
Submitted to IEEE Trans. on Robotics & Automation

1

Ordinal Comparison of Heuristic Algorithms Using

Stochastic Optimization

Chun-Hung Chen

Dept. of Systems Engineering
University of Pennsylvania

Philadelphia, PA 19104-6315
chchen@seas.upenn.edu

S. David Wu

Dept. of Industrial and
Manufacturing Systems Eng.

Lehigh University
Bethlehem, PA 18015

sdw1@lehigh.edu

Liyi Dai

Dept. of Systems Science and
Mathematics

Washington University
St. Louis, MO 63130
liyi@zach.wustl.edu

Abstract

The performance of heuristic algorithms for combinatorial optimization is oftentimes sensitive to

problem instances. In extreme cases, a specialized heuristic algorithm may perform exceptionally

well on a particular set of instances while fail to produce acceptable solutions on others. Such a

problem-sensitive nature is most evident in algorithms for combinatorial optimization problems

such as job shop scheduling, vehicle routing, and cluster analysis. This paper proposes a formal

method for comparing and selecting heuristic algorithms (or equivalently, different settings of a

same algorithm) given a desired confidence level and a particular set of problem instances. We

formulate this algorithm comparison problem as a stochastic optimization problem. Two

approaches for stochastic optimization, Ordinal Optimization and Optimal Computing Budget

Allocation are applied to solve this algorithm selection problem. Computational testing on a set

of statistical clustering algorithms in the IMSL library is conducted. The results demonstrate that

our method can determine the relative performance of heuristic algorithms with high confidence

probability while using a small fraction of computer times that conventional methods require.

2

1. Introduction

Many specialized algorithms and heuristics have been developed for combinatorial problems

such as production scheduling and vehicle routing. The performance of these specialized

algorithms is often sensitive to problem instances. As a common practice, researchers “tune” their

algorithm to its best performance on the test set reported. This causes problem when the

algorithms are to be used in industry applications where the algorithm configured for today's

problem may perform poorly for tomorrow's instances. It is not practical to conduct massive

experiments in a regular basis for the selection of a more effective algorithm setting. The same

situation applies when a number of alternative algorithms are available to the decision-maker for

selection.

The testing and comparison of heuristic algorithms have been a subject of much discussion in

recent years. A familiar approach of algorithmic testing is to show that a proposed algorithm is

better, at least in some aspect, than the current incumbent using either standard benchmark

problems or randomly generated ones. Shortcomings of this approach are highlighted in a 1995

article by Hooker who argued that “Most experimental studies of heuristic algorithm resemble

track meets more than scientific endeavors (pg. 33, Hooker 1995).” Among other problems of

this “track meets” approach is how much should an algorithm developer tune his/her own

algorithm vs. the competing algorithm, and whether such comparison is possible to generalize.

He suggested that the approach of controlled experimentation is the way to alleviate potential

biases and unfairness in algorithm comparison.

Empirical testing of algorithms has been the focus of research in a variety of contexts. In a

recent article, Barr et al. (1995) provide a comprehensive view to the computational experiments

for heuristic algorithms. Ahuja and Orlin (1992) suggest methods for comparing computational

efficiency of network algorithms using the concept of operation counts. In the context of

mathematical programming, the issue of conducting computational experiments has been

addressed since the late 70’s. Crowder et al. (1979), Jackson and Mulvey (1978) and Jackson et

al. (1989) have provided important guidelines for computational experiments. Crowder and

Sunders (1980) and Greenberg (1990) discuss performance measures such as algorithm

robustness, reliability, and solution accuracy when comparing algorithms. Most relevant to this

3

paper are statistical methodologies for the design and analysis of computational experiments.

McGeoch (1986), Bentley (1990), Golden et. al. (1986), Amini and Racer (1992) and Barton

(1987) suggest various statistical techniques for this purpose. Of special interest is the approach

suggested by McGeoch (1992) McGeoch and Tygar (1991) which uses variance reduction

techniques to reduce the size of the computational experiments when analyzing sorting

algorithms.

In this paper, we focus our attention on heuristic algorithms whose performance is sensitive to

special structures of different problem instances while the algorithm performance can be improved

through parametric tuning. We believe this represents a large class of algorithms including exact

methods whose efficiency relies on particular search heuristics (e.g., branching rules in a branch

and bound algorithm). This problem-sensitive nature is most evident in algorithms for

combinatorial optimization problems such as job shop scheduling, vehicle routing, and cluster

analysis. Clearly, given a set of problem instances one can find a parameter setting of a particular

algorithm that is at least as good as all others under consideration. The ability to make this

decision effectively has great practical importance. For example, scheduling problems in a

manufacturing plant may vary in a frequent basis due to its highly dynamic nature. Due-date

tightness, seasonality of order volumes and mixes, machine or tooling status, and changing

operating policies may all alter the structure of the scheduling problem to be solved. As a result,

the "best" algorithm or algorithm setting for solving a preconceived static problem may perform

poorly in a day-to-day basis.

In this paper, we propose a stochastic optimization method designed to compare algorithms or

algorithm settings in a timely and efficient fashion when a new set of problem instances arise. The

purpose of this method is two fold: to provide a means for algorithm comparison and to provide a

“self-tuning” mechanism for heuristic algorithms, i.e., to identify appropriate parameter settings of

an algorithm given problem instances at hand.

In the next section, we formulate algorithm comparison as a stochastic optimization problem.

In Sections 3 and 4, we present two optimization techniques, ordinal optimization and optimal

computing budget allocation, for the solution of the problem. Section 5 gives two numerical

examples for computational testing. Section 6 address several implementation issues and Section

7 concludes the paper.

4

2. Problem Statement

Suppose we wish to compare several different heuristic algorithms and each algorithm has

different parameter settings. There are a total of k different algorithm-parameter combinations.

