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1. INTRODUCTION

The material in all but the last section of this abstract can be found in [3],
especially section 6. Many of the underlying ideas can be traced back to [1].

The author would like to thank Bill Meeks, Matthias Weber, and the Mathema-
tisches Forschungsinstitut Oberwolfach for inviting him to speak at the Minimal
Surfaces Arbeitsgemeinschaft.

2. BASIC NOTIONS

Underlying any minimal surface is a Riemann surface. This is part of the Weier-
strass data, and the determination of the underlying Riemann surface of a minimal
surface, either exactly or in terms of some broad class, is an important problem in
the field.

Recall that harmonic functions are invariant under a conformal change of met-
ric, so the question of whether or not a surface admits a non-constant, bounded
harmonic function depends only on the conformal structure of the manifold. We
refer to this question as the question of the conformal type of the surface (note that
this term is often used for other, similar properties).

There are a few ways of introducing Brownian motion on a manifold; intuitively,
we think of it as the continuous version of an isotropic random walk on a manifold.
More precisely, it solves the martingale problem for half the Laplacian; that is, if
B, is Brownian motion and f is smooth and compactly supported, then f(B;) —
flzo) — j;)t $Af(B)ds is a martingale. (See [5] or [2] for more background on
Brownian motion on Riemannian manifolds.) Brownian motion on a surface M is
called recurrent if any of the following equivalent conditions hold:

e There exists an open, precompact set A C M and a point x € M (with
x ¢ A) such that Brownian motion started at  almost surely hits A.
e For any « € M and open, precompact A C M, Brownian motion started
at x almost surely hits A.
e Brownian motion returns infinitely often to any (equivalently, some) open,
precompact A, almost surely.
If M is not recurrent, it is transient. In this case, Brownian motion almost surely
has a last time in any compact set. We note that recurrence and transience depend
only on the conformal structure of M.

Our next task is to consider the relationship between bounded harmonic func-

tions and Brownian motion. If M is recurrent, M admits no non-constant bounded
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harmonic functions. On the other hand, if M is transient, it may or may not admit
a non-constant bounded harmonic function. Fortunately, we when consider surfaces
with non-empty boundaries, the natural notions for bounded harmonic functions
and Brownian motion are equivalent. In particular, a surface M with non-empty
boundary OM is parabolic if any of the following equivalent conditions hold:

e Any bounded harmonic function on M is determined by its boundary values
on OM.

e There exists a point x € M such that Brownian motion started from x hits
OM almost surely.

e BM started from any point hits M almost surely.

Note that if a surface M is recurrent or parabolic (depending on whether OM is
empty), then M with a compact set added or removed is also recurrent or parabolic.

3. UNIVERSAL SUPERHARMONIC FUNCTIONS

Recall that a function is superharmonic if its Laplacian is everywhere non-
positive. It is well known that if a surface M with non-empty boundary admits a
positive, proper superharmonic function, then M is parabolic.

Definition 1. Let U be a non-empty, open subset of R®. A function f : U — R
s @ universal superharmonic function on U if the restriction of f to any minimal
surface (possibly with boundary) in U is superharmonic.

For example the x; are universal superharmonic functions on all of R3. More
interestingly, let 7 = /2% 4+ x3. Then, for any minimal surface M,

2
|Apslogr| < M on M \ {z3-axis.}
r

It follows that

e logr — 23 is a universal superharmonic function on {r > 1/v/2}
e logr — zzarctanas + 5 log (23 + 1) is a universal superharmonic function

on {7“2 \/l—i—x%}

Consider the slab S(C) = {0 < z3 < C} for some C > 0. Using that logr —
x3 + C? is a proper, positive, superharmonic function on any properly immersed
minimal surface contained in S(C) N {r > 1}, we outline the proof of (see Theorem
6.7 of [3] and Theorem 3.1 of [1])

Theorem 2. Let M be a properly immersed minimal surface, possibly with bound-
ary, contained in {x3 > 0}. If OM = 0, then M = {x3 = ¢} for some ¢ > 0.
If OM # 0, then M is parabolic. In particular, if a properly immersed minimal
surface (without boundary) intersects any plane in a compact set, it is recurrent.

4. A MORE GEOMETRIC APPLICATION: AREA GROWTH

We now wish to see how the universal superharmonic function f f = logr — z3
can be used to control the growth of the area of a properly immersed minimal
surface-with-boundary, which is contained in a slab. Such a surface arises when
considering certain ends of properly embedded minimal surfaces. In particular, we
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sketch the proof of the fact that such a minimal surface-with-boundary, which we
denote F, has quadratic area growth. That is,

/ dA=Ct* +o(t?).
En{r<t}

The argument relies on the divergence theorem and the relationship between A f
and two more geometric quantities, namely |Vz3|? and Alogr.

We note that analogous results, namely parabolicity and quadratic area growth,
can be proven for minimal surfaces-with-boundary contained between two half-
catenoids, rather than contained in a slab, by using the “other” universal super-
harmonic function mentioned above, namely

1
f =logr —xzarctanxs + 3 log ($§ + 1) :

Recall that a minimal surface is contained between two half-catenoids if |z3| <
C'logr for large r.

5. MORE BROWNIAN MOTION

We again consider a properly immersed minimal surface M, possibly with bound-
ary, contained in the halfspace {3 > 0}. This time we wish to use Brownian motion
to understand bounded harmonic functions. Using that x3 composed with Brown-
ian motion on M is a martingale, we give an alternative proof of Theorem 2 (see
the proof of Theorem 2.2 of [4] for the basic approach). In particular, the argument
seems to rely on the same underlying structure as the proof mentioned above, but
doesn’t make any use of universal superharmonic functions.

In light of this last point, it might be of some interest to better understand the
relationship between these two approaches. For example, is there a similar Brow-
nian motion-based proof of the analogous result for a minimal surface contained
between two half-catenoids? More generally, does Brownian motion encode other
information about ends of properly embedded minimal surfaces contained between
two plane or half-catenoids?
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