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ABSTRACT

We study the fuel procurement problem for electrical utilities under uncertain demand and market

price.  Long-term contractual supply commitments are made at a set price with fuel suppliers at

the beginning of each year.  Each month the procurement planner can use fuel from these

contracts or purchase fuel at the current market price.  We propose a two-phase heuristic to

determine a procurement plan.  In the first phase the minimum contract purchases for each month

are determined at the beginning of the year.  In the second phase, given the minimum contract

purchases, the more detailed procurement decisions are determined at the beginning of each

month with the most up-to-date information.  We perform intensive computational experiments

which show that the heuristic produces high quality solutions comparable to a rolling horizon

stochastic programming heuristic, is easier to maintain and generalize, is computationally faster,

and is robust to random fluctuations in demand requirements, spot market prices, and other

sources of uncertainty.

1. Introduction

Procurement from outside suppliers is a capital-intensive decision that often accounts for a

large portion of the total operating costs.  This research is motivated by our experiences with the
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fuel procurement problem of a mid-size electrical utility in the Northeast.  During 1994, the cost

of fuel procurement for this utility was approximately $459 million or 32.5% of the company's

total operating and maintenance costs.  In other words, a mere 3% reduction in fuel procurement

costs could save the utility in excess of $10 million dollars annually.

Traditionally, utilities have long-term contractual commitments for a percentage of their

projected annual demand to assure a committed supply of fuel.  The remaining demand is

procured through monthly spot market purchases, i.e., purchases at the current market price.

Single or multiple year supply contracts provide an uninterrupted supply at a pre-negotiated price;

however, the utility is locked into procuring designated quantities (paying an “underlift” penalty

for taking less than the minimum committed amount) and is locked into a price that is usually

higher than the current market price.  Spot market purchases are usually at lower prices and

complete flexibility; however, are at risk for uncontrolled price increases or sharp decreases in

supply.  Development of a procurement strategy must take into consideration the dynamic nature

of demand requirements and spot market prices.  The procurement model must be able to both

satisfy the pre-negotiated contract quantity commitments and take advantage of favorable spot

market prices

In the utility industry annual procurement planning can be summarized as one of two basic

approaches.  In the first, "myopic," planning approach procurement decisions are not made until

the last moment. This method allows the manager to take into account the most up-to-date

demand and spot market prices' information.  Nonetheless it often fails to take a long-term

perspective to the overall procurement cost.  The second procurement planning approach can be

viewed as "static" planning.  Prior to the beginning of each year, a detailed monthly procurement

plan is determined.  The strategic plan is typically developed with the objectives of minimizing
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total procurement cost over the planning horizon while meeting all contract commitments.  The

plan is devised based on demand forecasts and other presumptions derived from historical data.

Although this approach does take a global point of view to the procurement strategy and ensures

all contract commitments are satisfied, it does not provide the flexibility to factor up-to-date

information into the procurement decisions.  As a result, the utility has limited ability to take

advantage of low spot market prices, or procuring larger quantities from contracted sources if

spot market prices exhibit sudden increases, e.g., the harsh winter in 1993-94, or the United Mine

Worker strike in 1992.

In order to minimize total procurement costs, the utility must have the flexibility to adapt

their procurement strategies to changes in initial assumptions. A completely specified procurement

plan, maybe optimal at the time it is generated, is extremely vulnerable to changes.  On the other

hand, some global planning is necessary to properly balance contract and spot market purchases

over time.  In this paper, we describe a decision model designed to address main practical issues

of short term planning by incorporating the merit of both "static" and "dynamic" planning.  More

specifically, the method maintains a global view of the long-term (annual) procurement strategy

while providing the flexibility for decision-makers to adapt the strategic plans to unforeseen

demand and spot market price deviations (monthly).

Although much of the discussion in this paper focuses on fuel procurement for utility

companies, much broader implications can be made for other related applications.  For instance,

most contracted procurement problems must address the trade-off between long-term reserved

sources of supplies and short-term cost saving opportunities.  Applications in non-procurement

contexts are also likely.  For instance, Brown and Lee (1997) described a similar problem in

supply chain management where semiconductor manufacturers make long-term reservation of



- 4 -

future capacity at subcontract foundries.  The goal is to develop flexible contract agreements that

maximize long-term savings while hedging against volatile market fluctuations in the short-term.

