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QUANTIZATION FOR DISTRIBUTED ESTIMATION IN LARGE SCALE SENSOR
NETWORKS

Parvathinathan Venkitasubramaniam, Gokhan Mergen, Lang Tong and Ananthram Swami

ABSTRACT oEE
We study the problem of quantization for distributed para-
meter estimation in large scale sensor networks. Assuming
a Maximum Likelihood estimator at the fusion center, we
show that the Fisher Information is maximized by a score- D 2
function quantizer. This provides a tight bound on best pos-
sible MSE for any unbiased estimator. Furthermore, we

Y.
show that for a general convex metric, the optimal quantizer
belongs to the class of score function quantizers. We also
discuss a few practical applications of our results in opti- f(Y, Y.)
mizing estimation performance in distributed and temporal
estimation problems. 0

1. INTRODUCTION Fig. 1. Distributed Estimation

The two main tasks in a sensor network are sensing of a phe-
nomenon and communicating the sensed information to a
fusion center (FC). Sensors have low battery energy and re-
stricted communication capabilities whereas the fusion cen-
ter is typically a centralized access point or a powerful clus-
ter head capable of performing sophisticated data process-
ing and communication.

A common operation at the fusion center is to use the
data obtained from the sensors in estimating a parameter 0
that is indicative of the phenomenon sensed. The commu-
nication from the sensors to the FC, however, is severely
restricted due to the energy constraint of the sensors and
due to the common wireless channel that is shared by sev-
eral sensors. Therefore, it is imperative for the sensors to
compress the information before transmission, although the
measurement at each sensor may have a high resolution. We
are interested in the problem of quantizing the observation
at the sensor optimally to maximize the estimation perfor-
mance.
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Consider a system as shown in Fig. 1. We assume that
the data at each sensor Xi belongs to a set X, and is dis-
tributed according to a family of distributions po(x). {Xi}
are assumed i.i.d conditioned on the parameter 0. Each sen-
sor uses an identical quantizer -y : y(Xi) E {1, ..., D} to
compress the observation Xi. The use of identical quan-
tizer is motivated by the identical nature of distributions and
the possibility of using Type-Based Multiple Access [1] for
efficient communication to the fusion center.

The quantized observations are used by the fusion cen-
ter to make an estimate 0 of the true parameter. The crite-
rion for performance evaluation is the mean squared error
Eo(9 -_ )2. For a given distribution of observations, it is
well known that the MSE of any unbiased estimate is lower
bounded by the inverse of the Fisher Information (FH). Fur-
thermore, when a Maximum Likelihood estimator is used at
the fusion center, the MSE of the estimate asymptotically
achieves this bound.

An ideal quantizer for an M-L fusion center should there-
fore maximize Fl for every value of the parameter. How-
ever, it is not possible to design a single quantizer that deliv-
ers the maximum Fl for every 0, as the Fl is a function of 0.
In this work, we assume that the fusion center implements
an M-L estimator1. We investigate the type of quantizer that

'For a noisy multiple access channel with communication constraints,
it was shown in [1] that using Type Based Multiple Access, it is possible to
design a Maximum-Likelihood estimator that is asymptotically efficient.
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maximizes the Fisher Information for a given 0 and thereby
obtain the maximum achievable Fl for that value of 0. We
show that such a quantizer falls into a category called score
function quantizers. The score function quantizers depend
on the value of 0, so, they are not practical. However, they
can be used to evaluate the estimation performance of the
best possible quantization. We show that the class of score-
function quantizers can be used to maximize a general con-
vex performance metric. We also propose some applications
of using score-function quantization to optimize other esti-
mation performance criteria.

The paper is organized as follows. Section 2 deals with
the system model and general quantizer design. Section 3
defines score function quantization and explains the opti-
mality of SFQ. Section 4 discusses some practical applica-
tions of score-function quantization in optimizing estima-
tion performance. Section 5 provides some numerical re-
sults. Finally, conclusions and future extensions are given
in Section 6.

dom measurement Xi, indexed by a deterministic parame-
ter 0 taking values in a parameter set E); we have the family
{Po; 0 E e}, where Po denotes a probability measure on
the observation space X having o-field G. Throughout this
paper, we assume that the parameter set e C IR.

