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Abstract

We investigates the problem of due-date coordination and negotiation between the marketing and
manufacturing entities within a make-to-order or engineer-to-order firm. Marketing is concerned about
satisfying customers who each have a preferred due-date for his/her order but is willing to compromise in
return for price discounts. Manufacturing is concerned about the efficient utilization of capacity and is not
willing to offer any given order a higher service levels unless the incurred cost is reimbursed. This
reimbursement rewards manufacturing for risk sharing with marketing. Operating in an environment of
dynamic order arrivals, we design a Nash game between marketing and manufacturing. Each party quotes a
due-date based on a utility function defined by local cost structure, a belief function of job completion times,
and agreed penalty when the quoted due-date is missed. We identify properties for each agent's utility
function and show that with belief functions such as uniform, Weibull gamma and Pearson Type V, 
distributions, a unique Nash equilibrium exists.  Nevertheless, due to double marginalization the solution
(due-date quotation) achieved at Nash equilibrium is never the system optimum. We develop an incentive 
scheme for marketing and manufacturing in such a way that the system optimum can be achieved at
equilibrium. We conduct sensitivity analysis on the transfer payments such that they could be tailored for
alternative utilities.

1. Introduction
 The escalating pressure for competent and improved customer service has fettered make-
to-order manufacturers to investigate ways to satisfy customer demand quickly at a lower cost.
The literature on due-date based planning and scheduling typically assume order due-dates to be
exogenous and given.  In most real life situations, however, due-date determination is negotiable
and is typically part of the marketing and sales function. When negotiating due-dates, marketing
must consider both the customer's preferences  internal constraints such as productionand
capacity. The latter is controlled by the manufacturing division within the firm who sets the pace
for production that would ultimately influence the order completion time. In order for the firm to
properly integrate due-date quotation and capacity utilization decisions, the marketing and
manufacturing decisions must be coordinated. However, managers are typically rewarded based
on the performance of their local unit, thus both marketing and manufacturing have incentives to
behave according to their own local cost structure.  Since the best interests of individual
departments rarely coincide with the firm's optimal (profit maximizing) policy, the firm must
provide proper incentives for marketing and manufacturing to coordinated.
 In this paper, we examine incentive scheme that operates in the above decentralized,
cross-functional decision environment. We design a Nash game for due-date quotation where
marketing determines the  to be quoted for the customer, while manufacturingexternal due-date
determines an  for marketing based on its prospect on capacity. The quoted due-internal due-date
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dates define a risk-sharing agreement between the two decision entities, which in turn specifies
the internal transfers between the two parties when the order  is delivered.  To determine proper
incentives for the local units to align their local decision with the system optimal, we analyze the
Nash game and derive a payment scheme between marketing and manufacturing such that system
optimal is achieved at Nash equilibrium.
 Two areas of literature are directly relevant to our study: marketing and manufacturing
coordination, and due-date quotation/negotiation. In the following, we provide a brief overview
the literature.

Marketing/Manufacturing Coordination
 The need for coordinating marketing and manufacturing decisions has been recognized by
researchers for more than two decades (c.f., Davis (1977), Shapiro (1977), Montgomery and
Hausman (1986) and Karmarkar and Lele (1989)). In general these research defines the need for
marketing and manufacturing coordination in companies producing industrial goods, and discuss
the nature of the problem as "necessary cooperation but potential conflict." Areas of coordination
includes capacity planning and allocation, forecasting, scheduling, delivery and distribution,
quality assurance, cost control, product design and adjunct services. A broad survey of these
approaches are reported by .Eliashberg and Steinberg (1993)
  propose a different approach to the problem by developing anPorteus and Whang (1991)
incentive plan that would reward the division managers to act in a system-optimal way. They
propose a plan where product managers receive all revenues from the sales, while paying
manufacturing manager the realized marginal value of capacity. While this "internal market"
induces optimal local behavior, the firm needs to provide subsidies. Kouvelis and Lariviere
(2000) present a generalization of the internal market mechanism based on linear transfer
payments between functions, i.e., a market maker buys from upstream managers and resell it to
downstream managers, where the buying/selling prices are set in such a way that they lead to
system optimal actions.  compares three different contracts in a marketing-Desai (1996)
manufacturing channel faced with seasonal demand. He discusses Stackelberg games under fixed
retailer processing rate, fixed manufacturing price, and a general case without variable fixing.
Kim and Lee (1998) study optimal coordination strategies for short-term production and
marketing decisions. They propose a scheme where manufacturing determines the production
volume based on the marginal revenue given by marketing using the previous demand rate.
Celikbas  (1999)et al.  investigates coordination mechanisms based on different penalty schemes
which enable the firm to match demand forecasts with production. They consider both
centralized and decentralized organizational structures and show that by setting appropriate
penalty levels the decentralized system could operate similar to the centralized one.  In many
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cases, the work in the contracting and coordination between retailers and manufacturers can be
applied to marketing/manufacturing coordination with little modifications. Analytical studies of
such problems can be found in Blair and Lewis (1994), Agrawal and Tsay (1998) and Cachon
and Lariviere (1999).

Due-Date Quotation Problems and Coordination
 The importance of setting reliable job due-dates in make-to-order production system is
well recognized in the literature for at least two decades. Most early work on due-date setting
uses generalized but ad hoc decision rules. An extensive survey of research regarding traditional
due-date setting problems is provided by Cheng and Gupta (1989). A vast majority of this
literature do not consider customer preferences when setting due-dates, assuming that any due-
date quoted will be accepted. However a recent survey of US manufacturing practices in make-
to-order companies by Wisner and Siferd (1995) reveals that in over 60% of the cases customers'
specifications and preferences are the main determinator in due-date quotation. The due-date
setting problems are typically studied using centralized and monolithic models where the
decision regarding due-dates are considered in conjunction with decisions such as capacity
utilization, sequencing and scheduling, pricing etc. Some of the recent work include Wein
(1991), Duenyas and Hopp (1995), Zijm and Buitenhek (1996),  Spearman and Zhang (1999) and
Weng (1999).
 Lawrence (1994) finds flowtime distribution estimations as the most important factor in
achieving competitive due-date quotation between manufacturing, marketing and the customers.
He acknowledges that flow time distributions allow the construction of managerially useful
tradeoff curves contrasting order completion probabilities and expected tardiness costs with order
lead times.   underlines the importance of setting goals as a resultVan der Maijden (1994)et al. 
of negotiation between departments especially under demand uncertainty. Elhafsi and Rolland
(1999) propose a due-date quotation model based on the congestion level of the manufacturing
shop floor and the operating cost.  discuss a procedure where theEaston and Moodie (1999)
manufacturer bids the price and lead time for the customer, and the customer may accept, reject
or modify the terms. As a hedging strategy, the manufacturer may bid on other projects. In case
more customers accept the bid, some orders will be delayed. Thus, the hedging strategy must
balanced potential profits with the tardiness penalty.
  studies the impact of quoted due-dates and order acceptance rates onWeng (1999)
expected profit. His results apply to cases where the flowtime follows a general phase-type
distribution function of the order acceptance rate. Palaka (1998) and et al. So and Song (1998)
consider customers who are sensitive to quoted due-dates and prices. They propose nonlinear
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optimization models to find the "jointly" optimal due-date, capacity utilization and price that
maximize the firm's profit.   
 Competitive due-date quotation has been investigated to a limited extend in the literature.
Lederer and Li (1997) investigates the competitive equilibrium between multiple buyers
(customers) and suppliers (firms) over selecting prices, production rates and scheduling policies.
Lead time (thus due-date) represents a function of production rate and scheduling policy, which
specifies how arriving jobs are sequenced. In this setting, firms differ in operation costs, mean
processing times and processing time variability, while customers are differentiated based on
their delay costs. A competitive equilibrium is found when the Kuhn-Tucker conditions for the
firm's optimization problem and the market clearing condition are simultaneously satisfied.
 Customers who carry delay costs are also considered by  In this setting aHa (1998).
G1/G1/1 service queue is assumed where the customers choose the service rates and linear delay
costs while the firm sets a price for each customer served. It is shown that when customers
choose the service rates based on their local cost structure, the resulting system service rate and
arrival rate are always smaller than the optimum due to externalities. The author proposes
incentive-compatible pricing consisting of a fixed admission fee, and a variable fee that is
proportional to the actual service time. Grout (1996) proposes an incentive-inducing contract
between a buyer and a supplier aiming at the timely delivery of orders. In his setting, the buyer
dominates the supplier and moves first by selecting an incentive scheme consists of on-time
delivery bonus and tardiness penalty. The optimal probability for on-time delivery can be ensured
if the supplier responds to the incentive scheme by selecting a flow time allowance that would
minimize his own expected cost.