For convenience we will call these combinations k different algorithms indexed by i, where i = 1,

2, ..., k. Our objective is to find an algorithm (or more accurately, an algorithm with a particular

parameter setting) which performs the best over a particular problem instance as well as a

specified range of variations for that instance. We further assume that there exists a priori

statistical information regarding the variations. Thus, a particular problem instance and its

variations form the set of problem instances under consideration. We define a best algorithm as

one that provides the best expected performance for the current set of problem instances. Denote

hi(w) as the result of applying algorithm i given the variations of the current problem instances

characterized by w. hi(w) is a random variable characterized by the variation of the current

problem instances. Specifically,

hi(wj) = Ew[hi(w)] + εi(wj). (1)

where gi(wj) can be viewed as an estimation uncertainty or noise. (1) implies that εi(wj) has zero

mean. A good example for εi(wj) could be a Gaussian noise, i.e., N(0, σ i
2
). Thus a best algorithm

i* can be chosen based on the expected performance measure Ew[hi(w)], i.e., i* = arg min
i

Ew[hi(w)].

For most real-life problems, neither the closed-form expression of hi(w) nor that of Ew[hi(w)]

exists. To estimate Ew[hi(w)], one may take a sample of w, say wj, and apply algorithm i to solve

the problem based on this sample wj. Then this is repeated for n samples. Thus, Ew[hi(w)] is

approximated by the value:

 ˆ E w [hi(w)] ≡
1
n j =1

n

∑ hi(wj)

If we conduct independent sampling and the variance is finite, as the strong law of large numbers

dictates, the following property holds with probability 1:

5

1
n j =1

n

∑ hi(wj) → Ew[hi(w)], as n → ∞.

Since it is not possible to get an infinite number of test samples, the best algorithm must be chosen

without knowing the exact value of the performance measure. The main difficulty is that with

traditional sampling methods the estimate
1
n j =1

n

∑ hi(wj) converges slowly. In general, the rate of

convergence for such a value estimate is at best O(1
n

) (Fabian 1971, Kushner and Clark

1978). The large n required for a good approximation implies that each algorithm must be

repeated with a large number of samples, which translate to long computer time. In this paper we

present a new approach for algorithm comparison using the notion of Ordinal Optimization and

Optimal Computing Budget Allocation. Given a specified confidence interval, our method seeks

to identify the best algorithm among a group of algorithms using a fraction of the computing

effort required for traditional methods.

3. Ordinal Optimization

Although the estimate ˆ E w [hi(w)] converges very slowly as n goes to infinity, recent research

has shown that comparing relative orders of performances measures converges much faster than

the performance measures themselves do. This is the basic idea of ordinal comparison. (Dai

1996) showed that under certain conditions the rate of convergence for ordinal comparison can be

exponential. This result has important implications as it means that in many cases we could have a

good estimate on the relative performance of algorithms while the value estimate on the actual

algorithm performance is still poor. Ordinal optimization refers to the general approach that

selects a subset of alternatives from the design space based on a certain criteria and a specified

confidence level (Barnhart et al. 1994, Ho 1994a, Ho et al. 1992). Ordinal comparison can be

used as a means for solving ordinal optimization if our goal is to find a good alternative in a

group rather than to find an accurate estimate of the performance value. This idea is applicable

not only to problems with discrete design space, but also to problems over a continuous design

space (Cassandras and Bao 1994, Cassandras and Julka 1994, Chen and Kumar 1996, Chen et al.

1997a, Gong et al. 1994, Patsis et al. 1996, Yan and Mukai 1993). If our goal is to find the best

or a subset of good designs rather than to find an accurate estimate of the best performance value

6

(as is true in many practical situations) it is advantageous to use ordinal comparison for selecting

the best design.

Suppose we select an algorithm b using the following criterion:

b ≡ arg min
i

 ˆ E w [hi(w)] (≡
1
n j =1

n

∑ hi(wj)).

Given the fact that we use only a finite number of testing samples, n, ˆ E w [hi(w)] is an

approximation to the true expected performance Ew[hi(w)]. An algorithm b with the smallest value

of ˆ E w [hi(w)] is not necessarily the true best algorithm (i.e., its true expected performance

Eb[hi(w)] may not be the best).

Definition 1. Define correct selection (CS) as the event that the selected algorithm b is actually

the best algorithm. Define the confidence probability P{CS} ≡ P{ The current top-raking

algorithm b is actually the best algorithm }.

Based on the results from ordinal comparison, it is possible to establish the relative order of

ˆ E w [hi(w)] efficiently (i.e., to make the probability P{CS} sufficiently high) although the value of

ˆ E w [hi(w)] may converge slowly.

Theorem 1. Suppose the testing samples for each algorithm are i.i.d. and the testing samples

between any two algorithms are independent. Assume that hi(w) (or εi(w)) has a finite moment

generating function. The ordinal comparison confidence probability converges to 1 exponentially.

More specifically, there are α > 0, β > 0 such that

 P{CS} ≥ 1 - αe-βn.

Proof. Dai (1996), Theorem 5.1.

Since most statistical distributions (for example, normal, exponential, Erlang, and uniform

distributions) have finite moment generating functions and therefore, Theorem 1 is applicable to

most cases.

While the confidence probability P{CS} could converge at an exponential rate in ordinal

comparison, a critical issue in applying it to ordinal optimization is the estimation of the P{CS}

7

itself. Goldsman and Nelson (1994) provide an excellent survey on available approaches (e.g.,

Goldsman et al. (1991), Gupta and Panchapakesan (1979), and Law and Kelton (1991)) to

estimating simulation confidence level. Bechhofer et al. (1995) give a systematic and more

detailed discussion on this issue. Unfortunately most of these approaches are only suitable for

problems with a small number of designs (e.g., Goldsman and Nelson (1994) suggest 2 to 20

designs). For real-life problems, the number of designs under consideration can be quite large.