1.1 Related Literature

Quantitative treatments to the procurement planning problem appears quite sparse in the

literature. A majority of the research deals with qualitative vendor evaluation schemes.  This line

of work will not be reviewed here.  There are a few quantitative models exist in the literature that

addresses lower level, detailed purchasing decisions. Anthony and Buffa (1977) suggested a

transportation model for static “purchase scheduling” problem that determines a multi-period

purchasing plan for a given planning horizon. More recently Kingsman (1986) proposed a model

for commodity purchasing decisions taking into account prices fluctuations.  Pan (1989)

developed an LP model for contract selection that determines the number of suppliers to select

and allocation of order quantity among the suppliers. Several researchers proposed mixed integer

programming models for detailed purchasing decisions (c.f., Gaballa (1974), Narasimhan and

Stoynoff (1986), and Bender et al. (1985)).  Most of the above models are static by nature where

all purchasing decisions are made a priori at a specific point in time and no recourse is allowed

for uncertain events such as demand and price fluctuations.  The research in inventory theory also

addresses some aspect of procurement planning. In particular, review policies for multi-level

inventory systems with stochastic demand capture the essence of some procurement decisions

(see Axs@ter (1993) and Federgruen (1993) for an excellent review). However, generalized

version of these models is very difficult to solve and remains to be an active research area.

The Contract Mix Model developed by the Electric Power Research Institute (EPRI 1989)

addresses more practical issues in procurement planning.  The focus of this model was on long-

term fuel procurement decisions based on a cost analysis of pre-determined fuel contracting
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strategies.  However, the model focuses on long-term contracting strategies rather procurement

strategies.  Sponsored by EPRI, Morris et al. (1987) developed a Utility Fuel Inventory Model

(UFIM) to help electric utilities set long-term fuel inventory strategy.  UFIM is an integrated

decision tool based on Monte Carlo simulation.  The model focuses on long term planning issues

related to supply disruption, fuel burn uncertainty, emergency management and seasonality.

2. Problem Statement and The Two-Phase Optimization Model

In the fuel procurement problem, a set of m contracts is given which have been negotiated

and are in effect for the current year.  Each contract i specifies a unit price pij for each month j, a

minimum committed annual quantity li  and a maximum allowable annual quantity ui .  The

decision-maker has the flexibility to procure any amount within the contract quantity range [li ,ui ].

Spot market purchases are also considered as a source of fuel supplies to meet the monthly

demand requirements.  Forecasted unit spot market prices sj for each month j=1,...,12, and

forecasted monthly demand requirements dj are given at the beginning of the year.  The actual

spot market price s j is available at the beginning of each month, while the actual demand d j is

known at the end of each month.  There is an inventory holding cost h, for each unit of fuel

carried over for each month.  Moreover, the utility maintains a safety stockpile inventory I that

could be used during the month to meet certain demand shortfalls, but it must be replenished to its

original level at the beginning of each month.  The objective of procurement planning is to

determine the exact fuel purchasing quantity no later than the beginning of each month so as to

minimize the ultimate annual fuel cost, while ensuring all demand requirements and contract

quantity commitments are satisfied.  As discussed in Bonser, Wu and Storer (1996), if the

statistical distribution of demand requirements and spot prices is known a priori, this problem can

be formulated as a multi-stage stochastic program as follows:
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The stochastic program minimizes expected costs over all possible demand and spot price

scenarios in T=12 periods.  The first set of constraints defines the inventory carrying over from

period j-1 to j.  The second set of constraint states that the lower and upper limits specified by

each contract must be satisfied.  The third set of constraints indicates that the safety stock

inventory I must be replenished and the monthly demand must be satisfied.  The above stochastic

program has two major difficulties: first, it assume that the probability of each demand and spot

price scenario is known a priori, which is restrictive and somewhat impractical. Second, the

number of scenarios suffers combinatorial explosion as we try to consider  “reasonable” demand

and spot price fluctuations.  Consequently, solving a twelve-stage (one for each month) stochastic

program with uncertain demands and spot prices would be computationally infeasible for a

realistic-size fuel procurement problem.  A computational feasible heuristic is necessary to tackle
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Thus, the contract allocation problem may be posed as follows: we are given m

contracts (i=1,...,m ) that each has a known minimum committed annual quantity  li  and

