  ) ÷ Z1 2 c

(C  or C  or .... or C ) ÷ Z1 2 n

DIS1 (A  or A  or ...... or A  ) ÷ Z ; (A  or A  or ...... or A  ) ÷ Z1 2 c 1 2 c

DIS2 (A  or A  or ...... or A  ) ÷ Z ; (C  or C  or .... or C ) ÷ Z1 2 c 1 2 n

DIS3 (B  or B  or .... or B ) ÷Z ; (A  or A  or ...... or A  ) ÷ Z1 2 u 1 2 c

DIS4 (B  or B  or .... or B ) ÷ Z ; (C  or C  or .... or C ) ÷ Z1 2 u 1 2 n

By the process of subproblem elimination, we eliminate DIS2 and DIS3. It is easy to see that the remaining
intermediate problems DIS1 and DIS2 are redundancy free according to Proposition 5. They will further be decomposed
into subproblems which will also be redundancy free. It is also fairly obvious that the above proposition extends to the
case where there exist several pairs of establishment conditions with commonality within the pair, but no commonality
in between pairs. 

The next logical question is what happens if there are three (or more) establishment conditions with mutual
commonality and at least one among them is long. Consider the following example :

A  or A  or A ÷ Z (7.8)1 2 3 

A  or A  ÷ Z (7.9)1 2 

A or A ÷ Z (7.10)2 3

In the above example, the condition (7.8) can be split in three ways : 
1. A  or A ÷ Z A  ÷ Z  1 2  3  

2. A or A  ÷ Z A  ÷ Z 2 3 1

3. A or A  ÷ Z A  ÷ Z1 3 2  
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This leads us to three decomposition schemes, each with two subproblems. These are listed as follows after constraint
elimination:
Decomposition I (D1)

D1S1: A  or A ÷ Z , A  or A ÷ Z1 2 2 3 

D1S2: A ÷ Z, A  or A ÷ Z3 1 2 

Decomposition II (D2)
D2S1: A  or A ÷ Z , A  or A ÷ Z2 3 1 2

D2S2: A ÷ Z, A  or A ÷ Z 1 2 3 

Decomposition III (D3)
D2S1: A or A  ÷ Z, A  or A ÷ Z , A  or A ÷ Z1 3 2 3 1 2

D2S2: A  ÷ Z 2

It is quite clear that each of the above decompositions lead to redundancy along the same lines as explained in Figure
5. Thus for this problem there is no decomposition that is redundancy free. This is related to the fact that there is a
different common set of literals between any two of the three conditions.

Proposition 7 
For the general case of n establishment conditions with commonality (n$$3), a redundancy free decomposition
scheme may not be obtainable. 
The above example constitutes a proof by counter example for Proposition 7.

From the literature, (cf. Ben-Arieh and Kramer(1994), Nevins and Whitney (1989), Li and Hwang(1992a), De Fazio
and Whitney (1987))  it seems that for most real world examples, all establishment conditions have disjunctions of two
or less than two literals. Among examples that have disjunctions of three or more literals, not all have commonality.
So the question of redundancy may arise only in rare cases. 

7.3 Level I Decomposition

Throughout the above discussion, we decomposed problems with long establishment conditions into subproblems with
establishment conditions of length two, with one length 1 establishment condition if the original long condition had
an odd number of literals. Let us call such a decomposition, a Level II decomposition.  For such a decomposition, we
investigated the issues of redundancy and subproblem elimination. 

Another option for decomposition is to split all establishment conditions into length one conditions and then form the
subproblems. We call this a Level I decomposition. There are two advantages of  doing this. First, the resulting
subproblems are always redundancy free (as we shall shortly prove). Second, there is only one Level I decomposition
for any subproblem and hence no choice needs to be made among decomposition schemes. The disadvantage is that
we are left with a significantly higher number of subproblems to solve.  