Using a Bayesian model, Chen (1996) developed an estimation technique to quantify the

confidence level for ordinal comparison when the number of designs is large. In addition to the

confidence probability, this approach also provides sensitivity information for each algorithm.

The sensitivity information is useful if incremental computing effort is to be allocated during the

comparison. We will make use of this particular feature in Section 4 to develop a computing

budget allocation algorithm. The computation of P{CS} in this paper is a special case discussed in

Chen (1996).

Theorem 2. Let ˜ J i , i ∈ {1, 2, .., b-1, b, b+1, .., k}, denote the random variable whose probability

distribution is the posterior distribution of the expected performance for algorithm i under a

Bayesian model. For a minimization problem,

P{CS} ≥ P{˜ J b < ˜ J i}
i =1,i ≠ b

k

∏ ≡ Approximate Probability of Correct Selection (APCS) (2.1)

For a maximization problem,

P{CS} ≥ P{˜ J b > ˜ J i}
i =1,i ≠ b

k

∏ . (2.2)

Proof of Theorem 2 is given in the Appendix. Note that the computation of APCS is simply a

product of pairwise comparison probabilities, which is much easier to compute.

Under the Bayesian model, the posterior distribution p(˜ J i) consists of information from both

prior distribution and the test samples {hi(wj), j = 1, 2, .., n}. In other words, p(˜ J i) summarizes

the statistical properties of algorithm i’s performance given the prior knowledge and the test

results. To give an explicit model for ˜ J i , we consider a Gaussian estimation noiseεi(wj) ~ N(0,

σ i
2). Then the testing output is also normally distributed with mean Ew[hi(w)] and variances σ i

2 .

8

In this paper, we consider non-informative prior distributions. This implies that no priori

knowledge is given about the performance of any algorithm before the comparison starts. If σ i
2 is

known (Bernardo and Smith 1984),

˜ J i ~ N(
1
n j =1

n

∑ hi(wj),
σ i

2

n
), for i = 1, 2, .., k.

If the variance is unknown, σ i
2
 can be replaced by the sample variance

Si
2
 =

1
n −1 j =1

n

∑ {hi (w j) − [
1
n s =1

n

∑ hi(ws)]}
2

and ˜ J i becomes t-distributed with n -1 degrees of freedom (Inoue and Chick 1998).

In Theorem 2 we establish the lower bound of P{CS} (in (2)) as the Approximate Probability

of Correct Selection (APCS). While P{CS} is very difficult to obtain, APCS can be computed

easily, for instance, in the case that variances are known and for a minimization problem,

APCS = P{˜ J b − ˜ J i < 0}
i =1,i ≠ b

k

∏ = Φ

1
n

hi (ws)
s=1

n

∑ − 1
n

hb(ws)
s=1

n

∑

σ i
2

n
+

σb
2

n






 






  i =1,i ≠ b

k

∏ ,

where is Φ is the standard normal cumulative distribution. Numerical testing in Chen (1996)

shows that APCS provides a good approximation to P{CS}. We will therefore use APCS to

approximate P{CS} in this paper.

Intuitively, APCS provides a convenient stopping criterion for the process of algorithm

comparison using ordinal optimization. As the number of test samples n increases, the variance

σ i
2

n
 decreases and more confidence can be given to the sample mean. Using the APCS measure

and the basic property of ˜ J i , we design an iterative algorithm comparison experiment as follows:

 Consider a set of algorithms for comparison. Allocate a small number of test samples for

each algorithm, then rank the algorithms according to their estimated relative performance.

Select the “best” (highest ranked) algorithm. Compute the approximate probability of correct

10

While ordinal optimization could significantly reduce the computational cost for algorithm

selection, there is potential to further improve its performance by adjusting in each iteration the

amount of additional samples (i.e., τ) based on the relative performance of algorithm i. In this

section, we present a technique called optimal computing budget allocation (OCBA) which

makes use of this idea. The OCBA approach can be summarized as follows: Start the algorithm

selection procedure using ordinal optimization. In each iteration, compute a “promising index”

for each algorithm under consideration, allocate incremental computing budgets to “more

promising” algorithms while a subset of algorithms may be declared inferior and allocated no

additional budget. As the experiment continues, the relative-performance estimations improve

and promising algorithms are re-determined for further testing. This procedure continues until a

pre-specified confidence level is obtained for the algorithm ranking.

Suppose we could find the allocation of testing samples to all algorithms, which minimizes

total computation cost while obtaining the desired confidence level. Then we can optimally

decide which algorithm will receive how many computing budgets in each iteration of the

experiment. Let Ni be the number of testing samples of algorithm i. If comparison is performed

on a sequential computer and the difference of computation costs using different algorithms is

negligible, the total computation cost can be approximated by N1 + N2 + ⋅⋅ + Nk. The goal is to

choose Ni for all i such that the total computation cost is minimized, subject to the restriction that

the confidence level defined by APCS is greater than some satisfactory level. This optimization

problem in its simplest form can be stated as follows.

min
N1 ,⋅⋅, Nk

 { N1 + N2 + ⋅⋅ + Nk }

s.t. APCS ≥ P*. (3)

where P* is a user-defined confidence level requirement.

Some difficulties in solving (3) include the following:

a) There is no closed-form expression for the confidence level APCS.

b) The confidence level APCS(N1, N2, .., Nk) can be computed only after all N1, N2, .., Nk

testing samples for algorithm 1 through k, respectively, are performed.

11

c) N1, N2, .., Nk are integers and the number of combinations for N1, N2, .., Nk is large even

for moderate k.

In general, solving (3) as an a priori optimization problem is difficult due to a typically large k

and the fact that the information required for calculating APCS is poor. Since the very purpose of

OCBA is to reduce the computation cost of algorithm comparison, there is little incentive to exert

too much effort in solving (3) itself. The additional cost of solving (3) must be properly balanced

with the benefits of budget allocation.

