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Abstract—We consider the design of optimal quantizers for the
distributed estimation of a deterministic parameter. In particular,
we design deterministic scalar quantizers to maximize the min-
imum asymptotic relative efficiency (ARE) between quantized and
unquantized ML estimators. We first design identical quantizers
using the class of score-function quantizers (SFQ). We show that
the structure of SFQs generally depend on the parameter value,
but can be expressed as thresholds on the sufficient statistic for a
large class of distributions. We provide a convergent iterative algo-
rithm to obtain the best SFQ that maximizes the minimum ARE
for distributions of that class. We compare the performance of the
optimal SFQ with a general quantizer designed without making
any restrictions on the structure. This general quantizer is hard to
implement due to lack of structure, but is optimal if the iterative
design algorithm does not encounter local minima. Through nu-
merical simulations, we illustrate that the two quantizers designed
are identical. In other words, the optimal quantizer structure is
that of an SFQ. For a distributed estimation setup, designing iden-
tical quantizers is shown to be suboptimal. We, therefore, propose
a joint multiple quantizer design algorithm based on a person-by-
person optimization technique employing the SFQ structure. Using
numerical examples, we illustrate the gain in performance due to
designing nonidentical quantizers.

Index Terms—Asymptotic relative efficiency (ARE), distributed
estimation, quantization, score-function quantizer (SFQ).

I. INTRODUCTION

A. Motivation

DISTRIBUTED statistical inference is a classical problem
in signal processing, where a fusion center receives data

from several distributed nodes and infers the parameter of the
underlying process. One of the key differences of this problem
from classical point estimation is that the fusion center cannot
have complete access to every observed measurement. The data
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Fig. 1. Distributed estimation system. Observations : X . Quantizers : 
 . Es-
timator : ^�.

transmission from nodes to fusion center is restricted due to en-
ergy and bandwidth constraints. It is, therefore, imperative that
the observations are quantized before transmission. This spawns
two fundamental problems: design of quantizer at the node, and
the estimator at the fusion center. The key metrics that need to
be optimized are the quantizer size (number of quantization bits)
and the estimation error at the fusion center.

The basic distributed estimation setup is shown in Fig. 1. The
distribution of the observations depends on an un-
derlying parameter . Node implements quantizer on the ob-
servation and transmits the quantized value to the fusion
center, which then estimates the value of . When the quantized
values are perfectly available at the fusion center, the estimation
error of is only dependent on the quantizers and the es-
timator . In this paper, we are interested in the optimal design
of quantizers that minimize estimation error when is a max-
imum-likelihood (ML) estimator.

The main challenge in designing quantizers for parameter es-
timation is the unavailability of information about the param-
eter. One class of approaches to this problem has been from
an information-theoretic perspective, first proposed by Zhang
and Berger [1]. In the information-theoretic setup, each node is
assumed to observe a long sequence of measurements which
is then compressed before transmission to the fusion center,
and the key design metric is the asymptotic compression rate.
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For that problem, Han and Amari [2] obtained the best known
achievable rate region and also provided an ML estimator for
their encoders. The lack of knowledge about the parameter was
circumvented in their solution by using the type of the long se-
quence as an alternative indexing of distributions.

In networks where nodes observe a few measurements, the
type provides little or no information about the underlying
parameter. In such situations, if the parameter is random,
the known statistics of the parameter can be utilized to de-
sign quantizers that minimize the average estimation error.
Optimal scalar quantizers for random parameter estimation
have been designed for different types of estimators. Lam
and Reibman [3] provided an iterative algorithm to obtain a
quantizer that maximizes the Bayesian Fisher Information (FI)
of a random parameter. For some special classes of linear esti-
mators, Gubner [4] and Zhang and Li [5] obtained the optimal
MMSE quantizer.

For a deterministic parameter, the estimation performance
varies with the parameter, and it is impossible to design a single
scalar quantizer that achieves the optimal performance for all
values of the parameter. It is, therefore, necessary to formulate
an appropriate metric that represents the overall estimation per-
formance. In some recent works, quantizers for deterministic
parameter estimation have been designed under some restric-
tions on quantizer structure and underlying distributions. The
idea of a maximin metric based on FI was considered by Fowler
and Chen [6]. They proposed a transform coding based quan-
tizer to minimize the maximum difference between FI of quan-
tized and unquantized observations. When the observation is a
parameter in additive noise, Ribiero and Giannakis [7] charac-
terized the best possible FI. They also showed that when the
range of the parameter is small, the performance of the optimal
threshold quantizer is within a constant of the unquantized es-
timator. For non-i.i.d. additive noise observations, Luo [8] op-
timized the allocation of total bits among binary quantizers to
maximize estimation performance when the noise is bounded.
In an earlier work [9], we had proposed the idea of score-func-
tion quantization to maximize the FI for a given value of the
parameter, which can be used as an upper bound for the perfor-
mance of any quantizer.