maximum allowable quantity ui.  The planning horizon is n months, each month has a

monthly contract quantity allocation bj ( j=1,...,n ) computed from (2.1).  The objective is

to determine the minimum amount of fuel to be purchased from contract i for each month

j to minimize the expected annual fuel procurement costs while satisfying the contract

allocation requirement bj. Let decision variable xij be the minimum quantity allocated from

contract i to month j.  Let the actual quantity of the fuel that we desire to purchase from

contact i in month j be defined as:

q
x l u

lij

ij i i i i

i
i=

⋅ ⋅ + − ⋅
∈

( ( ) )
, [ , ] ( . )

α α
α

1
0 1 2 2

Where α i  is the estimation index. In practice, the estimation indexα i  can be justified by the

purchasing strategies of the utility.  For example, if one supplier is strategically more important

than another, the utility may want to purchase considerably more than the minimum quantity from

this supplier.  On the other hand, index α i  estimates a priori the actual contract purchases in

anticipation of demand and spot price uncertainty.  The contract allocation problem can be stated

more formally as follows:

pij  = price of contract i for month j

sj = per unit spot market price for month j

Ki= maximum number of delivery allowed for contract i

M= a sufficiently large number
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splitting of contracts over multiple months based on the delivery agreement.  Problem (CAP) is

similar to a classical transportation problem with the addition of delivery restrictions, a

complication that makes the problem much more difficult to solve.

As illustrated in Figure 1, the minimum contract allocation values xij determined by the

above model impose constraints for the monthly procurement decisions described in the following

section.

2.2 Phase II: Monthly Procurement Planning Model

Phase II is a rolling horizon, detailed procurement model to be resolved at the beginning

of each month.  We formulate the base model as a twelve-month horizon linear programme which

uses the contract allocation given in Phase I and decisions made in previous months as constraints.

This monthly procurement planning (MPP) model is implemented as follows: for any given month

j, we divide the twelve month horizon to three basic periods, the current month k, the months

before k (j=1,..,k-1), and the future months (j = k+1,...,n).  As shown in Figure 2, the spot price

s j  and demand d j  for each period are set as follows: for the months preceding the current month

(j=1,..,k-1) we use actual spot price s j and actual demand d j  incurred in these months.  For the

current month k, we use actual spot price s k  and forecast demand dk .  For the future months (j =

k+1,...,n) we use forecast spot price s j  and demand.

( )yij         ( )yik                     ( )qij

( , )s dj j ( , )s dk k ( , )s dj j

     j < k     k                      j > k
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Figure 2. Planning horizon of the monthly procurement model

Given the above setup, up-to-date information concerning demand and spot prices is used for the

monthly procurement decision.  This model is “rolling horizon” in the sense that when making

detailed procurement decision for month k we utilize information throughout the twelve-month

planning horizon. For any given month k, we are given spot prices and demand information, the

minimum quantity allocated from contract i to k ( x ik for i=1,...m), contract prices, and annual

minimum and maximum contract commitments ( li  and ui  respectively) for each contract i.

Variable yij  specifies the quantity to be purchased from contract i during month j.  As shown in

Figure 2, for month k we use the actual purchase quantity of earlier months yij  (j=1,...,k-1) and

the projected purchase quantity for future months qij ,(j=k+1,...,m) from (2.2) as inputs.  The

decision variable is yik , the quantity to be purchased from contract i for current month k.  The

monthly procurement problem is described as follows.

ym j+1,  = spot market quantity purchased during month j, for j≤ k

qm j+1,  = estimated spot market quantity purchased  for month j, for j> k

CC  = monthly inventory carrying cost
C j  = quantity carried over from month j into month j+1

(MPP): The objective of the monthly procurement model is to minimize total fuel procurement
cost c(k) defined as follows:

(i)  total cost of contract purchases

c(k) = p y p y p qij ij
j
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(iii) total monthly inventory carrying charges for any quantity bought in excess of the demand for
the month

CC C j
j

n

=
∑

1

  (2.9)

The constraints used in the model are defined as follows:
(i) the purchase for month k is restricted by x ik , minimum quantity allocated for contract i in

month k.  If there is nothing allocated from contract i for month k, set yik to zero. This constraint

enforces the delivery restriction (2.7) specified in Phase I.