Consider the example in the previous section (establishment conditions 7.8 - 7.10). The Level I Decomposition DL1
is as follows: 

DL1: Split 7.8 as A  ÷ Z ;  A  ÷ Z ;  A  ÷ Z1 2 3 

Split 7.9 as A  ÷ Z ;  A   ÷ Z ;  A  ÷ Z ;  A ÷  Z1 2 4 5 

Split 7.10 as A  ÷ Z ;  A ÷ Z ;  A ÷ Z ; 2 3 5 

This leads  to 36 subproblems. We list the first 6: 

DL1S1:  A  ÷ Z , A  ÷ Z, A  ÷ Z1 1 2

DL1S2:  A  ÷ Z,  A  ÷ Z,  A  ÷ Z1 1 3
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DL1S3:  A  ÷ Z, A  ÷ Z, A  ÷ Z1 1 5

DL1S4: A  ÷ Z,  A  ÷ Z, A  ÷ Z1 2 2

DL1S5: A  ÷ Z,  A  ÷ Z, A  ÷ Z1 2 3

DL1S6: A  ÷ Z,  A  ÷ Z, A  ÷ Z1 2 5

DL1S4 through DL1S6 can be eliminated because of subproblem elimination. In the remaining subproblems, there is
no redundancy.  

It is easy to see that this is true for the entire decomposition. The reason is that a Level I decomposition decomposes
literals into conjunctive constraints. Hence the decomposition enumerates  all possible solutions to the long constraints.
If two solutions are identical, or one is overly constrained compared to another, subproblem elimination will eliminate
one of them. Eventually,  the process of subproblem elimination will completely eliminate all redundant solutions. Thus
the following proposition can be stated. 

Proposition 8  A Level I decomposition is always redundancy free

The disadvantage of a Level I decomposition, however, is a large number of subproblems. 

We have seen that a Level II decomposition may not necessarily result in a redundancy free decomposition, but yields
a smaller number of subproblems when compared to a Level I decomposition. There may be intermediate
decomposition methods (decomposition of some establishment conditions in a level I fashion and others in a level II
fashion) that yield redundancy free decompositions without producing as many subproblems as a level I decomposition
does.

7.4 Decomposition and Global Optimality

A very important issue associated with decomposition and solving the POP is that of global optimality. Consider the
following problem :

A  or A  or A ÷ Z (7.11)1 2 3 

A  or A  or A ÷ Z (7.12)1 2 4 

Two candidate decomposition schemes for the above problem are : 

D5: Split 7.11 as A  or A  ÷ Z ;  A ÷ Z1 2 3 

Split 7.12 as A  or A  ÷ Z ;  A ÷ Z1 2 4

After subproblem elimination, the remaining problems are : 

D5S1: A  or A  ÷ Z 1 2

D5S2: A ÷ Z , A ÷ Z 3 4 

D6: Split 7.11 as A ÷ Z ; A  or A ÷ Z1 2 3 

Split 7.12 as A  or A  ÷ Z ;  A ÷ Z1 2 4

After subproblem elimination, the remaining problems are : 

D6S1: A ÷ Z 1

D6S2: A  or A ÷ Z , A  or A  ÷ Z 2 3 1 2

D6S3: A  or A ÷ Z , A ÷ Z 2 3 4 
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Now let us compare the two decomposition schemes D5 and D7. We see that D6S2 may generate graphs containing
both the arcs A ÷ Z and  A ÷ Z . None of the subproblems of D5 will generate such a precedence graph. 3 1 

Thus, even if each decomposition scheme generates a complete set of precedence graphs from the point of view of
sequence generation, a given decomposition scheme will not generate all possible precedence graphs. This implies that
if we are trying to find the “optimal” precedence graph to solve a certain POP, we must, in the worst case, enumerate
all possible decompositions of the problem to ensure that all precedence graphs have been included in the solution
space. This leads to an  exponential number of decompositions, each having an  exponential number of subproblems
that need to be solved. This will result in an unrealistically large computational effort and also the possibility of large
amounts of redundancy between decomposition schemes as well as between subproblems of bad decomposition
schemes.    

More research needs to done on comparison of level I decompositions and different decomposition schemes from the
perspective of global optimality, redundancy and computational effort. It may be possible to  find conditions that prove
dominance of certain decomposition schemes over others for certain objective functions of the POP. Such conditions
will allow selection of a decomposition scheme which will generate a dominating set of precedence graphs thus
retaining the capability of obtaining the globally optimal solution to the POP.