In this paper, we consider the design of fixed size scalar quan-
tizers for networks, where the number of nodes is large, but
each node measures a few observations. The observations are
identically distributed according to some deterministic param-
eter. The fusion center estimates the underlying parameter using
an ML estimator. For a fixed distribution of quantized observa-
tions, it is known that the ML estimator is asymptotically effi-
cient. Furthermore, the asymptotic performance can be charac-
terized analytically using the FI of the distribution of quantized
values.

The metric we propose is a measure of relative performance
between quantized and unquantized estimators known as the
asymptotic relative efficiency (ARE). The ARE represents the
ratio of sample sizes required by the quantized and unquantized
estimators to achieve the same asymptotic performance and it
can be expressed as a ratio of FIs between quantized and un-
quantized distributions. Due to its dependence on the value of

, the ARE cannot be maximized universally for all values of .

We, therefore, consider maximizing the minimum ARE across
the parameter set as a criterion for quantizer design. The min-
imum ARE over corresponds to the least percentage of ad-
ditional samples required by the quantizer to perform asymp-
totically, as well as the unquantized estimator. Further, it can be
shown that for a certain class of distributions, the maximin ARE
quantizer requires the least sample size amongst all determin-
istic quantizers that achieve the same asymptotic error variance.

B. Main Contributions

In this paper, we design quantizers that maximize the min-
imum ARE over the parameter set between quantized and un-
quantized observations. Assuming identical quantizers for the
nodes, we first consider the quantizer structure that belongs to
the class of score-function quantizers (SFQ). Although SFQs
are dependent on parameter , we show that for a certain class
of distributions that satisfy a monotonicity property, the SFQs
are expressible as a set of thresholds on the sufficient statistic.
For these distributions, we provide a convergent algorithm to
obtain the best SFQ that maximizes the minimum ARE.

In order to compare the performance loss due to the restric-
tion on structure, we propose an alternative algorithm to design
the maximin ARE quantizer with no assumptions on quantizer
structure or nature of distribution. This iterative algorithm, al-
though optimal in the absence of local minima, does not pro-
vide any structural representation for the quantizer and is com-
putationally intensive. However, through numerical simulations
we illustrate that, for distributions that satisfy the monotonicity
property, the two algorithms result in identical quantizers. In
other words, the optimal quantizer structure is that of an SFQ.

Assuming identical quantizers for the nodes is restrictive and
in general, suboptimal for distributed estimation. Hence, we uti-
lize the optimality of SFQs and propose a person-by-person op-
timization (PBPO) technique to design multiple nonidentical
quantizers that maximize the metric. Through numerical exam-
ples, we demonstrate a significant improvement in performance
due to designing nonidentical quantizers especially at low noise
levels.

The basic organization of this paper is as follows. In
Section II, we describe the maximin ARE criterion for quan-
tizer design and the relation to sample size of estimators. In
Section III, we discuss the optimality of SFQs and also present
an algorithm to obtain the best SFQ for the maximin criterion
assuming identical quantizers. In Section IV, we discuss the
alternate approach to maximin quantizer design that does not
make assumptions on structure. The comparison of the two
quantizers and the optimality through numerical simulations
are given in Section V. The design of multiple nonidentical
quantizers for maximin ARE and supplementary numerical
results are presented in Section VI. Some concluding remarks
and possible future extensions are mentioned in Section VII.

II. SYSTEM MODEL

Consider the distributed estimation setup as shown in Fig. 1.
Let be some set endowed with a –field . The observa-
tions are independent and identically distributed (i.i.d.).
The probability measure of belongs to a family of proba-
bility measures on indexed by parameter
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lying in a set . Throughout this paper, we assume that is
real-valued and is a bounded set. Node implements
deterministic quantizer and transmits the quantized version

to the fusion center. For the remainder of this section
and two subsequent sections, we shall focus on designing iden-
tical quantizers for the nodes, or in other words, .