if ( ) ( )x then y x iik ik ik> ≥ ∀0 (2.10)

if ( ) ( )x then y iik ik= = ∀0 0

(ii) the total contract purchases for each vendor i must fall within the range specified by the
committed annual maximum.  Note that the annual minimum is automatically satisfied by Phase I
calculation.

iuqy i

k

j

n

kj
ijij ∀≤+∑ ∑

= +=1 1

(2.11)

(iii) the sum of all contract purchases and spot market purchases for month j and the carryover
quantity from the prior month must satisfy the forecast demand of the month

y C dik
i

m

k k
=

+

−∑ + ≥
1

1

1 (2.12)

(iv)  define the carryover quantity for each month as the sum of total contract and spot market
purchases for month j and the carryover quantity from the prior month, less the demand for j.
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(v) non-negativity constraints.

y Cij j, ≥ 0 (2.14)
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2.3 A Monte Carlo Testing Environment

In testing and evaluating the two-phase model we setup a Monte Carlo simulation

environment for the entire planning period. In the Monte Carlo model, the actual demands and

spot prices are generated as a random perturbation from the forecast.  The forecasts are generated

randomly based on statistical distributions derived from real data.  Specifically, the mean and

variance for the demand and spot price of each month of the year were estimated from a

Normality fit of the historic data.  Given the parameters, the demand and spot price forecasts for

each month are generated independently, e.g., the January demand and spot price are generated

from a Normal distribution derived from the historic January data.  In this way, seasonality and

other time-related fluctuation over the course of a year is captured.

We first solve the contract allocation problem (CAP) which finds the minimum quantity

allocated (xij ) from contract i to month j. This minimum contact allocation becomes input

parameters to be used in each monthly procurement problem (MPP) which is resolved at the

beginning of each month.  This results in a series of twelve linear programs where the output of

one month is used as input to all the following months. For instance, the actual purchases yi1

(i=1,...,m+1) made during January result in either inventory carryover or demand shortfall.  In the

case of a shortfall, we assume it is automatically filled by the safety stockpile (I)  (as stated in

Section 2) and the usage will be replenished as additional demand requirements for February.  In

the case of inventory carryover, the additional inventory will be available for future use with a

carrying charge.  Using the actual spot market price for February, the second linear programming

model is adjusted and procurement decisions are generated for February.  The results of this

model then provide input, as described above, into the model for March.  All twelve monthly
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Step 1. Start examining solutions in the problem space neighborhood of the incumbent 
r
s * .

Initialize the working problem data vector with the incumbent, i.e., set 
r r
s s← * .

repeat N times...
begin
Step 2. Initialize the set of unassigned contracts U to all the contracts; set available 

contract quantity 
~
l  to its minimum annual quantity, i.e., set 

~
l li i← , i=1,..,m..  

Step 3. Assign contracts to month.  Sort the months j=1,...,n in descending order of their
spot market prices s j  (as defined by the working problem data vector 

r
s ), use [j] to index

the sorted sequence, i.e., s s s n[ ] [ ] [ ]...1 2≥ ≥ ≥ .

for month [j] = 1,..,n do
   Sort unassigned contracts in set U in ascending order of their contract prices
  pi j[ ] , use [i] to index the sorted sequence, i.e., p p pj j U j[ ][ ] [ ][ ] [| |][ ]... .1 2≤ ≤ ≤

for contract [i]=1,...,|U| do
    if  

~
[ ] [ ]l bi j≤  then assign all available quantity of contract [i] to month [j],

     i.e., { }set x l U U ii j i[ ][ ] [ ]

~
, / .← ←

    Otherwise, assign the available quantity of contract [i] to month [j] up to 

    the monthly allocation b j[ ] , i.e., set x b l l bi j j i i j[ ][ ] [ ] [ ] [ ] [ ],
~ ~

← ← − .

end_do;
end_do;
Step 4. Calculate the current contract allocation cost z (defined by (2.3)) using 
the original spot price vector ( , , ... , )s s sn1 2 , and current contract assignment x .  Save 

z,x and current problem data vector 
r
s .