We define a deterministic quantizer as a G-measurable
mapping -y: X a-4 { 1, ..., D}, where D is a constant. Let r
denote the set of all deterministic quantizers. In our setup,
the quantized observations -y(Xi), i = 1, ..n is used to es-
timate the parameter 0. Let the probability mass function
(p.m.f) of the quantized variable -y(Xi) be specified by

q? ql,q .. q" (D)}
0q'(k) = Po(7 (Xi) = k), k-=1, ..., D

We assume that sensors use identical quantizers, hence the
new family of densities on the quantized observations is rep-
resented by {qo; 0 C e}.

2.1. Cramer-Rao Lower Bound
1.1. Related Work

There is extensive literature on data compression for distrib-
uted statistical inference. For a distributed detection setup
when sensors have i.i.d data, Tsitsiklis showed that quan-
tizing the Likelihood Ratio optimizes known performance
metrics [2]. The optimality of Likelihood Ratio quantiza-
tion for a non i.i.d setup was shown by Hoballah and Varsh-
ney in [3]. In the distributed estimation scenario, Lam and
Reibman in [4] developed an iterative quantizer to maxi-
mize the Bayesian Fisher Information of a random parame-
ter. For certain restrictive types of estimators, Gubner [5]
and Zhang and Li [6] provided optimal quantizers as solu-
tions of multi-dimensional equations. They minimized the
mean squared error for a random parameter. More recently,
for parameter in additive noise, Ribiero and Giannakis [7]
obtained the optimal 1-bit quantizer that maximizes Fisher
Information for a given value of the parameter.

The problem has also been posed in an information the-
oretic framework by Zhang and Berger in [8] where two
nodes receive a sequence of observations, each pair jointly
distributed under a parameter. They showed the existence of
a "good" estimator for the problem. For the same setup, Han
and Amari [9] proposed a universal coding scheme for rate
constrained transmission. They also developed the maxi-
mum likelihood estimator based on their scheme and gave
an expression for Fisher Information.

2. SYSTEM MODEL

Consider a network of n sensors in a field. Each sensor ob-
serves i.i.d measurements Xi based on a parameter 0. We
assume as a model, a family of distributions for the ran-

The fusion center receives the values of -y(Xi), i = 1, ...n
and estimates 0. Suppose that 0 is an unbiased estimate of
the parameter 0, and the family qo satisfies certain regular-
ity conditions ( [10];pp 169), then

Eo[(0-0)2] > I (1)

where

D (I1 ( dqo() 2ZZ0 q (i) dO~ (2)

is the Fisher Information in the variable -y(Xi) and the bound
is the Cramer-Rao Bound.

Furthermore, if 6 is a maximum likelihood estimate based
on observations -y(Xi), then under the assumption of some
more regularity conditions ( [10];pp 183), we know that the
estimator satisfies

o J \F |0,asn - oc.
nIoy

In other words, the ML estimator asymptotically achieves
the Cramer-Rao lower bound.

The Fisher Information of the quantized variable, Io is a
good performance metric for the quantizer. A quantizer that
maximizes Io is optimal with a M-L fusion center. Since Io
is a function of the parameter 0, it is not possible to design
a single quantizer that maximizes Io for every 0. However,
for a given parameter 0, we wish to find out the maximum
achievable Fisher Information 1, and the type of quantizer
that achieves this maximum value. Firstly, for a given fam-
ily of distributions qo, Io would provide a benchmark for
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quantizer design. Secondly, this would give us an insight
into the class of quantizers that optimize Fisher Informa-
tion based metrics. Furthermore, in the case when sensors
observes a long sequence of measurements, 0 can be esti-
mated locally and used to quantize the measurements o ti-
mally (this will be discussed in more detail in Section 4.1).

2.2. Class of Quantizers

Since we assume identical quantizers and i.i.d measurements,
the performance of a quantizer with respect to any metric is
dependent on the set of posterior p.m.fs {qo, V0}. From the
definition of Io in (2), we know that the Fisher Information
for any given 0 is a function of qo and d qo. Therefore, the
problem of maximizing Io for a fixed 0 can be divided into
two steps:

i)Find the optimal pair ofposterior vectors ro - (qo, dqo)
that maximizes Io.

ii)Obtain the quantizer -y that generates the optimal ro.

For a given 0, we now define the set of posterior vectors:

Qo {qo('y)Vy E1}

R -= {(qoe)), dqo(-))I- Ei F},
where the p.m.fs are generated by deterministic quantizers.
It is possible that the set of deterministic quantizers alone is
not sufficient to obtain maximum possible Fisher Informa-
tion. We therefore enlarge the set to include a certain class
of randomized quantizers.