A deterministic quantizer can be formally defined as a
–measurable mapping , where , a

constant integer, is known as the size of the quantizer. A deter-
ministic quantizer uniquely maps each observation to a positive
integer , which we refer to as the partition index of the
observation. Since the observation space is uncountable, the
structural representation of a quantizer can be very complex.

When nodes implement identical quantizers, the quantized
variable at the nodes are i.i.d. according to a probability
mass function (p.m.f) indexed by , where

The estimation is performed using only the quantized obser-
vations which are received perfectly at the fusion center. There-
fore, for a fixed estimator , the mean squared error can be
expressed as a function of the distribution . In this paper, we
assume that an ML estimator based on is implemented
at the fusion center and our goal is to minimize the increase in
MSE due to quantization. For ML estimators, MSE performance
is characterized by the FI, and the relative performance with re-
spect to an unquantized estimator can be expressed using the
ARE. These concepts are discussed in the following section.

A. Cramér–Rao Bound and ARE

It is well known that the MSE of any unbiased estimator
is lower bounded by the Cramér–Rao lower bound (CRLB).
Specifically, under some regularity conditions (see [10, p. 169])
on , the MSE satisfies

(1)

where

(2)

is the FI of the quantized observation and is the number of
measurements. Although the CRLB may not be achievable for
any finite , under more regularity conditions (see [10, p. 183]),
the MSE of an ML estimator converges to the bound asymptot-
ically. Specifically, as

As a result, when an ML estimator is implemented at the fu-
sion center, the FI of the quantized variable measures the
asymptotic performance.

A measure of relative performance between two estimators is
ARE, which is defined as follows [11].

Definition: If two estimators and satisfy

then the ARE of with respect to is

(3)

Since any ML estimator satisfies the convergence criterion as
stated in Definition 1, the ARE can be used as a relative measure
of performance between ML estimators based on quantized and
unquantized observations. If is the pdf of unquantized obser-
vations, then the ARE is equivalently expressed as the ratio of
FIs where

(4)

is the FI based on the unquantized observations. Since the FI
is fixed for a given prior distribution, the ARE between quan-
tized and unquantized ML estimators represents a measure of
the asymptotic performance of the quantizer.

It is easily seen that, for every value of , the performance
of the quantized estimator is worse than that of the unquantized
observations, or in other words, the ARE is less than 1 for all

. The ARE is related to the ratio of sample sizes required by
the two estimators for the same asymptotic performance. This
relation can be derived using the notion of asymptotic effective
variance [12]. The effective standard deviation of an estimator

can be defined as the solution of the equation

where is the standard normal variable. It was shown in [12]
that, for an ML estimator

Therefore, if and represent the effective stan-
dard deviations of the quantized and unquantized estimators,
respectively, then the ARE between the two ML estimators is
equivalent to

If is the ratio of sample sizes between the quantized and
unquantized estimators such that their effective variances are
asymptotically equal, then implies

(5)

In other words, the ARE is equivalent to the ratio of sample sizes
between the unquantized and quantized ML estimators such that
their effective variances are asymptotically equal.

B. Maximin ARE Criterion

At any fixed value of , the ARE between ML estimators
for quantized and unquantized observations is a measure of de-
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crease in performance due to quantization. Since a quantizer
is designed without any knowledge of the parameter, it is not
possible to design a single quantizer that has the best ARE at
every value of . We, therefore, consider the design of a quan-
tizer that maximizes the minimum ARE over . In other words,
if and are the ML estimators that use unquantized and
quantized (using ) observations, respectively, then we wish to
design quantizer such that

where represents the set of all deterministic quantizers
of size . If represents the ratio of sample sizes such
that the ML estimators have asymptotically equal effective
variances, then from (5), we know that

The optimal quantizer , thus, minimizes the maximum per-
centage of additional samples required by the
ML estimator due to quantization. Furthermore, if the observa-
tions can be expressed as , where is a random
variable with infinite support, it is easily shown that is a con-
stant for all . The optimal quantizer for such distributions
requires the least sample size amongst all deterministic quan-
tizers of size .

In the following two sections, we provide techniques to
design a single quantizer that maximizes minimum ARE
and thereby infer the optimal structure for the quantizer. In
Section VI, we use the proposed structure and design multiple
nonidentical quantizers for maximin ARE estimation.

