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Abstract— Anonymous monitoring of transmissions in a wire-
less network by eavesdroppers can provide critical information
about the data flows in the network. It is, therefore, necessary
to design network protocols that maintain secrecy of routes
from eavesdroppers. In this work, we present a mathematical
formulation of route secrecy when eavesdroppers observe trans-
mission epochs of nodes. We propose scheduling techniques to
provide complete secrecy of routes, and characterize achievable
rate regions for a multiplex relay under transmitter directed
spread spectrum signaling. Further, we extend the results to the
case when an additional constraint on packet loss is imposed.

Index Terms - Network Security, Traffic Mix, Scheduling,
Packet Coding.

I. INTRODUCTION

Wireless networks are prone to anonymous monitoring by
eavesdroppers, who wish to gain valuable network informa-
tion, e.g. source-destination pairs and data flows. Equipped
with this knowledge, it is then possible for malicious ad-
versaries to target specific routes for intrusion or jamming.
Active intrusion attacks or jamming can be detected and
countered by sophisticated intrusion detection mechanisms.
On the other hand, passive monitoring does not affect the net-
work operation and is hence, not detectable. It is, therefore,
necessary to modify network protocols so that information
about data flows or source-destination pairs are not traceable
by eavesdroppers monitoring node transmissions.
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Fig. 1: Wireless Network with Eavesdroppers

The inference of routing information from monitored
transmissions, known as traffic analysis attack, is done in
a variety of ways. The eavesdropper can identify a flow
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of traffic by correlating packet contents, packet lengths
or transmission epochs across multiple nodes. Encrypting
and random padding of bits are some measures adopted to
remove the correlation of contents and lengths of packets
across nodes. We are interested in the design of secure sched-
ules to prevent the inference of routes based on transmission
epochs.

In general, the transmission schedule of relaying nodes
are dependent on the arrival of packets, subject to the delay
requirements. To elude eavesdroppers, it may be necessary
to decouple the transmission schedule of the nodes from
the actual traffic flow to prevent flow correlation. For delay
sensitive traffic, however, this may not be possible without
affecting network performance. In particular, the design
of such schedules would require transmission of dummy
packets and could also result in packet drops. It is, therefore,
necessary to optimize the achievable network performance
while maintaining route secrecy.
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Fig. 2: Two Hop Network

In this work, we consider the problem of secrecy for a two-
hop multiplex relay as shown in Figure 2. In particular, we
characterize the set of achievable relay rates, when packets
are subjected to a strict delay criterion under a transmitter
directed physical layer signaling. We provide transmission
schemes to prevent flow correlation and show that as the
delay increases, the achievable rate region converges to the
best possible region. Furthermore, we also present achievable
rate regions when an additional constraint on packet loss is
imposed.



A. Related Work
A countermeasure to traffic analysis attacks was first

provided through the notion of MIX-net by Chaum[1]. A
Mix is an intermediate node that re-encrypts and reorders
packets from multiple sources to prevent matching of source
and destination streams. The MIX concept is ideal for delay
insensitive traffic and the has been used effectively in pro-
viding anonymous communication for Internet applications
[2], [3], [4], [5]. In [6], the authors propose STOP-and-
GO MIXes wherein the MIX, apart from re-encryption and
packet padding, also incorporates a random delay to avoid
timing correlation. For wireless networks, random delaying
was used in [7] to prevent flow correlation.

For low latency networks, it was shown in [8] that simple
mixing techniques are not effective to prevent correlation
of transmission epochs. Their proposed solution utilized
the idea of transmitting dummy packets to make departure
epochs identical irrespective of the flows. The idea of having
fixed transmission schedules independent of routes has also
been considered in [9], where the authors give bounds on
the performance loss incurred due to the secrecy constraints.
The use of randomized routes as a countermeasure to traffic
analysis attacks has been considered in [10], [11].

In the techniques discussed above, the secrecy provided
was not characterized analytically. The theoretical framework
for secrecy in this work is motivated by the notion of equivo-
cation developed by Shannon in [12]. The secrecy constraint
we consider is a special case of Shannon’s equivocation,
known as maximum secrecy [13], wherein the observations
provide zero information about the source.

The paper is organized as follows: In Section II we explain
the analytical framework of the route secrecy problem. The
basic results on the achievable rate regions are presented
in Section III. Coding schemes and packet loss constraints
are discussed in Section IV. Some concluding remarks and
possible future extensions are given in V.

II. PROBLEM SETUP

A. Definitions
In this work, we propose techniques to hide the presence

of a two-hop relay (Fig. 2) from an eavesdropper. In general,
the tasks carried out by a relay can be multi various; it can
choose to decode and re-encode blocks of packets, it can
relay unaltered packets after a random delay and it can re-
order the packets before transmission. It is assumed that re-
encryption and packet padding occur at every relay to prevent
any content based correlation. We are concerned with the
kind of traffic, wherein each packet needs to be relayed
within a fixed delay constraint ∆. We restrict the tasks of
a relay to packet-reordering and timing perturbation. De-
pending on its transmission schedule, a relay picks departure
epochs for the arriving packets such that the delay constraint
is satisfied. A packet that is not relayed within ∆ time units
after arrival is dropped.

Let the network be represented by a directed graph G =
(V,E), where V is the set of nodes and E is the set of

links between pairs of nodes. A link (A,B) belonging to
E denotes that node B can listen to the transmissions from
A. Let YA = {YA(1), YA(2), · · · } denote the time instants
(known as departure epochs) at which A transmits packets.
The transmission rate TA of a node A is defined as the
average number of packets per unit time transmitted by A.
In other words,

TA = lim
n→∞

n

YA(n)
.