8 Future Research Issues

There are several avenues for future research from this work and several issues that need to be further investigated.
These are as follows : 

1. Sequence based objective functions: In this work we developed a method for optimizing graph based objective
functions. However most problems of real interest are sequence based. For example the assembly line balancing
problem and the resource constrained project scheduling problem are classic problems of relevance respectively
to assembly lines and 1-of assembly projects. However since one precedence graph yields a multitude of
sequences, the ALB and RCPS problems are SOPs and not POPs. So the methods developed here cannot be
directly used for integrating assembly sequence generation and line balancing. In Naphade (1997) we provide
methods to solve both the SOP and POP for sequence based objective functions such as the ALB and RCPS
performance criteria. For sequence based objective functions, the POP is defined as identification of a precedence
graph or graphs that contain the optimal sequence. 

2. Decomposition Issues: Issues related to decomposition need to be further investigated. The most important issue
is one of global optimality. We demonstrated in Section 7.4 that in order to achieve global optimality for graph
based performance measures in the presence of decomposition, one may need to enumerate all decomposition
schemes, which is an enormous and unrealistically expensive computational effort. In order to  capture the global
optimum without this huge effort, we need to investigate the possibility of certain decomposition schemes
dominating others for certain objective functions. 

Another set of issues related to decomposition are those of redundancy. We proved in Section 7.2 that for the
general case, there are no decomposition schemes that yield redundancy free Level II decompositions. We
demonstrated certain special cases for which this was not true. More research needs to go into the possible
existence of other special cases where redundancy free Level II decompositions are possible. 

We noted that there is a unique Level I decomposition for every problem which is redundancy free. However the
number of subproblems generated is significantly larger. A computational study of the tradeoffs between these
two decompositions needs to be done. Such a study may evaluate the differences between solving a smaller
number of problems with redundancy and a larger number of smaller subproblems without redundancy. 

3. Other graph-based performance measures: Here we discuss performance measures other than sparsity that can
be used to select precedence graphs. 
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Figure 6
Sparsity is not always beneficial

The merits of Sparsity: We mentioned earlier that sparsity is beneficial since it implies a less constrained
precedence graph, more scheduling flexibility etc. However, the above statements are only “generally true”, in
that a sparser graph is not necessarily a better one. An example where sparsity does not benefit, is shown in
Figure 7. Graph 1 has six arcs, but tasks A, B, C can all be performed simultaneously if resources permit. On the
other hand, graph 2 has only four arcs, but the tasks A, B, C cannot be performed simultaneously. (A path on n
nodes is the sparsest connected graph, but it is also the graph which is most heavily constrained and has least
scheduling flexibility). 

Thus sparsity is not always beneficial even if a sparse graph will “generally” be better (less constrained) than a
dense graph. We described the application of our method to maximize sparsity  as a demonstration of its
computational efficiency. However the method can also be used for other regular performance measures such as
the ones described below:

a) Transitivity Adjusted Sparsity (TAS): Suppose, conjunctive arcs exist between nodes A,B and A,C, and
suppose the decision graph partitioning process imposes an arc from B to C. In this case, the resultant
graph has three arcs : A÷B, B÷C, A÷C. Thus to optimize S, we will try to minimize this number (N).
However, note that because of transitivity, the constraint A÷C is not necessary, and the “effective”
transitivity-adjusted number of arcs N  is 2. Thus optimizing N  makes more sense than optimizing N.t t

b) Transitivity Adjusted Node Disjoint Paths (TANDP): A higher number of node disjoint paths in a graph
again indicates that there are many activities that can be done in parallel. (Figure 7). Transitivity
adjustments are necessary for a more meaningful evaluation.

The graphs in Figures 7 and 8 both have the same number of TANDP, but the graph in 8 is clearly more
constrained than the one in 7. This leads us to consider joint optimization of TANDP and TAS.

c) Weighted TAS & TANDP : Intuitively, this tries to remove the arcs that are not on the node disjoint
(parallel) paths on the graph in Figure 8, allowing any two activities on different node disjoint paths to
be executed simultaneously.



Figure  7
Node Disjoint Paths

Figure 8
What's wrong with NDP
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d) Average Nodal Indegree (ANI): If the average nodal indegree is large, one can say that roughly, an
activity has many  predecessors. Thus an activity will have to wait for many other activities to be
completed, thus minimizing ANI may be beneficial. 