III. SCORE-FUNCTION QUANTIZERS

A deterministic quantizer is represented by a mapping from
the observation space into a finite set. Unless some restrictions
are imposed on the structure of the quantizer, this representation
could be highly complex. To this extent, we propose the use of
SFQs to provide the structure for the ARE quantizer.

SFQs, introduced in [9], are represented by thresholds
on the score-function of the observation, given by

where is the density of the unquantized variable . The
existence of the score-function is subject to some regularity con-
ditions (see [10, p. 183]). SFQs are formally defined as follows.

Definition 1: Let denote the set of all vectors
satisfying

. For any , the associated intervals are
defined by .
We say that a quantizer is a monotone SFQ at (see Fig. 2)
with threshold vector , if

We say that a quantizer is an SFQ at if there exists a permuta-
tion mapping such that is
a monotone SFQ at .

Fig. 2. Monotone SFQ : I = (t ; t ) represent the partition i.

The motivation to use SFQs to design the maximin ARE
quantizer comes from [9] where it was shown that SFQs, when
coupled with ML estimators, exhibit some optimal properties.
In particular, our approach is based on the following result.

Theorem 1: (from [9]) At a given , the FI is maximized
by an SFQ at that value of .

In other words, by evaluating the optimal SFQ at any value
of , the maximum possible FI for that can be achieved. Since

is fixed for a given distribution, this quantizer also achieves
the maximum ARE at that . Therefore, by evaluating the best
SFQ at every value of , one can obtain an upper bound (genie
bound) on quantizer performance for a given distribution of ob-
servations. The optimality of SFQs in estimation is analogous
to the optimal properties of likelihood-ratio quantizers (LRQ)
in detection [13].

Using this optimality as a heuristic, we restrict our criterion
to the design of quantizer that satisfies

where represents the set of all SFQs of size .
SFQs, owing to their dependence on the value of , are not

directly applicable to the quantizer design problem. However,
under some conditions on the underlying family of distributions

, the class of SFQs at all parameter values can be shown
to be identical. Furthermore, under those conditions, the SFQs
have a simple structural representation in the observation space.
This is evident from the following Lemma.

Lemma 1: Let represent the class of SFQs at the parameter
value , i.e.,

Let be a sufficient statistic for . If the score function can
be expressed as such that is monotone
increasing for all , as follows.

1) The class of SFQs at parameter is identical for all .
2) Every SFQ can be equivalently expressed as

thresholds on the sufficient statistic. In other words, there
exists such that

Proof: Since the score-function is monotonic in the suffi-
cient statistic, any sequence of thresholds on the score-function
will retain the same order in the sufficient statistic domain as
well. Hence, the class of SFQs are independent of .

Therefore, when the family of distributions satisfy the mono-
tonicity property, any SFQ corresponds to a sequence of

thresholds on the sufficient statistic . An example of a
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class of distributions that satisfy the monotonicity property is
the exponential family of distributions. Distributions such as the
asymmetric Gaussian mixture do not belong to this class.

In order to design the optimal SFQ that maximizes the min-
imum ARE, it suffices to obtain the optimal thresholds on .
In general, an exhaustive search for optimal thresholds after
finely discretizing the observation space would yield the re-
quired quantizer within a small margin of error. Such techniques
would, however, be computationally intensive. We, therefore,
propose an iterative algorithm that evaluates the optimal quan-
tizer efficiently.

A. Iterative Algorithm

The algorithm is initialized with arbitrary thresholds
on the sufficient statistic. At every it-

eration, the lowest threshold is chosen to maximize the metric
while keeping the other thresholds fixed. This process is car-
ried out for each subsequent threshold and the entire iteration is
repeated until the change in thresholds is negligible. Since the
minimum ARE cannot decrease at any iteration, the algorithm
converges.

Let denote the minimum ARE of a quantizer , i.e.,

(6)

1) Initialization: Let represent
the threshold set of the quantizer. Set
and initialize arbitrarily such that . Evaluate the
probability mass function of the quantized variable as

For this , evaluate the FI [in (2)] and the metric
[in (6)].

2) Iteration : Let represent the value of threshold in
iteration . Each iteration is divided into steps. At
step , the new values for thresholds would
have been obtained. Threshold is then picked as that
value between the new and the old which max-
imizes the metric. The th step, therefore, corresponds to
obtaining the optimal value for given the other thresh-
olds. More formally, for every , let rep-
resent the quantizer

The optimal threshold is chosen as

Let the optimal quantizer at the end of steps be
denoted as and the corresponding value of the metric
be .