2. Due-Date Quotation in an Internal Market: Model Description
 We consider a due-date quotation process between the decision makers of marketing and
manufacturing while the customer incentives are exogenous. We define the following sequence
of events: (1) the customer places an order with a preferred due-date , (2) base on their local-.3

costs and an (system-imposed) incentive scheme, marketing announces an  external due-date dd ,3
and manufacturing announces a promised completion time (an (3) if:-3 internal due-date), 
.. % -. 1 :- % .. ß3 3 3 3 3, marketing must offers marginal discount  to the customer; if 
manufacturing must offers marginal discount to marketing, (4) production occurs and the order83

is filled, tardiness costs are charged based on the actual completion time and the quoted due-
dates and ... ß :-3 3

 The main essence of the due-date quotation procedure is to establish a risk-sharing policy
between marketing and manufacturing via an internal market payment scheme. We will now
provide further details of the payment scheme which is depicted in Figures 1 and 2. Suppose an
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initial completion time  can be established for any given order assuming no adjustment to the:-9

plant capacity.  provides the first time point at which  service level is guaranteed (Figure 1).:-9 )

Given the customer preferred due dates ( ), marketing quotes a counter due-date  (we-.3 ..3

assume that ) while offering a discount  to the customer for each unit of the quadratic..   -. 13 3 3

difference ( ) .  can be viewed as the  Manufacturing quotes.. + -. 13 3 3
# external negotiation cost.

a promised completion time  for the customer order while offering a unit discount  to:- 83 3

marketing for the difference ( )  Manufacturing may choose to offer an improved:- + .. Þ3 3
#

completion time ( ), in which case he must pay a premium  to expand his capacity:- . :- 73 ! 3

(for each unit of ).  Equivalently, we may view the manufacturing as been Ð:- + :- Ñ9 3
# rewarded

8 Ð :- + .. Ñ :-3 3 3 3
#proportional to ( )  for providing an earlier . Concerning the tardiness penalty,

marketing and manufacturing have the understanding that if the order completion time falls
before  (region in Figure 2), neither of them will pay additional penalty.  If the completion..3 A
time falls in between  and , (region ), marketing is responsible for a per unit premium ... :- +3 3 3B
If the completion time falls after  (region ), marketing and manufacturing split the:-3 C
responsibility with per unit penalty  and , respectively (where ).Ð" + Ñ+ +# #3 3 ! Ÿ Ÿ "#

Marketing and manufacturing both make use of a pubic belief function  on the order9ÐBß :-Ñ

completion times to compute their expected tardiness penalty.

φ(x, pco)

cdi pco
x

Order completion time (x)

Figure 1. Initial stage and belief function before the actions of the marketing   
   and the manufacturing

Pr(x≤ pco)=θ
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cdi pco

Order completion time (x)

Figure 2. Belief function after parties act

Pr(x≤ pci)=θ

pciddi

φ(x, pci)

x

A B C

 By design, decisions regarding due-date quotation and capacity utilization are closely
related. Whilst the due-dates quoted for customers hinges on the "normal" service level utilized
by manufacturing, manufacturing is encouraged to make capacity adjustments based on a service
quality shaped by the market's requirements for being competitive. This is modeled by the belief
function.  Let be the realized completion time of order  and,  and  be the density and- 33 9 F

distribution functions regarding the belief of the completion time. Both  and  are also9 F

functions of . We assume is continuous when ,  when , increasing in:- ÐBß :- Ñ :-   ! ! :- . !3 3 3 3F

B :- B   ! :-   ! and decreasing in , and differential for both  and . In general the scale3 3

parameter of the distribution, if exists, can be expressed as a function of . As  decreases the:- :-3 3

capacity utilization increases and as capacity increases the value of the cumulative distribution
function increases for any . Moreover, , so that completion times areB Ð! . B . _Ñ Ð!ß ‡Ñ œ !F

positive and for all . It is assumed that the expected tardiness, and thusF )Ð:- ß :- Ñ œ :- % !3 3 3

the expected completion time is up-slopping with  in a convex fashion  Moreover, as shown in:- Þ3

Figures 1 and 2 the current -service-level date ( ) is established prior to the game (Figure 1),) :-9

while the new -service-level date is moved to  as a result of change in the  due) :-3 belief function
to capacity adjustments.
 
3. The System (Firm's) Optimization Model

 The firm's objective is to minimize the total transaction costs due to the due-date
concession, capacity adjustments, and expected tardiness costs from the loss of goodwill to the
customer. The system cost function is given as follows;

K œ 1 Ð..9 3 3 3 3 9 3 3
# #+ -. Ñ ; 7 Ð:- + :- Ñ ; + IÒÒ( )- + .. Ó Ó3 3

; #
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where

IÒ( ) ]- + .. œ ÐB + .. Ñ ÐBß :- Ñ.B3 3 3 3
;

..
_'

3
9

 Note that the penalty due to the deviation between  and  does not influence the.. :-3 3

system's model since it is an internal transfer between marketing and manufacturing. It is trivial
to show that if the expected tardiness is a convex function then We can nowK9 is also convex. 
define the system's optimization model as follows:

TÐ"Ñ   Q38 K9

  s.t.
  (1)..   -.3 3

  :- Ÿ :-3 9

The first constraint ensures that the customer will not be quoted for a due date that is earlier than
the preferred due date and second constraint implies that the capacity utilization cannot be
reduced. Let  and be the external and internal due date values that minimize the.. :-3 3

9 9

unconstrained system cost function. Furthermore, assume is a positive number large enough:-9
so that  is always greater than 0.:-3

THEOREM 1. Assuming that expected tardiness is convex,  and  will minimize ... :- T Ð"Ñ3 3
9 9

PROOF.  Suppose  is less than . By incrementing  by  units the center decreases the.. -. ..3 3
9 9

3 %

external due date negotiation cost since the gap between  and  is reduced. Moreover the-. ..3 3

expected tardiness cost will decrease since it decreases in . Because of this increment no..3

additional cost will be observed. Hence  cannot violate (1)  The value of  can be.. Þ ..3 3
9 9

computed using the following equation;

.. œ -. ;
+ - + .. Ó Ó

13
9

3
3 3 3

;

3

IÒÒ
(2)

 Optimum value for  can be found by computing the derivative of  with respect to:- K3
9

9

:- .. :-3 3 3after fixing and solving it for . The resulting equation will be as follows;

:- œ :- +
+ - + .. Ó Ñ Ó

#73
9

9
3 3 3

3

; #`

`:-

IÒÐÒ

3

(3)

 Since the expected tardiness is convex, the last term in (3) is positive. Consequently,
:- Ÿ :-3

9
9 always holds.  !
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 Without specifying a belief function, we can't generate the closed form expression for
equations (2) and (3). Even with a given distribution function it may not be tractable to obtain a
closed form definition. In this case a simple recursive search can be employed to approximate the
closed form in a reasonable time given that  is strictly convex.  As a result of the theorem, weK9

can drop the constraints from  and use the closed form cost function  as the system'sTÐ"Ñ K9

optimization model.