Step 5. Perturb each element of the incumbent problem data vector 
r
s * and save it as a 

working data vector 
r
s as follows:

 s s Uniform u uj j← + −* [ , ] , j=1,...,n

(where u is a user defined parameter)
(go to Step 2)
end;

Step 6. From the N solutions generated in Steps 2-5, find the lowest cost contract allocation, if its
contract allocation cost is less than the current incumbent, then replace the incumbent contract
allocation, i.e, if z< z then set z z x x s s* * *, , , .← ← ←

r r r

Step 7. If there is no improvement in the past two iterations (2N solutions), stop; otherwise, go to
Step 1.

end;
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The steepest decent method generates a neighborhood of size N, and examines a maximum

of K neighborhoods.  As shown in Step 5 we generate alternative neighboring solutions by

perturbing spot market prices using a Uniform distribution, i.e.,

s s Uniform u uj j= + −[ , ] j=1,...,n.

In each iteration, the search algorithm investigates the neighborhood of the incumbent solution by

perturbing the spot market price vector N times.  The basic strategy of the heuristic is to match

“high cost contracts” with months which have “low spot market prices,” and vice versa.  Each

solution x is an assignment of the m contracts to the n months so as to satisfy annual minimum

commitment for all the contracts.  Each solution is evaluated by the objective z as defined in (2.3).

Testing of the above heuristic is detailed in Section 4.

4. Computational Experiments

To submit the proposed method for rigorous testing we compare the computational results

of the two-phase model with two benchmarks: a multi-stage stochastic programming heuristic

developed in (Bonser, Wu and Storer, 1996), and a “perfect information” linear programme

(detailed in Section 4.4).  We coded the problem space search algorithm for (CAP), the input

management for the (MPP) linear programs, and the Monte-Carlo testing environment using

FORTRAN 77.  The linear programs and the stochastic programme are implemented in

FORTRAN with function calls to the LINGO/LINDO.  An IBM RS6000 workstation was used

for all computational runs.  Main purpose of computational experiments is two folds: first, to test

the performance of the proposed method by comparing its performance to the two analytic

benchmarks, second, to test the robustness of the methods when demand and spot market prices

fluctuate. The computational experiments can be summarized as follows:
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1. Parameter tuning experiments for the Contract Allocation Heuristic

2. Comparing the two-phase method against the rolling horizon stochastic programming heuristic

under the following conditions:

2.1 when the actual spot market prices deviate 15%, 30%, 45% and 60% from forecast

2.2 when the actual demand deviates 15%, 30%, 45% and 60% from the forecast

2.3 when the actual demand and spot market prices both deviate (ranging from 15% to 

30%) from the forecast

2.4 when a biased forecast (i.e., a strict over- or under-forecast) was made for the spot 

market prices

2.5 when a seasonal demand variation (peak demands in winter and summer) is imposed

3. Comparing the two-phase method against the “perfect information” linear programming model

based on the same conditions specified in (2.1)-(2.5).

In the following sections, we discuss the details of these experiments and their results.

4.1 Experiment 1: Parameter Tuning Experiments for the Contract Allocation Heuristic

Parameter tuning of the Contract Allocation Heuristic involves the development and

testing of numerous versions of the heuristic and values for the parameters.  In this part of the

experiment we try to address two particular issues: first, how are the specific design alternatives

in the heuristics justified by empirical results, and second, how are specific parameter settings

(e.g., the values for parameters N, K and u) of the heuristic tuned according to information

available regarding real world data.  To demonstrate a broader applicability of these results, the

set of instances we use for parameter tuning are different from the instances we use for the
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remainder of the experiments.  Results of the parameter tuning experiments are summarized in

Table 1.  Details of the parameter tuning experiments can be found in Bonser (1995).

Table 1. Summary of the Parameter Tuning Experiments

Factors Levels

Problem data to be perturbed Contract Prices ( pij ), Spot Market Prices ( s j )*

Perturbation parameter (r) r=.10, and .20*

Neighborhood size (N) and
Max. # of iterations  (K)

(N=100, K=100),(N=50,K=100)*

Weighting factor (α ) .8,.6,.4,.2, and conditional*

* level selected as the result of parameter tuning experiments

4.2 Experiment 2: Two-Phase Method vs. Rolling Horizon Stochastic Programme

As discussed in Section 2, the multistage stochastic program for procurement planning is

not tractable in its original form. Various computational strategies are available which could make

the stochastic program more efficient (c.f., Ermoliev and Wets, 1987). In this paper, we use the

stochastic programming heuristic (SPH) developed in (Bonser, Wu and Storer, 1996) to establish

a benchmark for the proposed two-phase heuristic optimization scheme.  This heuristic reduces

the size of the scenario space by considering only demand uncertainty and limits the model to

solve for three-stages at a time. These three-stage stochastic programs are re-solved monthly and

implemented in a rolling-horizon basis for the twelve-month period.