The definition of a deterministic quantizer was given in
Section 2. We now define a randomized quantizer as follows
[2]. Let K be an arbitrary positive integer and -Yl, , YK
be some deterministic quantizers. Let p = (P1, ,PK)
be a point on the standard K simplex. Consider a ran-
dom variable W whose p.m.f is given by p. Specifically,
Pr(W = k) = Pk. A randomized quantizer can be defined
as a function y: J x {1,... , K} I-* {1, , D} such that
'y(Y, W) = 'yw(Y). It is easy to see that

K

Po (-y(Y, W) = d) - Z PkPO (Yk (Y) = d),Vd (3)
k=1

Let r represent the set of all randomized quantizers. We
now define the new set of posterior vectors as

Ro = {ro(-y)j-y E F},

Clearly, Rf is the convex hull of Ro.

3. OPTIMALITY OF SCORE FUNCTION
QUANTIZATION

In order to obtain the optimal class of quantizers, we adopt
a technique similar to the one used in [2] to optimize per-

formance of distributed detection. In [2], the class of Like-
lihood ratio quantizers was shown to optimize performance
metrics like Chernoff Information (Bayesian detection) and
Kullback-Leibler distance (Neyman-Pearson Detection). The
equivalent of the likelihood ratio in parameter estimation is
the score function, which is defined as follows.

AJ:Let P9 satisfy the following conditions:

i) The distributions Po have common support, so that
without loss of generality the set A = {x: po (x) >
0} is independent of 0.

ii) For any x in A and 0 E 0, the derivative p (x) -
ape(x) exists and is finite.~O_

iii) p' is absolutely continuous with respect to Po on the
set A.

The score function is then defined as:

d dpo (x)
So(X) -dO logpo(x) - dO

dO ~~PO9(x)
The score function measures the sensitivity of the likelihood
function w.r.t 0.

Definition 1 a) We define the threshold set T as the
set of all vectors t = (tl,..,tD 1) G RDI1, satisfying
-°° tl < -tDl <0c. ForanytCT,theasso-
ciated intervals I1, ..., ID are defined by I, [0, tl], 12 -
[tl, t2],, ID =[tD-1, 00]-

b) Let t C T. We say that a quantizer-y E ris a
monotone Score-function quantizer (SFQ) with threshold
vector t, if -y(x) = d -=- So(x) E IdVd (see Fig. 3).
We say that a quantizer is an SFQ if there exists a permuta-
tion mapping 7r: {1,.. , D} ) {1,. , D} such that 7ro y
is a monotone SFQ (o is the composition operator).

I I2
tl t2 0 tD-1

Fig. 2. Monotone Score Function Quantizer

It is to be noted that a score function quantizer is de-
pendent on the value of 0. Since, currently our focus is to
maximize Is for a given 0, we consider this class of quan-
tizers. Under certain conditions on the underlying family
of distributions (mentioned in Section 4), the class of SFQs
can be made independent of 0.
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3.1. Optimality

Theorem 1 Let P0 satisfy the conditions given in Al. Fur-
thermore, let p (y) be absolutely integrable w.rt Lebesgue
measure. Then, the following statements are true:

i) Let f: Ro -- R be a convex function of qo' for a
given qo and A be any closed subset of Qo. Then,
there exists a SFQ that maximizes f over all Ro sub-
ject to qo E A.

ii) There exists ro(-y) C Ro that maximizes Io over Ro,
such that 'y is a deterministic SFQ.

Proof: See [11].
From the above theorem, it can be seen that, in order to

maximize I for a given 0, it is sufficient to search within
the set of score function quantizers at that 0. Furthermore,
part i) of the theorem is a general statement and states that
to maximize any metric which is a function of qo and d qo,
the search can be restricted to the set of SFQs.

3.2. Finding the Optimal SFQ

The set of SFQs for any given 0 is uncountable, and it is not
possible to conduct an exhaustive search for the optimal set
of thresholds on the score function that maximizes Fisher
Information. Therefore, an efficient algorithm needs to be
formulated to obtain the SFQ that maximizes Io.

The algorithm for finding the optimal SFQ is based on
the same principle as in the Lloyd-Max algorithm used in
quantization for minimum distortion. Let the score function
of the quantized observation be denoted as So (i), 1 < i <
D. It is easy to see that for any SFQ, So(i) is the centroid
of the score functions So(x) in bin i.

tL po (x)So (x)dx
So(i) = ogqo(d ) tIL Po(x)dx

where {ti} are the thresholds of the SFQ. The Fisher Infor-
mation can therefore be expressed as a sum of mean distor-
tions of score functions.