4. The Due Date Quotation Game

 We now define a Nash game corresponding to the due-date quotation procedure described
in Section 2. The game consists of marketing and manufacturing decision makers as independent
players. The game,  consists of a single move where the players simultaneously choose theirHß

strategies. The strategy space for marketing, has a lower bound,  and has no upper bound.5" 3ß -.

Hence,  where  is a large arbitrary constant that will never constraint.. − œ Ò-. ßQÓ Q3 " 35

marketing in her decision. The strategy space for manufacturing, , is bounded with 0 and ,5# 9:-

i.e., . Both players have complete information about each others' cost:- − œ Ò!ß :- Ó3 # 95

functions and thus, all parameters in the model are common knowledge. The belief function over
the order completion time is public (e.g., computed from historic information) and therefore
identical for both players.
 Let  denote the player 's expected cost when players adopt the joint strategyL Ð.. ß :- Ñ 44 3 3

of ,  is equal to 1 for marketing and 2 for manufacturing. The best response mappingÐ.. ß :- Ñ 43 3

for player  is a set-valued function corresponding each strategy of player , with a4 5 Ð5 Á 4Ñ

subset of  and formally defined as follows for each player in this game;54

< Ð:- Ñ œ .. − lL Ð.. ß :- Ñ œ 738 L ÐBß :- Ñ" 3 3 " " 3 3 " 3
B−

œ #5
5"

< Ð.. Ñ œ :- − lL Ð.. ß :- Ñ œ 738 L Ð.. ß BÑ# 3 3 # # 3 3 # 3
B−

œ #5
5#

In this setting a pure strategy Nash equilibrium is a pair of external and internal due-dates,
Ð.. ß :- Ñ3 3

/ / , such that each player chooses a best reply to the other player's equilibrium decision,
i.e., , ... − < Ð:- Ñ :- − < Ð.. Ñ3 3 3 3

/ / / /
" #

4.1. Decision Models for the Players
 Marketing is charged for the deviation of negotiated due-date from the customer preferred
due-date and the tardiness. If manufacturing completes the order later than his promised date
(internal due-date), he shares part of the tardiness penalty (specified by parameter  ) that#
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marketing pays. Marketing also receives a discount from manufacturing for the deviation
between and .  We define the cost function of marketing as follows::- ..3 3

L Ð.. ß :- Ñ œ 1 Ð.. + -. Ñ ; +" 3 3 3 3 3 3
# (

..

_

3 3
#

3

ÐB + .. Ñ ÐBß :- Ñ.B9

  + + ÐB + :- Ñ ÐBß :- Ñ.B + 8 Ð:- + .. Ñ# 93 3 3 3 3 3:-
_ # #'
3

where .-. . .. . Q3 3

LEMMA 1. For any , :-   !3 L Ð.. ß :- Ñ" 3 3 is strictly convex in ..3.

PROOF.  see the appendix !

 Define  as the only value that minimizes  for a given . This value can be found.. L :-3
‡

" 3

using the equation ,L Ð.. ß :- Ñ œ !"
Ð"Ñ

3
‡

3

< Ð:- Ñ œ .. œ 7+BÐ-. ß Ñ
1 -. + 8 :- ; +

1 + 8
" 3 33

‡ 3 3 3 3 3

3 3

IÒÒ- + .. Ó Ó3 3
;

(4)

 Manufacturing is charged for the deviation of promised completion date from the
negotiated due-date and the tardiness with respect to the promised completion date.
Manufacturing is also charged for capacity increase. We define the cost function for
manufacturing as follows:

L Ð.. ß :- Ñ œ 7 Ð:- + :- Ñ ;2 3 3 3 9 3
# # 9+ ÐB + :- Ñ ÐBß :- Ñ.B ; 8 Ð:- + .. Ñ3 3 3 3 3 3

:-

_
# #(

3

where .! . :- Ÿ :-3 9 Let  be equal to the following;OÐCÑ

OÐCÑ œ '
C
_ # ;

3ÐB + CÑ - + Ó Ó9(2)ÐBß CÑ.B + 2IÒÒ C

LEMMA 2. For any dd .3 # 3 3 3ß L Ð.. ß :- Ñ 3= =><3->6C -98@/B 38 :-

PROOF.  See the appendix. !

 Let  be the value that minimizes . Th following equation gives ;:- L / :-3 3
‡ ‡

#
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< Ð.. Ñ œ# 3 738 :- ß
#7 :- ; #8 .. + +

#Ð7 ; 8 Ñ
Œ &9

3 9 3 3 3

3 3

# OÐ:- Ñ‡3 (5)

 
4.2. Analysis of Equilibria
 To investigate the existence of equilibria for the above game, we first introduce a relaxed
game  where the strategy spaces of the players are identical and  .Ð Ñ œ œ Ð +_ß ;_ÑH 5 5" #

Players' best response mappings for the relaxed game can be rewritten as follows:

< Ð:- Ñ œ .. œ
1 -. + 8 :- ; +

1 + 8
3 3 3

‡ 3 3 3 3 3

3 3

IÒÒ- + .. Ó Ó3 3
;

< Ð.. Ñ œ :- œ
#7 :- ; #8 .. + +

#Ð7 ; 8 Ñ
# 3 3

‡ 3 9 3 3 3

3 3

# OÐ:- Ñ3
‡

The structure of the best response mappings enables us to reach at the following conclusion;

LEMMA 3. If  then :- Ÿ -. < Ð:- Ñ % -.3 3 " 3 3

PROOF. see the appendix !

 Observe that in the relaxed game marketing is charged for negative deviation of from..3

-. :- :-3 3 9 and manufacturing is charged for positive deviation of  from  (this is the main
difference of the relaxed game from the original version). The foregoing lemma implies that in
the relaxed game if manufacturing promises an internal due-date that is smaller than the
customer's preferred delivery date, marketing will respond with an external due-date that is
greater than the customer preferred delivery date. This behavior (from marketing) is intuitive as
manufacturing is charged by marketing based on the deviation between  and . From the:- ..3 3

marketing's viewpoint, quoting a due-date smaller than  in such a case would increase the-.3

price discount to the customer, but the expected tardiness cost would regulate this deviation and
thus the amount of payment from manufacturing to marketing. Hence the cost will increase while
the revenue decreases. A positive deviation from , on the other hand, will increase the-.3

payment from manufacturing (to marketing) and decrease the expected tardiness cost even
though it will increase the price discount for the order. This result is valid for any belief function
that satisfies the assumptions mentioned earlier.
 Based on the implicit function theorem, the derivatives and  dd  can be< Ð:- Ñ < Ð Ñ"

Ð"Ñ Ð"Ñ
3 32

given as follows;

< Ð:- Ñ œ + y œ
` L ` L

`.. `:- `..