As a heuristic for the solution to OCBA (i.e., to find the best N1, N2, .., Nk), we sequentially

select a subset of “promising” algorithms in each iteration of the computational experiment. This

procedure continues until APCS ≥ P*. We define promising algorithms as those which maximize

the estimated improvement of APCS. A critical issue in this approach is the determination of a

set of promising algorithms, or more specifically, the estimation of the new P{CS} if additional τ

testing samples are performed on algorithm s.

Definition 2. Define EPCS(N1, N2, .., Ns-1, Ns+τ, Ns+1, .., Nk) as an estimated P{CS} if additional τ

testing samples are performed on algorithm s. EPCS is computed using the statistical information

after N1, N2, .., Nk testing are completed for algorithms 1, .., k, respectively.

To minimize the efforts of reaching a desired confidence level, in each iteration we test the

algorithm that has a maximum promising index (PI) defined as follows:

PI(s) ≡ EPCS(N1, N2, .., Ns-1, Ns+τ, Ns+1, .., Nk) - APCS(N1, N2, .., Ns-1, Ns, Ns+1, .., Nk).

Chen, et al. (1997b) suggests a simple and effective way to estimate the EPCS (without loss of

generality we only consider minimization problems here):

If s ≠ b,

EPCS(N1, N2, .., Ns-1, Ns+τ, Ns+1, .., Nk) = P{˜ J b < ˆ J s} ⋅ P{˜ J b < ˜ J i }
i =1,i ≠ b,i≠ s

k

∏ ,

where ˜ J i ~ N(
1
Ni j=1

N i

∑ hi(wj) ,
σ i

2

Ni

), ˆ J s ~ N(
1
Ns j =1

Ns

∑ hs(wj) ,
σs

2

Ns + τ
).

And if s = b,

14

implementation differences in terms of memory management, data structures and coding

techniques are minimal. Given the task of selecting a best heuristic algorithm for the problem

instances under consideration and a specified confidence level, we focus our analysis on the actual

savings in computer time over traditional methods.

Cluster analysis has been used to solve machine-grouping problems in manufacturing

environments (Askin and Standridge 1993). Many cluster analysis approaches have been

proposed over the years. Among them are hierarchical clustering techniques (Anderberg 1973),

optimization algorithms (Everitt 1993), fuzzy logic approaches and neural network based

algorithms. Without complicating the issues in algorithm comparison, we will compare only

hierarchical clustering algorithms in this study.

Hierarchical clustering utilizes a machine-part incidence matrix with 0-1 entries. The incidence

matrix provides information about which parts are processed on which machines. Table 1.1 (on

page 16) gives an example of such machine-part incidence matrix. Conventionally, rows of the

incidence matrix correspond to machines while columns correspond to parts. In a matrix X,

element xij is equal to 1 if part j visits machine i at some point of its process, and 0 otherwise.

The objective of a clustering algorithm is to reorder the rows and columns of the matrix such that

blocks of 1's appears, as much as possible, along the diagonal direction of the matrix. In this case,

adjacent parts in the resulting matrix tend to use the same set of machines (i.e., the matrix defines

machine cells). Ideally we would like to transform the matrix in Table 1.1 into a block diagonal

matrix, in which 1's are located only in the diagonal blocks. In practice, this may not be possible

to achieve, i.e., some of the 1’s may not belong to any blocks (as shown in Table 1.2 on page 16).

Before starting the hierarchical clustering algorithm, the machine-part incidence matrix is

transformed into a similarity matrix so that the clustering algorithms can be used for the machine-

grouping problems. A similarity matrix contains information about the degree to which each

machine is related to the other machines according to the parts they process. More specifically,

each entry to the similarity matrix is a similarity coefficient, one for each machine pair. Let ni be

the number of parts that visit machine i and nij be the number of parts that visit machine i and

machine j. We define three different similarity coefficients sij, as follows:

L1 norm: sij =
nij

ni

 +
nij

nj

,

15

L2 norm: sij =
nij

ni




 




2

+
nij

n j




 




2

,

L∞ norm: sij = max
nij

ni

,
nij

n j




 


 ,

Hierarchical clustering algorithm forms machine groups by processing the similarity matrix

[sij] obtained from the incidence matrix. Initially, each machine belongs to a cluster of its own. In

each succeeding iteration, the algorithm combines individual machine or groups of machines into

clusters based on some (heuristic) criterion. The columns and rows for the cluster members are

removed from the matrix and replaced by similarity coefficients aggregated from the clusters. This

forms a reduced similarity matrix among machine clusters. The clustering algorithm continues to

reduce similarity matrix until all machines are in a specified number of clusters. This procedure

produces a range of clustering solutions, which is summarized in a “dendogram.” A dendogram is

a tree in which the root and the leave levels represent the trivial one-cluster, and no-cluster

solutions, respectively. The levels between the root and the leaves represent all non-trivial

solutions found in the algorithm. Given a specified number of clusters, a solution can be found at

a corresponding level of the dendogram. A detailed description of general hierarchical clustering

algorithms can be found in (Askin and Standrige, 1993).

A number of hierarchical clustering algorithms has been developed and widely used. Main

differences between these heuristic algorithms include the criterion used for combining clusters, or

the way similarity coefficients are updated. To demonstrate our proposed algorithm comparison

procedure, we implemented six well-known hierarchical clustering algorithms (Anderberg 1973)

as follows:

i) Single Linkage (SGL): Combine a pair of similarity coefficients by saving the maximum

for further iterations,

ii) Complete Linkage (CPL): Combine a pair of similarity coefficients by saving the

minimum for further iterations,

iii) Average Between Linkage (ABL): Combine a pair of similarity coefficients by saving

their average for further iterations,

16

iv) Average Within Linkage (AWL): Combine a pair of similarity coefficients by re-

calculating the average of similarity coefficients of all machines within the merged cluster

for further iterations,

v) The Centroid Method (CTD): Suppose clusters x and y are being merged as a new cluster

z. The number of parts that visit machine group z is calculated by nz = (nx+ny)/2. Then

the similarity coefficients between the newly merged cluster and all other clusters are re-

calculated.

vi) Ward's Method (WAR): Combines those machine groups whose merger produces the

minimum increase in the total sum of squares of similarity coefficients within the merged

cluster.