3) Termination: Choose as close to zero as required. At it-
eration , evaluate . If ,

then the algorithm terminates. In other words, when the
change in performance is very close to zero, we terminate
the algorithm.

Theorem 2: At the th iteration, let .
Then . For any , the algorithm con-
verges in finite steps.

Proof: See Appendix.
At every step of the algorithm, a new set of thresholds on

the sufficient statistic are evaluated. The quantizer at the end of
every iteration is, therefore, an SFQ. From Theorem 2, we know
that the algorithm converges in finite iterations. Furthermore, in
the absence of local minima, the algorithm converges to the best
SFQ that optimizes the maximin ARE

Note that the algorithm is valid only for those distributions that
satisfy the monotonicity property of Lemma 1. The iterative al-
gorithm can also be used to optimize other metrics within the
class of SFQs by appropriately modifying the quantity
[14].

Since the use of SFQ to design the quantizer was based on a
heuristic, it is not known if it is the optimal quantizer structure
for the maximin ARE criterion. In the following section, we,
therefore, consider an alternate approach to design the optimal
quantizer, when no restrictions are placed on quantizer structure
or nature of distribution.

IV. GENERAL QUANTIZER DESIGN

In this section, we present an iterative algorithm to obtain the
maximin ARE quantizer without any assumptions on partition
structure in the observation space or nature of distribution. Such
an algorithm is generally computationally intensive and may not
be useful for practical implementation. However, we present this
approach to estimate the loss in performance due to the SFQ
assumption.

The basic idea for this technique comes from the fact that the
FI at any fixed is the variance of the score-function at that .
Mathematically, if and
represent the score-functions of the unquantized and quantized
observations, respectively, then

Furthermore, it is easily shown that the difference in FIs
and can be expressed as MSE of the quantizer score-function

with respect to , i.e.,

(7)

We use (7) as the basis for iteration in the quantizer algorithm.
The iterative algorithm is, in principle, similar to the SFQ al-
gorithm in Section III-A. Instead of evaluating thresholds in
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each iteration, we compute the optimal partition index for
each observation1 , keeping the others fixed. The algorithm
converges because the minimum ARE cannot decrease at any
iteration.

Let the partitions in in iteration be represented by
. If the quantizer at the iteration is

represented by , then

The formal statement of the algorithm is as follows.
• Initialization: Divide into arbitrary nonoverlapping

partitions represented by . Evaluate the score-
function and FI as

• Iteration : Let .
For every , let

• Termination: Choose close to zero. At each iteration,
evaluate . If , then the al-
gorithm terminates. In other words, when the change in FI
is very close to zero, we terminate the algorithm.

Theorem 3: At the iteration, let .
Then . For any , the algorithm con-
verges in finite steps.

Proof: Refer to Appendix.
This algorithm, although computationally intensive, can be

used for any underlying distribution (subject to regularity con-
ditions) and, in the absence of local minima, provides the op-
timal quantizer

As is evident from the description of the algorithm, the final
quantizer is represented as an index for each observation and,
therefore, does not specify a regular structure on the observa-
tion space. On the other hand, the quantizer resulting from the
SFQ algorithm is Section III-A has a simple structure, but the
optimization is over a subset of deterministic quantizers. It re-
mains to be seen if there is a loss in performance due to the
structural constraints. In the following section, we present some
numerical results and illustrate that, for the distributions where
the SFQ algorithm is valid, the two quantizers are identical.

1The observation space is uniformly partitioned into fine bins such that the
set of observations is large but finite.

V. NUMERICAL RESULTS

As mentioned in Section III, it is known that at any particular
, the FI can be maximized [9] by an SFQ (optimized at that ).

The maximal FI, thus, obtained serves as a good upper bound to
the performance of any quantizer.

In this section, we consider the performance of the optimal
quantizer for two different distributions : parameter in additive
and multiplicative Gaussian noise. Since these distributions sat-
isfy the monotonicity property of Lemma 1, the optimal SFQ
was also evaluated through the algorithm in Section III. In both
situations, the two algorithms resulted in identical quantizers.
Although, in the examples considered in this section, the algo-
rithms discussed did not result in a local minima, we do not have
an analytical guarantee for their absence.