+ + 8

1 ; + Ð.. ß :- Ñ + 8"
Ð"Ñ

3

# #
" "

3 3 3
#

3 3

3 3 3 3 3
Œ &

`

`:-

IÒÒ- + .. Ó Ó3 3
;

3

F
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< Ð.. Ñ œ + y œ
` L ` L #8

`:- `.. `:- #7 ;#
Ð"Ñ

3

# #
# # 3

3 3 33
#Œ &

#+ O Ð:- Ñ3 3
Ð"Ñ ; #83

It is obvious that . As , the denominator in the right hand side of the! . < Ð.. Ñ . " 1 % 8#
Ð"Ñ

3 3 3

first equation is positive and since expected tardiness increases in  for a given ,:- ..3 3

` `

`:- `:-

IÒÒ IÒÒ- + .. Ó Ó - + .. Ó Ó3 3 3 3
; ;

3 3
% ! < Ð:- Ñ 8 % + which implies that  is negative if and non-"

Ð"Ñ
3 3 3  

negative otherwise. Moreover if

 (6)1 Î+ % Ð.. ß :- Ñ3 3 3 3
`

`:-

IÒÒ- + .. Ó Ó3 3
;

3
+ F

then . In general, if the upper bound for the right hand side of (6) is close to  then< Ð:- Ñ . " !"
Ð"Ñ

3

< Ð:- Ñ"
Ð"Ñ

3  will always be less than 1 unless the external negotiation cost is too small compared to
the expected tardiness cost. Since the cost functions of the players are strictly convex, each player
has a unique best response to the other's strategy. We now state the existence of a Nash
equilibrium for the original due-date quotation game.

THEOREM 2.  There exists at least one Nash equilibrium in   . Furthermore, given that (6)H

holds for all positive values of  and , the equilibrium is unique, and there exists a unique.. :-3 3

Nash equilibrium for the original game, .H

PROOF.  We know from Osborne and Rubinstein (1994) that if the set of actions of each player
is a non empty compact convex subset of a Euclidean space and each player's cost function is
continuous and quasi-convex, then there exists a pure strategy Nash equilibrium. By Lemmas 1
and 2 along with our assumptions regarding the belief function, these conditions are met for H
and thus, for the relaxed game there is at least one equilibrium. Let  be the strategy pairÐ.. ß :- Ñ3

/

3
/

at any equilibrium for and  another strategy pair at another equilibrium for the sameH Ð.. ß :- Ñ3
8

3
8

game. If then  and  since ... % .. :- % :- .. + .. % :- + :- ! . < Ð.. Ñ . "3 3 3 3
/ 8 / 8

3 3 3 3
/ 8 / 8

#
Ð"Ñ

3

Assuming (6) holds we know that   which implies that when+_ . < Ð:- Ñ . ""
Ð"Ñ

3

+_ . < Ð:- Ñ :- % :- .. . .."
Ð"Ñ

3 3 3
/ 8

3 3
/ 8 if  then should hold. This is a contradiction. Furthermore

when  is positive and it is less than 1, if  then  and thus< Ð:- Ñ :- % :- .. % .."
Ð"Ñ

3 3 3
/ 8

3 3
/ 8

.. + .. . :- + :-3 3
/ 8

3 3
/ 8 must be true. However this causes another contradiction. Hence, given

the foregoing assumptions the equilibrium for is unique.H

 Let be the strategy pair at the equilibrium for With the same assumptions, ifÐ.. ß :- Ñ3 3
/ / H. 

at equilibrium in and , then and . The equilibriumH, ..   -. ..3 3
/ /

3 :- Ÿ :- .. œ :- œ :-3 3
/ /

9 3 3
/ /
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will be unique since the all foregoing conditions are also valid for game for andH ..3 3  -.

:- Ÿ :- ! . < Ð.. Ñ . "3 9 3#
Ð"Ñ(  the cost functions are continuous and convex,  andi.e. 

+_ . < Ð:- Ñ . ""
Ð"Ñ

3   etc.).
 If from Lemma 3, . Let and  some parameters.. . -. ..3 3

/ /
3,  :- % -. , œ -. + ß3

/
3 3 $ (

such that  and Since  is convex in  and constrained by  in the! . . " ! . . " .. < Ð:- Ñ -.$ ( . 3 3 3"

original gam  marketing will have to increase her decision by units to . As a response,/ß , -.3

manufacturing will increase by . The best response of marketing to this action is to move:- ,3 $

her decision either to  or to some value that is less than . Either points are less than.. ; ..3 3
/ /

$(,

-.3 and therefore marketing can't move. If marketing doesn't move, the manufacturing will not
move either. Consequently at the only equilibrium,  and . By using the.. œ -. :- œ < Ð-. Ñ3 3

/ /
3 # 3

same approach it can be shown that if  then  and .:- % :- :- œ :- .. œ < Ð:- Ñ3
/

9 9 " 93 3
/ /

 Finally, we conclude that if the equilibrium for is unique under the foregoingH 
assumptions then there is a unique equilibrium for as well.  H !

Next, we show that the total cost of the system in is higher than the system's optimal solution.H 

THEOREM 3.  Assuming , system's optimal solution is never a Nash equilibrium in # H. "

PROOF.  Note that  is strictly convex. Hence, the only due date values that minimize  areK K9 9

.. :- Þ .. :-3 3 3 3
9 9 / / and If these values are equal to and  respectively, then the system's solution is an

equilibrium. Due to the fact that  is strictly greater than  and  is strictly less than , if.. -. :- :-3 3
9 9

3 9

the equilibrium in is observed at boundaries (  or  ), the system optimalH i.e., .. œ -. :- œ :-3 3
/ /

3 9

solution can't be the equilibrium. For the case where equilibrium resides within the boundaries
the following equalities should hold,

.. œ .. œ -. ;
1 -. + 8 :- ; +

1 + 83 3
9 / 3

3
3 3 3

9
3

3 3

+

1
- + .. Ó Ó œ

- + .. Ó Ó3

3
3

9 ;
3

3
9 ;
3IÒÒ

IÒÒ
(7)

  :- œ :- œ :- +3 3
9 /

9
+ - + .. Ó Ñ Ó

#7 #Ð7 ; 8 Ñ
œ

#7 :- ; #8 .. + + OÐ:- Ñ3 3

3 3 3

9 ; #
3 3 3 39 33

9 ‡`

`:-

IÒÐÒ

3

#
   

 Verify that equality (7) can only hold when et  and.. œ :- + :-3 3 3
9 9 9. L B œ - Ó ÓIÒÒ 3

;

C œ
- Ó Ñ Ó`

`:-

IÒÐÒ 3
; #+ :-93

3
. The second equality above can be rewritten as follows;

:- œ :- + :- +3
9

9 9
+ +

#7 #7
C œ ÐC + #BÑ

3 3

3 3
#
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Thus,  .C œ C + # B# #

In this equation is the expected tardiness and  is the derivative of the expected value ofB C

squared tardiness. We know that both terms are non-negative. Since , foregoing equation is# . "

impossible to hold implying that and thus, .  :- Á :- .. Á ..3 3 3 3
9 / 9 / !