In order to make a fair comparison between the results of the proposed method and SPH,

a few modifications had to be made as follows: first, the SPH model assumes a discretized

demand distribution, therefore the “actual” demand generated in the Monte-Carlo testing is made

consistent to this assumption.  Second, the SPH model assumes that the inventory level at the end

of the three-month period must be equal to the safety stockpile inventory.  Consequently we need

to put in an adjustment term when calculating the total procurement cost for the two-phase
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remains fairly stable throughout all sub-experiments, we make a general comparison of the CPU

requirement for the 10 test instances used in the experiments.   The CPU time summarized in

Table 2 is reported by running the contract allocation heuristic (Phase I) and the stochastic

programme on a IBM RISC/6000 Model 990 machine.  As shown in the table, the heuristic

generates 12 monthly procurement plans in an average of 2.7 seconds, compared to the average

of 370.2 seconds needed for the Stochastic Programming Heuristic.  In other words, the contract

allocation heuristic takes less than 1% (0.73%) of the time it takes the Stochastic Programming

model to reach a solution.

Table 2.  Comparison of CPU Requirement on a IBM RS/6000 Model 990

Instances 1 2 3 4 5 6 7 8 9 10 Avg.
Contract

Allocation
Heuristic

2.6 2.8 2.6 2.8 2.6 2.8 2.6 2.8 2.6 2.8 2.7
(sec.)

Stochastic
Program

369 366 366 384 381 379 361 362 359 375 370.2
(sec.)

 The time required to run the monthly procurement linear programming model is not included in the table.  For
the problem tested the LP takes less than 1 CPU second to solve.

Experiment 2.1 - Spot Market Price Fluctuations

In this experiment we consider four different scenarios focusing on the fluctuation of spot

market prices from the forecast.  The experiments are conducted in the Monte-Carlo testing

environment where the actual spot prices (sj, j=1,...,n) are random variables generated by

perturbing the forecast prices (sj, j=1,...,n) as follows:

[ ]s j = + ⋅ ⋅ − =s s pct Uniform where pctj j 11 015 0 30 0 0 60, . , . , .45, .

Table 3 shows the comparison of the two-phase heuristic to the rolling horizon stochastic

programming heuristic.  Four different scenarios are simulated each corresponding to a different

levels of spot price variation (i.e., pct=0.15,0.30,0.45,0.60). Each scenario was tested under the
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five test problems each with two random number seeds (10 replications).  The table shows the 12-

month simulation results of the two-phase heuristic, and the simulation results of implementing

the stochastic programming model in a rolling horizon.  The 95% confidence intervals of the

mean, and the minimum, average and maximum percentage differences of the two methods are

computed from 10 replications.

As shown in the table the two-phase heuristic produces comparable results as those

produced by the SPH model.  When the level of spot price perturbation (pct) reaches a higher

level, the heuristic appears to behave in a more robust fashion when compared to the stochastic

program.  Not only does the average percentage difference favor the heuristic (-2.959% and -

1.206%), the means are lower and the confidence intervals are narrower.  Note that both the

heuristic and the stochastic program uses forecast spot prices for future months while using actual

spot prices for the current and past months.

Table 3. Two-Phase Heuristic vs. Rolling Horizon SPH Under Spot Price Variations

Two-Phase Heuristic Stochastic Programming Percentage Difference*

Spot Price
Variations

(pct)

mean 95%
confidence

level**

mean 95%
confidence

level

min avg. max

0.15 276232.0 13986.22 276156.6 14307.22 -2.1 0.047 1.45
0.30 276539.8 15245.55 276194.4 14755.12 -3.73 0.1339 3.98
0.45 264399.0 10563.74 273402.8 16705.75 -9.15 -2.959 3.45
0.60 260812.7 10363.29 264268.7 12224.15 -6.7 -1.206 3.62

*Percentage Difference of the two methods; calculated as (v(Heuristic)-v(SPH))/v(SPH)) in %
**95% confidence level of mean; calculated from 10 replications

Experiment 2.2 - Demand Level Variations

This experiment is similar to that of 2.1 except that we consider demand level variations

from the forecast. The experiments are conducted in the Monte-Carlo testing environment where
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parameter fluctuates in an erratic fashion (as in Experiments 2.1 and 2.2).  Both methods appear

to be quite robust under either condition.