A. Multiplicative Gaussian Noise

The observation is a faded version of the parameter ,
where the fading is assumed Gaussian

The FI in this case is a decreasing function of .
Fig. 3 plots the ARE and FI of the maximin ARE quantizer.

The performance is compared to the genie bound obtained by
evaluating the best SFQ at every value of (Theorem 1). The
figures also plot the performance of a quantizer which guesses
the value of to be the average value in
the parameter set. It can be seen that the shape of the maximin
ARE quantizer curve follows that of the unquantized FI and
the genie bound. Furthermore, the performance of the maximin
ARE quantizer is significantly better than that obtained by just
using the average value of the parameter.

B. Parameter in AWGN

The observation is of the form

The FI of the unquantized variable in this scenario is a con-
stant for all values of

Therefore, maximizing the minimum ARE is equivalent to max-
imizing the minimum FI across the parameter. Fig. 4 plots the
FI of the optimal quantizer for different values of .

It is interesting to observe that for , the maximin ARE
quantizer and the optimal SFQ at are
identical. In other words, the quantizer designed by guessing the
parameter value to be is optimal. However, for

, designing a quantizer by making a similar guess results
in poor minimum ARE, although the quantizer equals the genie
bound at the guessed value of .

As number of quantization bins increases, we see that the
performance of the maximin quantizer tracks the genie bound
more closely. It is also interesting to see that the maximin ARE
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Fig. 3. Maximin ARE quantizer for multiplicative noise: � 2 [1; 4]; � =
1;D = 2. (a) Comparison of quantizer ARE. (b) Comparison of quantizer FI.

quantizer for both distributions result in ARE curves where the
extreme values of the parameter have nearly equal performance.

For the multiplicative noise distribution, the score-function
which is monotone in , whereas the

score-function for the AWGN distribution is given by
which is monotone in . The SFQs for the multiplica-

tive and additive noise observations are, therefore, expressible
as thresholds on the and , respectively. Fig. 5 illustrates
the partition information of the optimal quantizers for the two
distributions when . The use of SFQs significantly sim-
plifies the design of quantizer, especially when the observations
are vectors. For example, if the observation at each node is com-
prised of multiple elements, each of which are independent and
identically distributed as the parameter in AWGN, then the SFQ
corresponds to thresholds on the sum of the elements of
the vector observation.

In both of the examples considered, the unrestricted quantizer
algorithm of Section IV resulted in SFQs. Furthermore, for

, the quantizer ARE is equal to the maximum possible value

Fig. 4. FI vomparison for parameter in AWGN: � 2 [0; 5]; � = 1. (a)D = 2.
(b) D = 4.

(genie bound) at some . These examples and some others (such
as Gaussian mixture) which we simulated seem to indicate that
the SFQ provides the optimal structure. We conjecture that for
distributions that satisfy the monotonicity property, the maximin
ARE quantizer is an SFQ.

Designing identical quantizers is generally suboptimal, as
will be seen in the next section. However, it provides some
practical advantages especially in large-scale networks, such
as sensor networks, where it is preferable for nodes to operate
identically. Moreover, when quantizers are distinct, it would be
necessary for the fusion center to obtain the quantizer informa-
tion of each node as well, which could lead to communication
overhead.

VI. MULTIPLE QUANTIZER DESIGN

The material discussed so far dealt with optimal quantization
assuming all sensors use identical quantizers. For a distributed
detection setup with binary hypotheses, it has been shown [15]
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Fig. 5. Partitions in X domain for a 2–bit quantizer. (a) Additive noise with
� = 1: thresholds on x. (b) Multiplicative noise with � = 1: thresholds on
x .

that use of identical quantizers is optimal. However, for a gen-
eral –ary hypothesis testing, the maximum number of quan-
tizers required is given by . We, therefore, expect
that for distributed estimation, using identical quantizers would
not be optimal. This can be seen from the following example.

Consider the estimation of a parameter in the
presence of additive white noise. If we restrict ourselves to
SFQs, the optimal 1–bit quantizer can be shown to have a
single threshold at . However, if we were to design
two 1–bit quantizers with different thresholds and use the
average ARE, it is easily seen from Fig. 6 that the estimation
performance improves significantly. Therefore, within the class
of SFQs, identical quantizers are suboptimal.