 The system optimal solution may be a Nash equilibrium in H only if manufacturing is
charged  for unit tardiness from  (i.e., and the expected tardiness is zero(!).+ :-3 3 # œ ") 

5. Coordinating Marketing and Manufacturing Decisions

 In Theorem 3, we show that competition degrades system efficiency in the due-date
quotation game. A coordination mechanism that gives proper incentives for the players to
cooperate can lead to overall lower costs. Thus, the goal of the firm is to specify a profit sharing
scheme that distributes additional revenue across the marketing and manufacturing divisions in
such a way that it obliterates any incentives to deviate from the system's optimal solution. To
achieve this, the share of each department in total cost can be devised based on all cost
components in the system including the internal and external due-dates quoted by the players and
their deviation, the deviation between the external due-date and the customer's preferences, and
the expected tardiness for both divisions. Suppose the center distributes a fixed proportion of the
revenue gained from the sale of order among marketing and manufacturing. Let  denote this3 P

amount,  the marketing's share and  the manufacturing's share  Moreover, supposeP + X P ; X Þ" #

P P P X" # and  are constants and their summation is while  is a function defined as follows;

X œ " " 9 " 9" 3 3 # 3 3 $ 3 3
# # #

:- ..

_ _

Ð.. + -. Ñ ; ÐB + :- Ñ ÐBß :- Ñ.B ; ÐB + .. Ñ ÐBß :- Ñ.B( (
3 3

 ; Ð:- + :- Ñ ; Ð:- + .. Ñ" "% 9 3 & 3 3
# #

  can be looked as a transfer payment to manufacturing stipulated for marketing. WeX

must determine the set of contracts, (i.e., the  for the coefficients in ) such that thevalue ranges X

Nash equilibrium solution coincides with the optimal solution. No sign restrictions are set for the
coefficients and a negative value for a coefficient represents a payment from manufacturing to
marketing.  After the transfer payments, cost functions of the players become as follows:

X œ L ; X X œ L + X" " # #  and 
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 First, we assume that is convex in  for a given  and  is convex in  for aX .. :- X :-" 3 3 # 3

given Next we determine the allotments in which  satisfies marketing's first order.. Þ ..3 3
9

condition and  satisfies manufacturing's first order condition. Afterwards, we need to:-3
9

determine the subset of these allotments that also satisfy the convexity conditions. We first write
the first order conditions for the players' cost functions that have been refined with the transfer
payments. Then determine the coefficient values with which the first order conditions are met at
.. :-3 3

9 9 and .

`X Ð.. ß :- Ñ

`..
œ #Ð1 ; ÑÐ.. + -. Ñ + #Ð+ ; Ñ

" 3 3 9
9 9

3
3 " 3 3 $3" " IÒÒ- + .. Ó Ó3 3

9 ;

    (8); #Ð8 + ÑÐ:- + .. Ñ œ !3 & 3 3
9"

`X Ð.. ß :- Ñ

`:-
œ #Ð +7 ÑÐ:- + :- Ñ ; Ð + + ÑOÐ:- Ñ +

# 3 3 9 9
9 9

3
% 3 9 3 # $3 3" # " "

`

`:-

IÒÐÒ- + .. Ó Ñ Ó3
9 ; #
3

3

    

       (9); #Ð8 + ÑÐ:- + .. Ñ œ !3 & 3 3
9 9"

 Solving (2), (3), (8) and (9) for new cost coefficients yields the following equations in
three unknowns:

Ð3Ñ œ
1

+
          (10)" "" $

3

3

Ð33Ñ œ +          (11)" ## 3

Ð333Ñ œ 7 ;
7

+
         (12)" "% 3 $

3

3

Ð3@Ñ œ 8          (13)"& 3

 As a last step we need to ensure that cost functions of the players are still strictly convex.

THEOREM 4.  Assuming the  equations (10-13) there exists a Nash equilibrium corresponding
to the optimal solution for the new cost settings if the following inequality holds
+ + . . !3 $"

PROOF.  Following is the second derivative of  with respect to for any contract thatX :-# 3

satisfies equations 10-13Ð Ñ
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` X Ð.. ß :- Ñ 7 + ..

`:- +
œ + # ;

#
3 3 3 3

3
# $

3

2
" ' (`

`:-

#IÒÐÒ- Ó Ñ Ó3
; #

3
#

The term inside the parenthesis is positive since the squared expected tardiness is convex in .:-3

To have a convex cost function for manufacturing, "$ should be negative. Given this, lets also
write the second derivative of the marketing's cost function with respect to ..3

` X Ð.. ß :- Ñ 1

`.. +
œ #Ð+ ; Ñ ; " + Ð.. ß :- Ñ

#
" 3 3 3

3
# 3 $ 3 3

3
" FŒ &

To have a strictly convex ,  needs to be greater than . Hence, in order to guarantee theX + +" $ 3"

existence of a Nash equilibrium should hold. This inequality implies that+ + . . !3 $"

+ 1 . 73 ". . ! ! ."  and . Thus, the conditions for the existence of a Nash equilibrium is"% 3

satisfied. !

These contracts bring about the following results;

< Ð:- Ñ œ + y œ
` X ` X

`.. `:- `.. 1 Î+ ; Ð.. ß :- Ñ"
Ð"Ñ

3

# #
" "

3 3 3
#

3 3 3 3
Œ &

`

`:-

IÒÒ- + .. Ó Ó3 3
;

3

F
(14)

< Ð.. Ñ œ + y œ
` X ` X

`:- `.. `:-

#

#7 Î
+ ..#

Ð"Ñ
3

# #
# #

3 3 3
#

3
3

Œ &
`

`:-

`

`:-

IÒÒ

IÒÐÒ

- + .. Ó Ó

+ ;
- Ó Ñ Ó

3 3
;

3
3

; #
3

3
#

# (15)

If it is guaranteed that for any positive values of  and   and.. :- ! . < Ð:- Ñ . "3 3 3"
Ð"Ñ

! . < Ð.. Ñ . "2
Ð"Ñ

3 , from Theorem 2, it can be concluded that optimal solution is the unique
equilibrium.
 With these contracts the cost of deviation between division due-dates are eliminated.
Also, instead of paying a penalty for his own tardiness, manufacturing shares the whole tardiness
penalty with the marketing specified by the selection of the coefficients according to equations
(10-13). According to these contracts both parties share all the cost. Since cannot be equal to 0"$ 
or  (hence, or and or ) no cost entry is solely charged to one division.+ + Á ! + 1 Á ! 73 " 3 3" "4

Specifically, the proportions of the total external negotiation cost and the total capacity increment
cost that are allocated to a division must be equal. If cost for each entry is equally"$ 3œ + + Î#, 
shared by the departments. Moreover, if then the revenue is also shared evenly and as aP œ P" #
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result departments make the same profit at equilibrium. However, as increases, the marketing's"$

share in cost increases and the opposite occurs as decreases."$

 These contracts achieve the coordination for any belief function that has a convex
expected tardiness function. In order for these contracts to be useful in coordination, the game
doesn't need to have a unique equilibrium. Even if there exist additional Nash equilibria, the one
coinciding the optimal solution Pareto dominates the other. It has been observed by previous
researchers that players tend to choose to coordinate on a Pareto dominant equilibrium (Cooper
et al. 1989). As a result of implementing one of these contracts one division's cost may increase
although total cost declines and that division may not be willing to participate in the contract. To
overcome this complication, a fixed fee that is independent of all other costs and actions can be
paid to this division or one can also look for contracts such that each department's cost is no
greater than in the original Nash equilibrium.
 