With the same rationale, we may want to maximize the Average Nodal Outdegree (ANO). However
maximization of ANO is not a regular performance measure, and the methods developed here cannot be
used to optimize it. 

e) Average Total Number of Predecessors (ATP): This measure extends the idea behind ANI to include
all predecessors of an activity instead of just the immediate predecessors. 

4. Optimization in the presence of Randomness: In many cases, the actual execution of an assembly schedule may
be subject to randomness in the form of random processing times, breakdowns of machines and so forth. In such
cases the robustness of an assembly plan (or schedule) is more important than the deterministic objective
function. Thus one direction for future research is generation of assembly precedence graphs that are robust - for
which the cost function does not deteriorate greatly in the presence of randomness. A related problem is
identification of measures based on the structure of the graph that can predict or are correlated to the robustness
of the graph. A specific avenue for research on this problem is to use our method to generate a set of graphs that
optimize deterministic measures such as the ones listed above and then use simulation to test the performance
of these graphs in the presence of randomness. 

9. Contributions, Strengths and Weaknesses. 

The methods developed in this paper have the following shortcomings:

1. The starting point is a set of Establishment Conditions. This set of establishment conditions can be arbitrarily
complex for large products or subassemblies. The more complex the establishment conditions, the more difficult
it is for engineers to extract them accurately based on the product design. Also, the methods developed in this
paper are especially applicable to complex and challenging sets of establishment conditions. More research needs
to be done on automatic generation of
establishment conditions or assembly
constraints, so that the extraction of
complex establishment conditions
becomes easier. Some such research
can be found in Delchambre and
Wafflard (1991). 

2. There is an inherent disadvantage to
generating precedence graphs instead
of generating sequences, due to the
fact that the number of precedence
graphs is typically a few orders of
magnitude greater than the number of
sequences. This indicates that one
sequence may be generated from many
different precedence graphs. However
we believe that the computational
results demonstrated in this work
present a convincing argument for the
use of precedence graphs, since for
moderately sized problems commonly
used in the literature, the computations have been of the order of seconds.
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We think that the above drawbacks are more than compensated for by the several contributions and strengths of the
methods described below:

1. Rigorous Optimization Methodology: The first contribution is the framework itself. To the best of our
knowledge, this is the first rigorous methodology that optimally solves the precedence selection problem. This
framework can be used by other researchers to develop search algorithms in order to select assembly plans based
on quantitative measures that are of relevance to their specific process design or manufacturing scenario.

2. Computational Efficiency: We demonstrated that inspite of dealing with a much larger solution space of
precedence graphs, our method optimized sparsity within an extremely small  computational expense. 

3. Simultaneous connections between more than two parts: Since we base our analysis on tasks as against parts,
our method is applicable to liaisons between any number of parts. If an assembly exists in which connecting more
than two parts together seems to be a natural task, that task can be easily represented as a node on a precedence
graph. Also, another way in which three parts (e.g. a, b, c) may be connected together, is by simultaneously
establishing the liaisons between a , b and b , c. This is equivalent to parallel performance of two tasks modeled
in the precedence graphs as nodes - which is quite obviously being incorporated in our method.

4. Improvements over existing methods for the POP: There have been several attempts at automating not only
the generation but also the selection of assembly plans in the literature. We believe that this paper provides the
following contributions in relation to previous literature:

(i) Chen and Henrioud (1994) outline a method for systematic generation of precedence graphs. However they
provide no complexity analysis or computational results. 

(ii) Bonneville et. al. (1995) use a genetic algorithm for integrated generation and evaluation of assembly
plans. However they start off with a few feasible assembly plans provided by an expert and generate new
plans by identifying common subassemblies within the plans that they have. This method is not a complete
plan generation method as it is limited by the subassemblies that exist in the initial set of plans. For this
reason and also because the solution methodology is a GA, this method cannot guarantee optimality.

(iii) Delchambre and Gaspart (1992) develop a prototype user friendly software for generation and evaluation
of assembly plans based on the constraint extraction method of Delchambre and Wafflard (1991). However
their method does not rigorously deal with disjunctive constraints, nor does it use quantitative methods
for selection of Assembly Plans. They develop an interface through which the user can view several
assembly plans and evaluate them based on quantitative and/or subjective measures. 
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