D tiI = Jo - pO (x) (So(x) so (i))2 dx
where Jo is the Fisher Information of the unquantized X.
Since Jo is a constant for any given 0, the problem of maxi-
mizing Io is equivalent to minimizing the distortion in score
functions. Therefore, the Lloyd-Max algorithm can be used
to successively increase Io. Since every iteration yields
a score function quantizer, the algorithm converges to the
SFQ yielding maximum possible Fisher Information at the
given 0. In the following section, we discuss the applica-
tions of the previous results.

4. APPLICATION OF SCORE FUNCTION
QUANTIZATION

The score function quantizer is a function of 0 and hence
cannot be used as a practical quantizer for parameter esti-
mation. However, for any given value of 0 , it is possible to
obtain the maximum achievable Fisher Information at that
0. As mentioned earlier, it is not possible to design a single
quantizer that achieves this bound for every value of 0. This
bound would therefore serve as a benchmark for practical
quantizer design. The performance of a quantizer can be
quantified by evaluating the distance of the Fisher Informa-
tion function from the bound obtained using SFQs.

4.1. Class of Score Function Quantizers

Suppose that {Po; 0 E 8} has a corresponding family of
densities {pO; 0 E e}. We know that a statistic T is suffi-
cient for 0 if and only if there are functions g(0) and h such
that

pO (x) =go [T(x)]h(x), Vx, 0

Definition 2: If T is a sufficient statistic for po and
the score function can be expressed as So(x) = fo[T(x)],
where fo is monotone increasing for all 0, then the set of
all threshold quantizers on T(x) is defined as the class of
score-function quantizers.

Therefore, in order to optimize any Fisher Information
type metric, it is sufficient to characterize thresholds on the
sufficient statistic rather than a score function which is de-
pendent on 0. By Fisher Information type metric, we mean
metrics which involve ro such that Theorem 1 would ap-
ply [12].

4.2. Minimax Quantizer

As mentioned earlier, it is not possible to design a quantizer
that maximizes I for every 0. We know that Io < Jo, VO,
where Jo is the Fisher information of the unquantized vari-
able X. Therefore, a good metric for practical quantizer de-
sign would be to minimize the maximum distance between
the two quantities over the parameter. Mathematically, we
wish to design -y* such that

-y* = arg min max Jo -I
ly 0

From theorem 1, we know that for any given 0, a strictly
convex function of re is maximized by a score function
quantizer. Although we cannot explicitly show that the min-
imax criterion corresponds to optimizing a convex metric,
Theorem 1 can be used as a heuristic and the search for the
optimal minimax quantizer can be restricted to the class of
score function quantizers. Therefore, when the underlying
family of distributions satisfy the conditions in definition 2,
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we need to find optimal thresholds on the sufficient statistic
T that optimize the criterion.

The minimax quantization problem has been dealt with
in detail for a generic framework in [12] and we shall only
present a simple example in this document to explain the use
of score function quantization. Consider the simple AWGN
case when D 2.

X = 0 + N, N , Ar(O,u 2), 0 E [Gmini Omax]

A deterministic 1-bit quantizer corresponds is represented
by the set A1 = {x: -y(x) = 1}. We therefore wish to find
the optimal A* that optimizes the minimax criterion. It can
be shown that

A = argminmaxJo-Io,
Al 0

= argminmaxVaro(xlx E A1) +Varo(xlx E Ac)
Al 0

(4)

The criterion is analytically not tractable beyond this point.
However, it is clear that po (x) in this case satisfies the con-

ditions of Definition 2 and the sufficient statistic is x. There-
fore the class of 1-bit score-function quantizers (D = 2)
would be of the form:

7 (x) = { 1 x <> (5)21X>T(5

We call the quantizer of the form in (5) a measurement
quantizer. The expression in (4) can now be expressed as

T= argminmaxVaro(xlx < T) + Varo(xlx > T).
17 0

The optimal value for T* Omin+Omax The required mini-
max quantizer is therefore the quantizer of the form (5) with
threshold r*. The performance of the minimax quantizer for
some distributions are also illustrated in Section 5.