Since the three different ways of calculating similarity coefficient can be considered a

parametric element of hierarchical clustering algorithm, we combine them with each of the above

hierarchical clustering algorithm. This results in 18 distinct “heuristic algorithms” to be tested.

We repeat the computational experiments on two distinctly different sets of problem instances.

To produce a more realistic set of problem instances we assume some portion, say γ, of the

elements in this machine-part incidence matrix will be perturbed from "1" to "0", or from "0" to

"1". Further, we assume that the exact instance of the matrix after all the changes is not known a

priori. Thus, the objective is to find a clustering algorithm (out of the 18) which has the best

expected performance given the base problem instance and its variations.

Performance Measures

To determine the performance of different clustering algorithms we use three performance

measures: average similarity (CR), total number of outliners (OL), and a linear combination of CR

and OL. CR measures the system-wide similarity or the similarity among all clusters. More

specifically,

CR = (Ri
2

i =1

L

∑)1/2,

where L is the number of cluster,

18

approximation to Ew[hi(w)] can be obtained when the relative standard error (i.e., the ratio of the

standard deviation of ˆ E w [hi(w)] to | ˆ E w [hi(w)]|) is less than 0.1%.

Experiment 1. Base testing on the first set of problem instances

We consider the matrix in Table 1.1 as a base for the first set of problem instances (from

Groover 1987). 5% of the elements in this matrix will be perturbed from "1" to "0", or from "0"

to "1" (i.e., γ=5%). The resulting rankings for each performance measure are shown in Table 2.

21

Experiment 2. Testing the Efficiency of Ordinal Optimization and OCBA: Instance One

We consider three different percentages of variations: γ = 2%, 5%, and 15% in forming the set

of test instances. We consider two ways of applying the stochastic optimization techniques. In

the first configuration we apply ordinal optimization to the algorithm comparison process

described above, and measures the degree of saving achieved. In the second configuration we

apply ordinal optimization and optimal computing budget allocation (OCBA) in sequence. We

stop the comparison procedure when the confidence probability APCS is no less than P*, which

means that the required confidence level is achieved. Different confidence level requirements are

tested at 90%, 95%, 99% and 99.5%. We repeat this testing 100 times, each run uses a different

random seed. Since the total numbers of test samples are different from one run to another run

due to different random seeds, we compute their average as the computation cost. Tables 3, 4,

and 5 contain the testing results for CR, OL, 0.0113CR + 0.0147OL performance measure,

respectively. We compare the total numbers of test samples using different approaches for

different cases.

From the three tables, we see that with the application of ordinal optimization, the “best

algorithm” can be identified with high probability within a much shorter time when compared to

the traditional method. The time savings factors range from 23 to 739. If the OCBA is used, the

factors can be as high as 1656. The required computation cost of our approach depends heavily

on how close the performance measure of the best algorithm is to that of other algorithms.

Intuitively, the closer in performance the best algorithm is comparing to other algorithms, the

harder it is to identify the best algorithm. Clearly, the confidence level requirement P* affects the

required computation as well. In general, a higher confidence level requirement requires longer

computation time for ordinal optimization. However, the speedup of OCBA over ordinal

optimization (i.e., S.F.O.O.) increases as P* increases. This is because a higher computational

requirement on ordinal optimization offers more opportunity for OCBA to manipulate the budget

allocation.

 Larger γ implies larger variation of testing problems. As a result, the performance measures

in our experiments, CR, OL, and their combination, become larger as γ increases. Since the

stopping criterion for the traditional approach is that the standard deviation of ˆ E w [hi(w)] is less

than 0.1% of | ˆ E w [hi(w)]|, the computational cost of the traditional approach is lower for larger γ.

22

However, when using this approach the confidence level of identifying the best algorithm can not

be guaranteed. On the other hand, our approaches tend to take longer computation time as γ

increases, since the variances of the performance measure becomes larger and it becomes more

difficult to isolate the best algorithm.

Table 3. Computation cost for CR performance measure with different confidence level

requirements.

γ = 2%. The comp. cost using traditional approach is 75092.

Ordinal Optimization Ordinal Opt + OCBA

P* Comp. Cost1 T.S.F.2 Comp. Cost1 T.S.F.2 S.F.O.O.3

90.0% 101.5 739.8 63.8 1177.0 1.6

95.0% 120.4 623.7 72.2 1040.0 1.7

99.0% 183.2 409.9 93.3 804.8 2.0

99.5% 220.3 340.9 106.5 705.1 2.1

γ = 5%. The comp. cost using traditional approach is 72993.

Ordinal Optimization Ordinal Opt + OCBA

P* Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.O.O.

90.0% 341.2 213.9 107.8 677.1 3.2

95.0% 469.7 155.4 141.9 514.4 3.3

99.0% 883.2 82.6 228.1 320.0 3.9

99.5% 1031.4 70.8 243.0 300.4 4.2

γ = 15%. The comp. cost using traditional approach is 63327.

Ordinal Optimization Ordinal Opt + OCBA

P* Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.O.O.

90.0% 326.8 193.8 98.1 645.5 3.3.