In order to design multiple quantizers, the algorithm pre-
sented in Section III can be coupled with a PBPO [16] across
quantizers. Since the observations at multiple nodes are inde-
pendently distributed, the FI of the total received data at the
fusion center is the sum of FIs of the individual quantizers. In
other words, let represent the quantizers for nodes

Fig. 6. AWGN parameter with � = 1: Comparison between 1) FI of optimal
SFQ and 1) Average FI of two 1–bit SFQs with thresholds t = 1 and t = 4.

and be the FI for quantizer . Then, the ARE of the
joint observation at the fusion center is given by

The algorithm in Section III is modified as follows. The
metric is rewritten as

Each iteration now involves optimizing thresh-
olds. Each threshold of the first quantizer is optimized assuming
all other thresholds and the remaining quantizers are
fixed. This process is subsequently repeated for each quantizer
in succession. The entire iteration is repeated until the change
in is negligible. Since the basic iteration is identical to
the algorithm in Section III, it is easily seen that the metric
does not increase at any iteration. Furthermore, since the ARE
is bounded, the algorithm converges in finite steps.

For a large-scale network, the algorithm would be computa-
tionally intensive. However, as will be seen from numerical re-
sults, it may not be necessary to design as many quantizers as
the number of nodes in the network.

A. Numerical Results

We consider the example of multiplicative Gaussian noise
and implement the algorithm for multiple quantizer design. The
ARE of nonidentical quantizers is plotted in Fig. 7. It can be
seen that, by increasing the number of quantizers, the minimum
ARE at the fusion center can improve significantly.

The design of multiple nonidentical quantizers becomes im-
perative for low noise observations. Fig. 8 plots the improve-
ment in minimum ARE with design of additional quantizers
for different noise levels of observations. As can be seen from
the figure, as the noise level reduces, the improvement due to
making quantizers nonidentical increases.
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Fig. 7. ARE for nonidentical quantizers in multiplicative noise : � 2

[1; 4]; � = 1.

Fig. 8. Minimum ARE for nonidentical quantizers at different multiplicative
noise levels : � 2 [1; 4].

It is interesting to note that the improvement in minimum
ARE saturates with the increase in number of quantizers de-
signed. For a large-scale network, it would, therefore, be suffi-
cient to design much fewer quantizers than the number of nodes
in the network. The nodes can be divided into groups based on
the number of quantizers designed, and each group implements
one of the designed quantizers. This greatly simplifies node de-
sign and reduces the communication overhead in large-scale
networks.

VII. CONCLUSION AND FUTURE EXTENSIONS

In this paper, we considered the performance criterion, max-
imin ARE, to design quantizers for distributed estimation of a
deterministic parameter. We proposed the use of SFQs to design
the optimal quantizer for a certain class of distributions that sat-
isfy a monotonicity property. Through numerical simulations,
we illustrated that under those conditions, the SFQ provides the
optimal structure. Furthermore, SFQs can be expressed as a set
of thresholds on the sufficient statistic which significantly re-

duces the complexity of implementation. SFQs also have some
generic optimal properties [9] that strongly suggest their utility
value in ML estimation.

The application of this metric is not restricted to distributed
estimation. In practical situations of classical point estimation,
the estimator may not be capable of handling several high res-
olution measurements to estimate the parameter, and it is nec-
essary to compress the data into few bits to reduce complexity.
Currently, the setup is simple and assumes identical distribu-
tions and quantizers. The extension of this idea to non-i.i.d.
distributions and noisy channels is an interesting direction to
pursue. Improving the metric to handle vector parameters is also
a nontrivial future extension.

APPENDIX

Proof of Theorem 2: Let the quantizer have partitions.
Since the quantizer is a monotone SFQ, we know that this cor-
responds to thresholds on the real line. Therefore, the FI
can be expressed as the sum of expectations at each partition,
i.e.,

where

We know that, at every step, threshold affects only the terms
and . Therefore, at iteration , the new threshold is

chosen such that

Therefore, the new minimum ARE increases at every step, i.e.,

Since the ARE is upper bounded by 1, the algorithm converges
in finite steps.

Proof of Theorem 3: Consider the minimax criterion

We know from (7) that

where . Using the steps of iteration, we get
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We know that for every value of . Therefore,
the metric is lower bounded by 0. Since the algorithm cannot
increase the metric at every iteration, in the absence of local
minima, the inequalities are strict, and, hence, the algorithm
converges to the optimal quantizer in finite steps.
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