6. A Case Study: When Weibull( , ) Distribution for Belief Function! -

 In practice, capturing the flowtime distribution (the believe function) may be difficult
especially in complex production and/or service environments. Forecasting method may be
employed and it can be as straightforward as calculating the mean and some higher moments
based on the estimations provided by seasoned production managers, or schedulers. In such
cases, the believe function can be fit to well-known distributions such as Normal, Lognormal,
Erlang, Weibull, etc. In the following, we illustrate our main results using a Weibull belief
function. This provide insights for broader cases since Weibull includes the Exponential and the
Rayleigh distributions as special cases. For the shape parameter in the neighborhood of 3.6, it is
similar in shape to a Normal distribution, and with the shape parameter greater than that value for
some skewness value ranges it closely resembles Pearson Type VI and lognormal distributions
(Johnson . 1994)et al. .
6.1. Modeling the Capacity Adjustment
 We assume that  and  are the Weibull density and distribution functions regarding the9 F

belief of the completion time. Particularly we assume any Weibull distribution with a shape
parameter, . Let  be the inverse of the scale parameter at the beginning for the (nominal)! -% "

belief function and  the fractional increase in 's value representing the increment in capacityD -

utilization. Consequently, with the increase in , which implies a decrease in the expectedD

completion time, the resulting scale parameter will be . By solving "ÎÐ Ð" ; DÑÑ Ð:- ß :- Ñ œ- F )3 3

for  we find the following equality:"Î Ð" ; DÑ-

"Î Ð" ; DÑ
:-

+ 68Ð" + Ñ
-

)
=         3

"Îa b !
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Hence, we can use the right hand side of the equation as the scale parameter of the Weibull
distribution in our calculations. Consequently, the mean flow time can be written as.Ð:- Ñ3

follows;

. >
! ) !

Ð:- Ñ œ
:- "

+ 68Ð" + Ñ
3

3

"Îa b Œ &!
       (16)

Observe that, in this setting, the mean flow time is linearly increasing in internal due-date. At the
beginning of the game where , the nominal -service-level date, D œ ! :-) 9

Ð:- œ + 68Ð" + Ñ Î Ñ9
"Îa b) -! , is observed as stated before.a priory 

 Next, based on the foregoing model for the capacity adjustment we analyze the behaviors
of the divisions under equilibria and investigate circumstances guaranteeing a unique Nash
equilibrium.

6.2. Analysis of the Game with Weibull Belief Functions
 As pointed out earlier, all parties in the firm share the same belief function regarding the
completion date of an order including the central management. First we show that the system's
cost function is convex with Weibull belief function.

PROPOSITION 1. Assuming Weibull belief function, system's cost function is convex.

PROOF. See the appendix. !

 This proposition leads us to notice the following consequence;

COROLLARY. Assuming Weibull belief function, from lemmas 1 and 2 and Theorem 2 cost
functions of the marketing and manufacturing divisions are convex and there exists at least one
Nash equilibrium in the game.
 One of the most useful results of assuming Weibull distribution is that the best response
function of manufacturing in  has a closed form definition due to the fact that , is linearH OÐ:- Ñ3

in  (i.e., ) for any shape and scale parameters, it is increasing in and takes:- OÐ:- Ñ œ 5‡:- :-3 3 3 3

non-negative values if 0. is a positive constant whose value depends on the shape:-   53

parameter, , and the service level, . ! ) With  being constant and positive, tardiness penalty for5

manufacturing increases in . In other words, manufacturing's expected tardiness cost decreases:-3

as the capacity increases. This implies that even though the probability of the order being tardy
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with respect to the internal due-date is the same for any given , the expected squared tardiness:-3

is up-sloping in . Note that the expected squared tardiness in  with respect to  is convex:- :- :-3 3 3

and thus, the foregoing observation is intuitive. We can rewrite the best response function of
manufacturing as follows;

< Ð.. Ñ œ
#7 :- ; #8 ..

#7 ; #8 ; + 5
# 3

3 9 3 3

3 3 3#
(17)

 The next proposition states the conditions for guaranteeing unique Nash equilibrium in
both games. For the following proposition let

6 œ Ð:- Ñ + Ð:- ß :- Ñ œ" 3 3 3. F
w >

! )
)

ˆ ‰
a b

"

"Î
!

!+ 68Ð" + Ñ
+ Ð" + Ñ

PROPOSITION 2.  , Assuming Weibull distribution for the belief function and, there1 Î+ % 63 3 "

exists a unique Nash equilibrium for .H

PROOF. See the appendix. !

 Note that if  and , then e.g. for  and ,! ) ! )  "   " + / 6 . " Ð œ " œ " + /+" +"
"

6 œ " + /"
+") . In Theorem 3 and 4 it has been shown that the Nash equilibrium solution does

not coincide with the system optimal, while the proposed transfer payment  can achieveX

coordination. Next proposition puts forward the relationships between game parameters that are
sufficient to guarantee that the equilibrium is unique after the coordination. Let

6 œ
" #

#
!a b a bŒ & ˆ ‰

+ 68Ð" + Ñ + 68Ð" + Ñ

"
+

) )
>

!

>
"Î "Î

#

! !
!' ( (18)

PROPOSITION 3.  Assuming any Weibull distribution,  and and1 Î+ % 6 7 Î+ % 63 3 " 3 3 # 
employing equations (10-13) there exists a unique Nash equilibrium after the coordination for

+ + . . !3 $"

PROOF.  See the appendix. !

7.3. Numerical Results
 To further illustrate the above analysis, we applied our model to numerical examples that
are slight variations of each other. We consider three special cases of Weibull Belief Function
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which are namely, Exponential and Rayleigh distributions, and Weibull Distribution for .! œ $

Following parameter values are employed for all cases.
-. œ ( œ !Þ)&
:- œ "& œ Ö!ß !Þ&ß "×
+ œ "! 7 œ )
1 œ ' 8 œ Ö" + '×

3

9

3 3

3 3

)
#

 In exponential case, the optimal external and internal due-dates values that minimize the
system cost function are  and  time units, respectively, and the corresponding optimal cost*Þ' "!Þ(

is . We have investigated the equilibrium behaviors of the players employing different%!"Þ$

values for the marginal internal negotiation cost, (  and the proportion of tardiness8 œ " + &Ñ3

cost share of manufacturing division ( . Notice that these parameters don't take part# œ !ß !Þ&ß "Ñ

in system's cost function however effect the local cost structure of the players. Hence, the
equilibrium decisions, and thus the deviation from the system optimal vary for different values of
these parameters. In this setting,  and . Therefore, there exists unique6 œ !Þ%$ 6 œ + !Þ"'" #

equilibrium both for pre-coordination and post-coordination games. Some of the outcome of both
the relaxed version and the original games for the example setting, including the decision values
at equilibrium, the system costs corresponding to this values and their percentage deviations from
the system optimum are summarized in Tables 1 and 2.

Table 1. Equilibrium Values for  and ! œ " 8 œ " + $3

8 œ " 8 œ # 8 œ $

œ ! œ !Þ& œ " œ ! œ !Þ& œ " œ ! œ !Þ& œ "

..

:-

3 3 3

3
/

3
/

# # # # # # # # #

H H H H H H H H HGame
"!Þ* "!Þ& "!Þ" "!Þ$ "! *Þ( *Þ' *Þ% *Þ#

& "$Þ$ "#Þ$ " # "$Þ& "#Þ' ""Þ(14. 14. 13 1
K Ð.. ß :- Ñ9 3 3

/ / 591.3 489.5 433.7 550.7 470.1 426.0 .1 .
47 22 8 37 17 6

&"(Þ# %&& %#" "

#* "$ &Percentage Dev.