95.0% 428.3 147.9 130.3 486.0 3.3

99.0% 846.3 74.8 209.1 302.8 4.0

99.5% 1163.1 54.4 219.8 288.1 5.3

1 The average of the total numbers of test samples over the 100 independent experiments.

2 T.S.F. is the time saving factor as compared to the traditional method.

23

3 S.F.O.O. is the speedup factor of OO+OCBA as compared to using OO only.

Table 4. Computation cost for OL performance measure with different confidence level

requirements.

γ = 2%. The comp. cost using traditional approach is 36231.

Ordinal Optimization Ordinal Opt + OCBA

P* Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.O.O.

90.0% 175.1 206.9 74.0 489.6 2.4

95.0% 284.7 127.3 90.0 402.6 3.2

99.0% 466.7 77.6 130.2 278.3 3.6

99.5% 592.0 61.2 152.3 237.9 3.9

γ = 5%. The comp. cost using traditional approach is 29126.

Ordinal Optimization Ordinal Opt + OCBA

P* Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.O.O.

90.0% 408.9 71.2 113.5 256.6 3.6

95.0% 650.8 44.7 146.2 199.2 4.5

99.0% 1137.5 25.6 247.8 117.5 4.6

99.5% 1248.6 23.3 281.6 103.4 4.4

γ = 15%. The comp. cost using traditional approach is 35941.

Ordinal Optimization Ordinal Opt + OCBA

P* Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.O.O.

90.0% 241.3 148.9 87.6 410.3 2.8

95.0% 374.9 95.9 108.7 330.6 3.4

99.0% 677.8 53.0 150.2 239.3 4.5

99.5% 864.7 41.6 183.8 195.5 4.7

24

Table 5. Computation cost for 0.0113CR + 0.0147OL performance measure with different

confidence level requirements.

γ = 2%. The comp. cost using traditional approach is 176583.

Ordinal Optimization Ordinal Opt + OCBA

P* Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.O.O.

90.0% 245.1 720.5 106.6 1656.5 2.3

95.0% 337.6 523.1 131.3 1344.9 2.6

99.0% 518.5 340.6 188.7 935.8 2.7

99.5% 628.0 281.2 209.2 844.1 3.0

γ = 5%. The comp. cost using traditional approach is 159450.

Ordinal Optimization Ordinal Opt + OCBA

P* Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.O.O.

90.0% 544.3 292.9 163.5 975.2 3.3

95.0% 647.6 246.2 203.9 782.0 3.2

99.0% 1071.9 148.8 291.6 546.8 3.7

99.5% 1189.0 134.1 331.7 480.7 3.6

γ = 15%. The comp. cost using traditional approach is 103191.

Ordinal Optimization Ordinal Opt + OCBA

P* Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.O.O.

90.0% 607.1 170.0 160.8 641.8 3.8

95.0% 873.0 118.2 204.0 505.9 4.3

99.0% 1502.6 68.7 305.5 337.8 4.9

99.5% 1837.9 56.1 387.2 266.5 4.7

26

8 1 1 1 1 1 1

28

Table 8. Computation cost for CR performance measure with different confidence level

requirements. T.S.F. is the time savings factor when our techniques are applied as

compared with the traditional approach. S.F.O.O. is the speedup factor of using

OO+OCBA over using OO only. Thus S.F.O.O. can be an indicator of the

effectiveness of the OCBA technique.

γ = 2%. The comp. cost using traditional approach is 52689.

Ordinal Optimization Ordinal Opt + OCBA

P* Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.O.O.

90.0% 309.0 170.5 95.9 549.4 3.2

95.0% 669.5 78.7 127.3 413.9 5.3

99.0% 1106.4 47.6 208.3 252.9 5.3

99.5% 1540.4 34.2 250.3 210.5 6.2

γ = 5%. The comp. cost using traditional approach is 46264.

Ordinal Optimization Ordinal Opt + OCBA

P* Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.O.O.

90.0% 586.7 78.9 132.1 350.2 4.4

95.0% 890.0 52.0 202.9 228.0 4.4

99.0% 1744.9 26.5 321.4 144.0 5.4

99.5% 2000.1 23.1 370.2 125.0 5.4

γ = 15%. The comp. cost using traditional approach is 21761.

Ordinal Optimization Ordinal Opt + OCBA

P* Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.O.O.

90.0% 466.7 46.6 136.6 159.4 3.4

95.0% 830.1 26.2 170.7 127.5 4.9

99.0% 1191.7 18.3 275.7 79.0 4.3

99.5% 1439.6 15.1 306.7 71.0 4.7

29

Table 9. Computation cost for OL performance measure with different confidence level

requirements.

γ = 2%. The comp. cost using traditional approach is 143231.

Ordinal Optimization Ordinal Opt + OCBA

P* Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.O.O.

90.0% 433.9 330.1 120.5 1188.7 3.6

95.0% 824.6 173.7 153.6 932.5 5.4

99.0% 1483.9 96.5 303.3 472.3 4.9

99.5% 2223.0 64.4 340.2 421.0 6.5

γ = 5%. The comp. cost using traditional approach is 181289.

Ordinal Optimization Ordinal Opt + OCBA

P* Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.O.O.

90.0% 99.9 1814.8 60.6 2991.7 1.6

95.0% 128.8 1407.6 67.1 2701.9 1.9

99.0% 206.6 877.5 85.1 2130.4 2.4

99.5% 249.1 727.8 93.3 1943.1 2.7

γ = 15%. The comp. cost using traditional approach is 211442.

Ordinal Optimization Ordinal Opt + OCBA

P* Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.O.O.

90.0% 159.4 1326.5 70.2 3012.1 2.3

95.0% 216.1 978.5 81.5 2594.5 2.7

99.0% 354.9 595.8 112.7 1876.2 3.1

99.5% 385.2 548.9 131.2 1611.6 2.9

31

implementing a designed computational experiment, assuming each algorithm as a capsulated

module that takes the problem input and provides a solution that can be evaluated by a certain

performance measure.