Table 5. Two-Phase Method vs. Rolling Horizon SP when Spot Prices and Demand Both Vary

Two-Phase Heuristic Stochastic Programming Percentage Difference
Scenarios

(demand,spot)
mean 95%

Confidence
Level

mean 95%
Confidence

Level

min avg. max

(0.15,0.15) 274050.1 10441.09 272794.6  9806.38 -0.98 0.446 1.45
(0.15,0.30) 274223.6 11037.80 272467.5 10865.45 -2.06 0.660 4.24
(0.30,0.15) 284215.4 15752.45 285571.2 13111.08 -4.56 -0.562 1.96
(0.30,0.30) 288701.0 19150.43 288056.7 14364.36 -4.91 0.079 5.23

Experiment 2.4 - Forecast Bias On Spot Market Prices

In the previous experiments the demand and/or spot price fluctuations are centered at the

original forecast.  Despite of the level of fluctuation the forecast still represents an accurate

estimation of the population mean. In this experiment we test the performance of the two methods

when the forecast does not estimate the population mean correctly.  Table 6 summarizes the

simulation results where the forecast spot market prices underestimate the actual by up to 30%

(i.e., the actual prices are randomly generated from the forecast prices anywhere from 0 to 30%

higher), or overestimate the actual by up to 30%.  The two scenarios are marked 30%-under and

30%-over, respectively.  As shown in the table, the heuristic and the stochastic program again

demonstrate comparable results.  In the case where the forecast over-estimate the actual spot

prices, the heuristic appear to better take advantage of the situation, showing a lower mean and

narrower confidence interval.

Experiment 2.5 - Seasonal Demand Variations

In the previous experiments the demand variation are applied uniformly to all the months

of the year.  But in reality, the level of demand variation often reflects a seasonal trend.  For
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4.3 Experiment 3: Two-Phase Heuristic vs. The Perfect Information Benchmark

To establish an additional set of results for comparison in a 12-month planning horizon,

we construct a “perfect information” benchmark as follows: first use the Monte Carlo testing

environment (Section 2.3) for the testing of the two-phase search heuristic.  During the Monte

Carlo experiments we record the “actual” demand ( d j ) and spot prices ( s j ) generated by

simulation.  Using this “hindsight” perfect information (i.e., setting d d s s jj j j j← ← ∀, , ), we

solve the (MPP) linear programme described by (2.9)-(2.14) in Sections 2.2.  The solution of the

linear programme is optimal if the decision-maker had access to perfect future information

concerning demand and spot market prices. Obviously, this optimum model does not exist in

reality, however it establishes a theoretical optimal given a specific demand and spot market price

scenario.  Input to the perfect information model includes actual contract costs, quantity

commitments, actual monthly demand quantities, and actual monthly spot market prices.

Inventory carrying charges for the safety stockpile are also included as a monthly cost.

The same five sets of experiments (2.1-2.5) described in previous section were repeated

for the comparison between the two-phase optimization heuristic and the perfect information

linear programming model (experiments 3.1-3.5).    The objective function used in this experiment

is slightly different from the one used in Experiments 2 in that the extra cost term (4.1) can be

dropped since we are not comparing to the stochastic program.  We instead use the objective

function defined by (2.9).  The results for experiments 3 are summarized in Tables 7-10. As

shown in Table 7, the average percentage from optimum increases as the level of spot price

variation increases (from 2.587% to 10.078%).  This result is to be expected in that the heuristic

uses forecast spot price for the contract allocation.  The heuristic solutions appear to be quite

robust even under a 60% price perturbation.
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Table 7. Two-Phase Heuristic vs. Perfect Information Optimum Under Spot Price Variations

Two-Phase Heuristic Perfect Information Optimum
Spot Price

Variations (pct)
mean 95% Confidence

Level
mean 95% Confidence

Level
Avg. Percentage
From Optimum

0.15 278177.2 15024.60 271199.9 14815.04 2.587
0.30 277618.3 15902.74 265709.9 14733.83 4.463
0.45 266077.6 11263.91 249818.4 11500.57 6.576
0.60 263162.4 11144.98 239244.2 11540.48 10.078

Table 8 shows a similar effect of the demand perturbation where the percentage from

optimum increases as the level of perturbation increases.  Under a 60% perturbation in demand

the heuristic only shows an average of 4.099% deviation from the perfect information optimum.