Table 2. Equilibrium Values for  and ! œ " 8 œ % + '3

8 œ % 8 œ & 8 œ '

œ ! œ !Þ& œ " œ ! œ !Þ& œ " œ ! œ !Þ& œ "

..

:-

K Ð..

3 3 3

3
/

3
/

9 3
/

# # # # # # # # #

H H H H H H H H HGame
)Þ) )Þ( )Þ( (Þ* ) )Þ" ( (Þ# (Þ%

"#Þ* "#Þ" ""Þ% #Þ$ ""Þ' "" ""Þ' "" "!Þ(1
ß :- Ñ3

/ %*$Þ) %%'Þ& %#!Þ& %*"Þ" %'!Þ% %%"Þ#

#$ "" & # "& "!

483.7 447.1 426.2
21 11 6 2Percentage Dev.

 The results indicate that the both the internal negotiation cost and the cost sharing effect
the outcomes in certain ways. In the example, it is observed that the gap between the game's
outcome and the system optimal decreases significantly as manufacturing's share in tardiness cost
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grows. This pattern is intuitive and consistent with what the coordination mechanism suggests.
As explained before, it simply indicates that to achieve the coordination, all cost components in
the system should be shared across the departments. Basically, if manufacturing is not
responsible for the tardiness penalty there is not much incentive to improve the capacity which
leads the system cost to deviate from the optimal. As the share increases and since the expected
tardiness cost increases in , manufacturing is forced to shorten the internal due-date. However:-3

it looks like that the effect of cost sharing is not significant on the marketing's decision.
 The decisions of the players and thus, the percentage deviation from optimum also
noticeably vary with different internal negotiation costs. In general, upto a certain point (i.e.
8 œ & .. :-3 3 3) both  and  values at equilibrium along with the percentage deviation of the
system's cost in the game from the optimal decrease in . Also note that   increases in 8 .. :-3 3 3

(i.e. ). After this point, where  becomes negative,  continues to! . < Ð:- Ñ . " < Ð:- Ñ :-" "
Ð"Ñ Ð"Ñ

3 3 3

decrease, however,  and the deviation from optimal cost increases in . Basically, beyond.. 83 3

that point the effect of internal negotiation cost dominates the other determinants in the local cost
structure of the marketing so that this division counter intuitively quotes earlier external due-
dates as  increases so as to amplify the payment received from manufacturing that is:-3

proportional to the deviation between  and . Figures 3 and 4 show the response curves of.. :-3 3

the parties along with equilibrium and system optimal points for both cases.

 The mentioned phenomenon is more obvious for Rayleigh and other Weibull
distributions with higher (lower) values of the shape parameter, , (variance). For Rayleigh case!

i  becomes negative quickly with respect to exponential distributiont is detected that < Ð:- Ñ"
Ð"Ñ

3

case. The system cost deviation starts to increase with  when  (Figure 5).  While for8 8 œ #3 3

# œ !Þ& 8 œ # 8 and  the deviation is 14%, it jumps up to 37% and 58% when  is 4 and 63 3

respectively. The increase is more significant when . Namely, the deviation increases from! œ $

37% to 75% when the value of  is increased from  to  and it is 128% when . In8 # % 8 œ '3 3

general, if the marginal internal negotiation cost is high enough (in the last two cases when
8 % #3 ), marketing will not negotiate with the customer and set its external due-date equal to the
customer's preferred delivery date (Figure 6). Basically, by this, marketing passes the burden for
the tardiness cost to manufacturing indirectly through the internal negotiation cost (see equation
(4)). The solutions hint that having too small or too large internal negotiation cost increases the
influence of externalities and one should expect higher gap between the equilibrium and system
optimal costs. We also suspect that as the uncertainty in the system decreases the outcome of the
competition is more degrading on the system performance hence the need for coordination is
more obvious, however, more costly.



21

ddi

pci

Manufacturing
reaction function
Marketing
reaction function
Optimal

Nash
equilibrium

Figure 3. Reaction functions for α=1, ni=1, and γ = 0
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Figure 5. Reaction functions for α=2, ni=2, and γ = 0.5

 To achieve coordination in this specific setting, the value of  in the proposed transfer"$

payment should range between  and . In particular, so as to make the coordination more! + œ "!3

appealing for the departments it is better to seek a value such that each party's cost is no greater
than in the original equilibrium. Divisions' gain , through the coordination can be expressed asß W3

follows;

Manufacturing
reaction function
Marketing
reaction function
Optimal
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ddi

pci
Figure 6. Reaction functions for α=2, ni=4, and γ = 0.5

 
W œ L Ð.. ß :- Ñ + X Ð.. ß :- Ñ3 3 33 3 3 3

/ / 9 9

Clearly, if  is positive for division , that division is better off after the contract. Figure 7W 33

depicts  values for different proposed values of . Both parties are better of together onlyW3 $"
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when . Hence, for that specific case, the contracts embodying a value+ %Þ' % % + &Þ("$

within this range should be preferred to others.
 If the relative influence of the internal negotiation cost in the original game is high,
coordination may become more costly. Figure 8 illustrates such an example where none of the
proposed contract can decrease marketing division's cost. As underlined in chapter 5, in such
cases, a fixed fee from manufacturing to marketing that is unrelated to all other costs and actions
may be transferred for the willing participation of marketing in the coordination process.

Figure 7. Gain through coordination for α=1, ni=4, and γ = 0.5

β3

 $
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S2

Figure 8. Gain through coordination for α=2, ni=4, and γ = 0.5
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β3

S2

 $

7. Conclusions
 In this paper, we propose an incentive mechanism to coordinate due-date quotation in an
internal market with players representing the marketing and manufacturing interests. We first
analyze the system's model where the due-date quotation and the capacity utilization decisions
are jointly given. We then investigate the decentralized case in which the manufacturing and
marketing departments are considered as independent decision makers. To model the incentives
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for the players, we consider a Nash game in which the players announce their own decisions
simultaneously based on their local cost structures. We characterize the basic properties of the
player's utility and show that the Nash equilibrium decisions never optimize the firm's problem
due to externalities. We propose a set of contracts regulating the allotment of the revenue that are
composed of nonlinear transfer payments constructed based on cost elements within the system.
By employing these transfer payments one can achieve the coordinated solution as the incentives
to deviate from the system optimal are eliminated, thus, the system solution becomes the unique
Nash equilibrium. With any belief function that would ensure a convex expected tardiness, the
proposed coordination mechanism achieves system integration.
 We illustrate our approach by a case study using a Weibull belief function. In general, the
existence of equilibria can be proved so long as the capacity adjustment correspond to a convex
expected tardiness function. Moreover, when the scale parameter is modeled as a linear function
of , besides Weibull, there is always at least one Nash equilibrium for distributions such as:-3

uniform, gamma and Pearson Type V. However, the uniqueness of the equilibria needs to be
further investigated for each distribution. Our numerical analysis with Weibull supports the
conclusion of Cachon and Zipkin (1999) in that while the competition degrades the system
efficiency, the extent of the efficiency loss is context specific.
 In our game-theoretic analysis, the internal negotiation cost is an important factor that
may lead to the detriment of system efficiency. In general, for very small and very large
negotiation costs, marketing becomes more sensitive to manufacturing's decisions. Specifically,
if the  is high, marketing would lower the external due-date relative tointernal negotiation cost
the optimal solution. This is due to the fact that the tardiness cost to marketing is over-
compensated by the payment from manufacturing. On the other hand, the larger the external
negotiation cost, the more sensitive manufacturing would be to marketing's decision since the
internal negotiation cost charged to manufacturing increases in proportional to the deviation
between the external and internal due-dates. Moreover, as shown by the numerical analysis we
suspect that this factor becomes potentially more dominant as the uncertainty level (variation)
decreases with respect to other cost elements. Fortunately, the proposed coordination eliminates
this factor through the transfer payments.
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APPENDIX

Proofs of Lemmas 1-3 and Propositions 1- 3 follow;

PROOF OF LEMMA 1 Fix  and take the second derivative of  with respect to :- L Ð.. ß :- Ñ .. À3 " 3 3 3

` L Ð.. ß :- Ñ

`..
œ #1 ; + #8

#
" 3 3

3
# 3 3#+3FÐ.. ß :- Ñ3 3

Since  and , the second derivative will be strictly greater than . Therefore the foregoing1 % 8   ! !3 3 FÐ.. ß :- Ñ3 3

function is strictly convex.