However, from an implementation point of view, several issues must be addressed when

setting up heuristic algorithms for comparison. First, the method assumes the existence of a

problem instance and its statistical variations. In practice, this information must be made available

from historic data or other a priori knowledge of the problem. For example, for production

scheduling problems, static information on job routing and processing time distributions are

typically available in the information system. Given a priori information on the incoming job

orders, a problem instance could be constructed with proper statistical variations. . The sources

of statistical variations may include processing times, setup requirements, job routings and the

presence of alternative machines. With the capability of current information systems, constructing

a problem instance and its statistical variations for a specified planning period should not be

difficult. A similar setting can be applied to vehicle routing problems where incoming customer

demands over the near-term planning periods are analyzed a priori, providing a statistical basis

for the algorithm selection test instances.

Another issue involves the testing of a diverse set of algorithms. While comparing different

parameter settings of an algorithm or a set of “standardized” algorithms (such is the case in the

IMSL library) is straightforward, comparing independently developed algorithms remains difficult.

As well illustrated by Barr et al. (1995) and Hooker (1995), the difficulties are due to the wide

variety of programming options available (e.g, data structures, memory management scheme),

presumed computing platforms, and the very intepretation of algorithm comparison. Clearly some

effort on setting up the ground rules, or even standardizing the heuristic algorithms is necessary

before a fair comparison can start. As specialized software libraries (e.g., class libraries in C++,

or Java) becomes common place for mathematical and statistical algorithms, it is not unreasonable

to assume that the algorithms under comparison are standardized under a common set of

assumptions.

7. Conclusions

In this paper, we demonstrated that the performance of algorithms could be highly sensitive to

problem instances, parameter settings and performance measures. In extreme cases, an algorithm

32

may perform exceptionally well on a particular set of instances while fail to produce acceptable

solutions on others. Furthermore, as we have shown in our experiments, a heuristic algorithm may

be superior on a particular performance measure while performing poorly on another performance

measure. Two methods of ordinal comparison presented in this paper offer an efficient scheme

for selecting heuristic algorithms given a desired confidence level and a particular set of problem

instances. Computational testing on a set of statistical clustering algorithms demonstrates that our

method can effectively compare and select algorithms that are expected to perform the best on

given problem instances. The time savings factors of using ordinal optimization in the

computational testing range from 23 to 8881. The application of optimal computing budget

allocation on ordinal optimization can further push the savings factor up to as high as 19648.

Our proposed approach for algorithm comparison is quite general with a few mild

assumptions. A major assumption is that the variation/noise of the testing result has a finite

moment generating function, which is true for most real-world distributions. The restriction of a

finite moment generating function is to ensure the exponential convergence property of ordinal

optimization. However, even if this assumption is not valid and thus, the exponential convergence

property is not ensured, the OCBA scheme is still applicable and could still reduce computation

cost significantly.

Appendix

The computation of APCS in this paper is a special case discussed in Chen (1996). In the

following we give the proof of Theorem 2. Let X1, X2, .., Xk be k random variables, and X2, X3,

.., Xk are mutually independent.

Lemma 1. P{X1 < Xi ∩ X1 < Xj } ≥ P{X1 < Xi } P{X1 < Xj }, i≠j≠1.

<pf> P{X1 < Xi ∩ X1 < Xj }

= ∫∫ P{X1 < a ∩ X1 < b } f Xi , Xj
(a,b) da db (f is the density fun.)

= ∫∫ P{X1 < a ∩ X1 < b } f Xi
(a) f Xj

(b) da db (independence)

� ∫∫ P{X1 < a}P{X1 < b } f Xi
(a) f Xj

(b) da db

(because P{X1<a ∩ X1<b} = min[P{X1<a}, P{X1<b}] � P{X1<a}P{X1<b})

= ∫ P{X1 < a} f Xi
(a) da ⋅ ∫ P{X1 < b} f Xj

 (b) db

33

= P{X1 < Xi } P{X1 < Xj }. #

Lemma 2. P{X1 < Xi, i ≠ 1} �
i= 2

k

∏ P{X1 < Xi}

<pf> P{X1 < Xi, i ≠ 1}

= P{X1 < max[X2, .., Xk]}

= P{X1 < X2 ∩ X1 < max[X3, .., Xk]}

� P{X1 < X2 } P{X1 < max[X3, .., Xk]} (According to Lemma 1)

As the same way,

P{X1 < Xi, i ≠ 1}

� P{X1 < X2 } P{X1 < X3 } P{X1 < max[X4, .., Xk]}

...

� P{X1 < X2 } P{X1 < X3 } P{X1 < X4 } ⋅⋅P{X1 < Xk } #

Proof of Theorem 2.

Under the Bayesian model,

P{CS} = P{ The current top-raking algorithm b is actually the best algorithm }.

= P{ ˜ J b < ˜ J i , i ≠ b}

Apply Lemma 2,

P{CS} ≥ P{˜ J b < ˜ J i}
i =1,i ≠ b

k

∏ #

Acknowledgment

The authors would like to thank D. Chang, D. Saparilla, and M. Messina at the University of

Pennsylvania for implementing the computer programs in Section 4. In addition, the authors

would like to thank the Editor, Associate Editor, and three anonymous referees for their helpful

suggestions and valuable comments.

34

References

1. Ahuja, R.K., T.L. Magnanti and N.B. Orlin, Network Flows: Theory, Algorithms and
Applications, Prentice Hall, Englewood Cliffs, NJ, 1993.

2. Amini, M.M. and M. Racer, “A Variable-Depth-Search Heuristic for the Generalized
Assignment Problem,” Working Paper, Civil Engineering, Memphis State University,
Memphis, Tenn., 1992.

3. Askin, Ronald G., and Charles R. Standridge, Modeling and Analysis of Manufacturing
Systems, John Wiley & Sons, Inc., 1993.