Table 8. Two-Phase Heuristic vs. Perfect Information Optimum Under Demand Variations

Two-Phase Heuristic Perfect Information Optimum
Demand Level
Variations (pct)

mean 95% Confidence
Level

mean 95% Confidence
Level

Percentage from
Optimum

0.15 279778.4 11282.21 276211.2 10852.17 1.283
0.30 295899.7 17256.75 289615.6 17775.49 2.222
0.45 277248.3 14133.51 268855.0 16054.49 3.264
0.60 287026.0 12934.23 275853.2 12929.23 4.099

Table 9 shows the test cases where both spot prices and demands are perturbed.  Consistent with

our findings in Tables 8-9, the spot price variation appears to have a somewhat bigger impact to

the robustness of the heuristic (i.e., the percentage from optimum is 4.294% for the (0.15,0.30)

combination and 3.078% for the (0.30,0.15) combination).

Table 9. Comparison under Varying Spot Prices and Demand Levels

Two-Phase Heuristic Perfect Information Optimum
Scenarios

(demand, spot)
mean 95% Confidence

Level
mean 95% Confidence

Level
Percentage from

Optimum
(0.15,0.15) 275425.9 10484.13 269595.0 10331.49 2.165
(0.15,0.30) 274873.1 11079.36 263471.0 9541.60 4.294
(0.30,0.15) 290095.4 16517.60 281509.3 16443.60 3.078
(0.30,0.30) 293153.7 19496.45 279833.9 20099.49 4.873
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the computer time.  We further demonstrate the robustness of the heuristic scheme by comparing

its performance to a perfect information benchmark.

In the following, we outline some general insights provided in the study, which may be of

broader managerial interests.

1. The model tends to assign low-priced contracts to month with high forecasted spot market

prices, and vice versa.  This is because the Contract Allocation Heuristic uses this as a basic

strategy then perturbs the spot market prices randomly to generate the search neighborhood.

Several other strategies have also been tested, for instance, assigning the low-priced contracts

to earlier months regardless of the spot price forecast. Or, perturbing the contract prices to

generate alternative solutions.  These strategies are screened out during the tuning

experiments.

2. Most contract allocations do not split the contracts over more than two or three months since

most contracts limit the number of deliveries per year (typically K#3).  Most of the splitting

can be attributed to the level of minimum annual contract commitment and projected monthly

demand.  Obviously when an annual contract commitment is much larger than any monthly

demand, splitting would be necessary.

3. When compared to the perfect information results, the most significant performance deviation

occurs when the spot prices are consistently under-estimated (by 30%), and when the spot

price fluctuates more than 45% from the forecast.  Both of these cases make intuitive sense

since a priori planning are indeed sensitive to the quality of a priori information available.

Unfortunately, in practice spot prices are driven by complex economic indexes and are very

difficult to forecast.  The stochastic programming approach runs into the same difficulty since
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incorporating spot price scenarios would require a priori statistical information about the

prices.
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Table 2. Results Summary: Two-Phase Method vs. Stochastic Programming Optimum

Stochastic Programming optimum Two-Phase Optimization Heuristic
E(z) 95% Confidence* 99% Confidence* z value % from best**

Test Sets lower upper lower upper (avg.) min. avg. max.
1 76,910 72,688 79,933 71,107 81,514 76,310 -12.57 -0.78 11.88
2 59,350 56,173 64,862 54,276 66,759 60,517 -12.12 1.97 17.60
3 70,010 65,228 72,232 63,699 73,760 68,729 -11.32 -1.83 10.44

* 95% (or 99% )confidence interval calculated for each test set; lower and upper represent the lower and
upper limits of the confidence interval
** % from best is calculated as (v(Heuristic)-v(SP optimal))/v(heuristic)) where v(x) represent value of x