!

PROOF OF LEMMA 2. Fix  and take the second derivative of  with respect to :.. L Ð.. ß :- Ñ :-3 3 3 32

` L Ð.. ß :- Ñ

`:-
œ #7 ;

#
3 3

3
# 3

2
#+ O Ð:- Ñ ; #83 3 3

Ð"Ñ

Here,  and are strictly positive. Therefore it is sufficient to show that the second term in the forgoing equation is7 83 3

non-negative. Since the expected tardiness is a  convex function, it is trivial to see that this term is also positive.

Thus,  is convex in .L :-# 3

!

PROOF OF LEMMA 3. In order to complete the proof we show that it is not possible that when<" 3 3Ð:- Ñ . -.  

:- Ÿ -.3 3. We can rewrite the inequality as follows;

< Ð:- Ñ
IÒÒ

" 3 œ . -.
1 -. + 8 :- ; +

1 + 8
3 3 3 3 3

3 3
3

- + .. Ó Ó3 3
;

which can be reduced to
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+ . 8 Ð:- + -. Ñ3 3 3 3IÒÒ- + .. Ó Ó3 3
;

It is obvious that if the right hand side of the inequality will be non-positive. However, since the left hand:- Ÿ -.3 3, 

side is the expected tardiness given that the order is completed on or after  and thus, is always positive, the..3

inequality will not hold implying that can only be true only when < Ð:- Ñ . -. :-   -." 3 3 3 3 .

!

PROOF OF PROPOSITION 1. To prove convexity it is sufficient to show that the Hessian matrix for the squared

expected tardiness is positive semidefinite. We first take the second derivatives of the function for both  and ;.. :-3 3

` IÒÒ# ( )- + .. Ó Ó

`..
œ Ð.. ß :- Ñ3 3

; #

3
# 3 3F

The second derivative with respect to  has no closed form. However, taking the derivative of that function with:-3
respect to  yields the following result;..3

` IÒÒ3 ( )
dd

- + .. Ó Ó

`:- `
œ + #Ð.. Î:- Ñ Ð.. Þ:- Ñ3 3

; #

3
#

3
3 3 3 3

#9

which implies that the second derivative of squared tardiness with respect to  decreases in  and approaches:- ..3 3

zero when  goes to infinity. Thus, it is non-negative. The determinant of the Hessian is as follows;..3

H œ #F FÐ.. Þ:- Ñ + %Ð ÐBß :- Ñ.BÑ
- + .. Ó Ó

`:-
3 3 3

3 3
; #

3
#

..

_
Ð#Ñ #` IÒÒ# ( ) (

3

The first derivative of H with respect to  is as follows;..3

HÐ"Ñ #
3 3 3 3 3 3 3 3 3 3 3

- +.. Ó Ó _3 3
; #

`:-3
# ..3

Ð#Ñ
Ð.. ß:- Ñœ+# Ð.. Þ:- Ñ ;#Ð.. Î:- Ñ Ð.. Þ:- Ñ+%Ð.. Î:- Ñ ÐBß:- Ñ.B9 F FŒ &'` IÒÒ# ( )

Let denote the function in the foregoing paranthesis. Taking the first derivative with respect to  yields=Ð.. ß :- Ñ ..3 3 3

the following;

= Ð.. ß :- Ñ œ %.. Ð.. Þ:- Ñ + % ÐBß :- Ñ.BÎ:-Ð"Ñ
3 3 3 3 3 3 3

..

_
Ð#Ñ

F F(
3

It is trivial to see that the foregoing function is increasing in  and has negative values for all non-negative values..3

of  and . Thus,  increases in . Since , it is obvious that  implying that H decreases in.. :- = .. =Ð!ß :- Ñ œ ! =   !3 3 3 3
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.. ..3 3. H goes to zero as  goes to infinity. Hence, we can conclude that H is positive and squared expected tardiness

is convex. As a consequence, system cost function is convex as well.

!

PROOF OF PROPOSITION 2. It is shown in Theorem 3 that if   for any  and  then the+_ . < Ð:- Ñ . " .. :-"
Ð"Ñ

3 3 3

Nash equilibrium is unique. So that it is sufficient to show that with the given parameter relations, inequality (6) is

always true.

 Lets first write the derivative of the right hand side of (6) with respect to ;..3

9 9ÐBß :- Ñ + ÐBß :- ÑÐ" + .. Î:- Ñ3 3 3 3F
Ð#Ñ

3ÐBß :- Ñ œ

Observe that the right hand side of (6) increases in  until  and decreases afterwards and thus, it is a.. .. œ :-3 3 3

unimodular function which takes its maximum value when both due-dates are equal. This value can be obtained

using the following equation;

(
:-

_

3 3
Ð#Ñ

3

ÐB + :- Ñ ÐBß :- Ñ + Ð" + Ñ9 )

Also observe that;

.
w

Ð:- Ñ3   ÐB + :- Ñ ÐBß :- Ñ(
:-

_

3 3
Ð#Ñ

3

9

Therefore  is an upperbound for the right hand side of (6). Hence if 6"  1 Î %3 + 6 < Ð:- Ñ . "3 " 3"
Ð"Ñ then   . This completes

the proof.

!

PROOF OF PROPOSITION 3. From Theorem 4 we know that + + . . !3 $" should hold so that existence of Nash

equilibria is guaranteed.

 and  are given in (14) and (15) respectively. Based on Proposition 2, if we show that< <"
Ð"Ñ Ð"Ñ

2

! . < Ð:- Ñ . " ! . < Ð.. Ñ . ""
Ð"Ñ Ð"Ñ

3 3 and  then optimal solution is the unique equilibrium. We have already shown in2

Proposition 2 that if then the former inequality holds. If1 Î+ % 63 3 "

7 Î
+ ..

3
3

+ %
- + .. Ó Ó - Ó Ñ Ó

3
3 33

; ; #` " `

`:- # `:-
+

IÒÒ IÒÐÒ

3 3
#

#
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for any positive values of  and  then the latter inequality also holds. In this inequality, observe that the right.. :-3 3

hand side decreases in  meaning that the maximum value it will take its maximum value when . If .. .. œ ! .. œ !3 3 3

the function returns the first derivative of expected completion time with respect to  less the half of the second:-3

derivative of squared expected completion time with respect to  which is equal to . Hence the foregoing:- 63 #

inequality always holds. Consequently, by Theorem 2, there exists a unique Nash equilibrium which resides at

system optimal solution.

!