4.3. Quantized Local Estimates

The nature of problems discussed so far have been focused
on scalar quantization, wherein each node quantizes a single
measurement and transmits the quantized value to the fusion
center. The idea however can be extended to the case of
vector quantization when the nodes receive a sequence of
measurements. An information theoretic approach to this
problem has been considered in [8], [9].

Consider two nodes, receiving sequences of measure-

ments, x = {xi, i 1...n} and y = {yi, i = 1...n} re-

spectively. Each pair of measurements (xi, Yi) is i.i.d with
joint probability distribution Po (x, y). The observations are

quantized subject to a rate constraint for each node. The
quantized vectors u, v are transmitted to a fusion center,
which estimates the underlying parameter 0 based on the

received vectors. In [9], the quantizers at the individual
nodes were abstracted by conditional probability distribu-
tions w(ujx;po(x)) and o(vly;po(y)). Given these dis-
tributions, the authors established the existence of a uni-
versal coding scheme to compress the data and designed a

maximum-likelihood estimator that asymptotically achieves
the Cramer-Rao bound given the conditional distributions.

Given a long sequence of observations at each node, it
is possible to make an estimate of 0 at each node based
on the marginals po(x), po(y). Therefore, using the esti-
mated value of 0, the observation can be quantized using
the SFQ evaluated at that estimate. The fusion center uses

the received quantized information from both the nodes and
makes an accurate estimate of the parameter. Since we have
already established that the score-function quantizer max-

imizes Fisher Information at each node based on the mar-

ginals, we believe that the theory would extend to the joint
estimation as well. This is a direction which we have started
exploring recently, so we do not have concrete results yet.

5. NUMERICAL EXAMPLES

In this section we shall discuss a couple of numerical exam-
ples to illustrate the usefulness of the score-function quanti-
zation as a tight bound on Fisher Information. We shall also
plot the performance of the minimax quantizer for these ex-

amples and compare it with the SFQ bound.

5.1. Parameter in AWGN

We consider the example as given in Section 4.2. The ob-
servation X is Gaussian with mean 0 and variance a2. In
Fig. 3, we plot the maximum quantized Fisher Information
for different values of D and compare it to the unquantized
Fisher Information. The figure also shows the performance
of two specific score function quantizers.

c~
.9
E O.i
E
cp
ax

iL O.,

Fig. 3. Parameter in AWGN
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Gaussian Fading, n2=1
2
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Fig. 4. Gaussian Fading Example

5.2. Gaussian Faded Parameter

Here, we consider the observation to be a faded value of
the parameter and the fading coefficient is assumed to be
Gaussian. In other words,

X = HO, H ,v A(0, 1) .

Figure 4 plots the maximum quantized and unquantized
Fisher Information for the Gaussian fading model. The plot
also shows performance of two specific SFQs.

Although it is not possible to design a quantizer that
achieves the Fisher Information bound for every value of 0,
from the above plots, it is evident that practical quantizers
can achieve the bound for specific values of 0. The bound
is therefore tight from a point perspective, and hence can be
used as a comparison for the performance of any practical
quantizer.

In the AWGN case, as we have established earlier, the
minimax quantizer is a score-function quantizer evaluated
a O=:&in+Omnaxat 0 ::= Sm2 . It is easily verified that the Gaussian fad-

ing distribution also satisfies the conditions of Definition 2
and the sufficient statistic is given by x2. Hence the 1-bit
minimax quantizer in this case would correspond to the op-
timal threshold on x2. The performance of this quantizer is
shown in Figure 5 and is compared to the bound for D = 2.
The figure also plots the performance of a quantizer of the
form (5) optimized for every value of 0. As is evident, the
score-function based minimax quantizer has a better perfor-
mance than a measurement quantizer that knows 0.

6. CONCLUSIONS

In this work, we proposed the concept of score function
quantization and showed the optimality in maximizing Fisher
Information for a given parameter. Apart from providing a
benchmark for the best possible estimation performance, we

n -1,D=2
1.4

- - - Minimax
SFO Bound

1.2 Measurement Quant.

0.8

0.6

0.4-

0.2

C L

1 1.5 2 2.5 3 3.5 4

Fig. 5. Minimax Quantizer

also showed that this can be applied for quantization in prac-
tical scenarios such as the temporal estimation and minimax
quantization. It is clear from our results that the use of score
function in quantization is crucial for optimizing estimation
performance. Our results are currently focused on a scalar
parameter. The extension of our results to the vector case
would be non-trivial. It would also be interesting to explore
the nature of quantization when observations are not i.i.d.
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