4. Anderberg, Michael R. Cluster Analysis For Applications, Academic Press, 1973.

5. Banks, J., and Carson, J. S., Nelson, B. L., Discrete-Event System Simulation, Prentice-
Hall, 1995.

6. Barnhart, C. M., Wieselthier, J. E., and Ephremides, A., "Ordinal Optimization by Means
of Standard Clock Simulation and Crude Analytical Models," Proceedings of the 33rd
IEEE Conference on Decision and Control, pp. 2645-2647, December, 1994.

7. Barr, R.S. B.L. Golden, J.P. Kelly, M.G.C. Resende and W.R. Stewart, “Designing and
Reporting on Computational Experiments with Heuristic Methods,” Journal of Heuristics,
Vol. 1, No. 1, pp. 9-32, 1995.

8. Barton, R.R., “Testing Strategies for Simulation Optimization,” Proceedings of the 1987
Winter Simulation Conference, A. Thesen and H. Grant (eds.), IEEE Press, New York,
391-401, 1987.

9. Bechhofer, R. E., T. J. Santner, and D. M. Goldsman, Design and Analysis of
Experiments for Statistical Selection, Screening, and Multiple Comparisons, John Wiley
& Sons, Inc., 1995.

10. Bentley, J.L., “Experiments on Geometric Traveling Salesman Heuristics,” Computer
Science Technical Report 151, AT&T Bell Laboratories, Holmedel, NJ, 1990.

11. Bernardo, J.M., and A.F.M. Smith. Bayesian Theory. Wiley, 1994.

12. Berry D. A., and D. Fristedt. Bandit Problems: Sequential Allocation of Experiments,
Chapman and Hall, 1985

13. Casella, G., and Berger, R. L., Statistical Inference, Wadsworth, 1990.

14. Cassandras, C. G., and Bao, G., "A Stochastic Comparison Algorithm for Continuous
Optimization with Estimations," Proceedings of the 33rd IEEE Conference on Decision
and Control, pp. 676-677, December, 1994.

15. Cassandras, C. G., and Julka, V., "Descent Algorithms for Discrete Resource Allocation
Problems," Proceedings of the 33rd IEEE Conference on Decision and Control, pp. 676-
677, December, 1994.

16. Chandrasekharan, M.P. and R. Rajagopalan. "An ideal seed non-hierarchical clustering
algorithm for cellular manufacturing," International Journal of Production Research, Vol
24, No. 2. pp.451-464, 1986.

17. Chen, C. H. "A Lower Bound for the Correct Subset-Selection Probability and Its
Application to Discrete Event System Simulations," IEEE Transactions on Automatic
Control, Vol. 41, No. 8, pp. 1227-1231, August 1996.

36

35. Ho, Y. C., "Heuristics, Rule of Thumb, and the 80/20 Proposition," IEEE Transactions
on Automatic Control, Vol. 39, pp. 1025-1027, 1994.

36. Ho, Y. C., "Overview of Ordinal Optimization," Proceedings of the 33rd IEEE
Conference on Decision and Control, pp. 1975-1977, December 1994.

37. Ho, Y. C., R. S. Sreenivas, and P. Vakili, “Ordinal Optimization of DEDS”, Journal of
Discrete Event Dynamic Systems, 2, #2, pp. 61-88, 1992.

38. Holland, J. H. Adaptation in Natural and Artificial Systems, MIT Press, 1992.

39. Holland, J. H. "Genetic Algorithms and The Optimal Allocation of Trials," SIAM J.
Comput., 1973.

40. Hooker, J.N., “Needed: An Empirical Science of Algorithms,” Operations Research, Vol.
42, No.2, pp.201-212, 1994.

41. Hooker, J.N., “Testing Heuristics: We Have It All Wrong,” Journal of Heuristics, Vol.
1,No.1, pp. 33-42, 1995.

42. Inoue, K., and S. E. Chick. "Comparison of Bayesian and Frequentist Assessments of
Uncertainty for Selecting the Best System," to appear in the Proceedings of the 1998
Winter Simulation Conference, 1998.

43. Jackson, R.H.B., and J.M. Mulvey, “A Critical Review of Comparisons of Mathematical
Programming Algorithms and Software (1953-1977),” Journal of Research of the
National Bureau of Standards, 83, pp. 563-584, 1978.

44. Jackson, R.H.B., P.T. Boggs, S.G. Nash and S. Powell, “Report of the ad hoc committee
to Revise the Guidelines for Reporting Computational Experiments in Mathematical
Programming,” COAL Newsletter, 18, pp. 3-14.

45. Kushner, H. J., and Clark, D. S., Stochastic Approximation for Constrained and
Unconstrained Systems, Springer-Verlag, 1978.

46. Law, A. M. and W. D. Kelton, Simulation Modeling & Analysis, McGraw-Hill, Inc.,
1991.

47. McGeoch, C.C., Experimental Analysis of Algorithms. Unpulished Ph.D. dissertation,
Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1986.

48. McGeoch, C.C., “Analyzing Algorithms by Simulation: Variance Reduction Techniques
and Simulation Speedups,” Comput. Sur., Vol. 24, 195-212, 1992.

49. McGeoch, C.C. and D. Tygar, “Optimal Sampling Strategies for Quicksort,” in
Proceedings of 28th Allerton Conference on Computing, Control and Communication,
University of Illinois, Urbana-Champaign, Ill., 62-71, 1991.

50. Patsis, N. T., C. H. Chen, and M. E. Larson, "SIMD Parallel Discrete Event Dynamic
System Simulation," IEEE Transactions on Control Systems Technology, Vol. 5, No. 3,
pp. 30-41, January 1997.

51. Yan, D. and H. Mukai, "Optimization Alogrithm with Probabilistic Estimation," Journal
of Optimization Theory and Applications, Vol.79, pp. 345-371, 1993.