The relay function is defined as follows. Let YA =
{YA(1), YA(2), · · · , YA(n)} represent the departure epochs
of packets from A and YB = {YB(1), YB(2), · · · , YB(n)}
represent the departure epochs of packets from B. A 1 × 1
relay map is an algorithm that picks a subsequence Ys

A of
YA and an equal length subsequence Ys

B of YB such that
∀i, 0 ≤ Y s

B(i) − Y s
A(i) ≤ ∆.

If |YA| = n and |Ys
A| = k(n), then the relay rate λ(M)

of the 1 × 1 relay map M is given by

λ = lim
n→∞

k(n)

Y s
A(k(n))

.

The rate of a relay map is dependent on the transmission
rates of the nodes.

The map for a node relaying multiple flows can be defined
analogously. An m× 1 relay map is an algorithm that picks
subsequences Ys

A1
,Ys

A2
, · · · ,Ys

Am
from departure epochs

of m nodes A1, · · · , Am and a subsequence Y s
B from the

departure epoch of the relay node B such that
1) |Ys

B | =
∑m

i=1 |Y
s
Ai
|.

2) Let Ys be the sequence formed by the concatenating
Ys

A1
, · · · ,Ys

Am
and arranging the epochs in ascending

order. Then,

∀i ≤ |Ys|, 0 ≤ Y s
B(i) − Y s(i) ≤ ∆.PSfrag replacements
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Fig. 3: m × 1 Relay Map

An m× 1 relay map is associated with a relay rate vector
λ(M) = (λ1, · · · , λm) which is given by

λi = lim
n→∞

ki(n)

Y s
Ai

(ki(n))
,

where ki(n) = |Ys
Ai
|.



B. Medium Access Constraints
Nodes in a wireless network share a common channel

and transmissions are susceptible to fading and interference.
Depending on the PHY model, the rates of transmission are
subjected to some medium access constraints specified by a
region of tx. rate vectors C. If the transmission rates of the
nodes belong to C, the packets are received successfully at
the receiving node. To this extent, we consider a transmitter
directed spread spectrum signaling model.

Transmitter Directed Signaling : Each transmitting node
in a shared channel uses an orthogonal spreading code to
transmit its packets. The constraints on transmission rates for
the nodes are therefore independent. In other words, for a set
of nodes A1, · · · , An, the medium access region is given by

C = {(TA1
, · · · , TAn

: TAi
≤ CAi

, i = 1, · · · , n}. (1)

C. Secrecy
An eavesdropper, by correlating transmission epochs from

multiple nodes, can obtain information about routes within
the network. The goal is, therefore, to schedule transmissions
so as to maximize the secrecy of the routes with respect to
the eavesdropper.

PSfrag replacements

A

A1

A2

A3

A4

Fig. 4: Network Flows: Secrecy for a subset of nodes A

Secrecy can be formally defined as follows. Let A =
{A1, A2, · · · , Ak} be a subset of nodes and F ⊂ 2A denote
the set of all ordered node-pairs in A (|F| = |A|(|A| − 1)).
Since transmissions from nodes not physically connected can
be correlated to infer a flow, it is necessary to consider all
possible node-pairs. During a given session, the set of node-
pairs in F that require non-zero relay rate is denoted by
the flow vector F ⊂ F . We define A to have perfect relay
secrecy if for any F ⊂ F , the transmission epochs of the
nodes in A and F are independent. In other words, for every
F ∈ F the conditional distribution

p(YA1
,YA2

, · · · ,YAk
|F ) = p(YA1

,YA2
, · · · ,YAk

). (2)

If for any flow vector F , the joint distribution of trans-
mission epochs is unaltered, then it is impossible to infer the
flow to any degree of accuracy. This condition is a special
case of equivocation[12], [13], known as maximum secrecy,
wherein

H(F |Y) = H(F ).

D. Achievable Rates
A rate vector R = (R1, · · · , Rm) for a set of node-

pairs with common relay {(A1, B), (A2, B), · · · , (Am, B)}
is an achievable rate vector, if there exists a conditional
distribution p(YA1

,YA2
, · · · ,YAm

|F ) and an m × 1 relay
map such that following conditions are satisfied

1) The transmission rate {TA1
, TA2

, · · · , TAm
, TB} sat-

isfy the medium access constraints (1).
2) For every realization (YA1

, · · · ,YAm
),

λi(M) ≥ Ri, i = 1, · · · ,m.

3) {A1, · · · , Am, B} have perfect relay secrecy.
In the following section, we present achievable rate regions

for the special case of providing relay secrecy for an m× 1
multiplex relay (Fig. 2), where a single node relays packets
from m nodes. The results are presented for the PHY model
discussed in Section II-B.

III. RATE REGION

In the absence of eavesdropping concerns, the flow-rates
achievable in a network can be obtained purely from the
topology and medium access restrictions. In the presence
of eavesdropper, however, the secrecy condition imposes
additional constraints which can lower the achievable rates.

The secrecy condition in (2) indicates that the distribution
of transmission epochs are independent of the flows. A spe-
cial case of this condition is when the transmission schedule
of each node is drawn from an independent distribution and
the marginal distributions are not dependent on the flows,

p(YA1
,YA2

, · · · |F ) = p(YA1
)p(YA2

) · · · .

Similar ideas have been considered in literature [9], [10],
wherein the transmission schedules were deterministic irre-
spective of the flows. Statistical independence of departure
epochs is a sufficient condition to ensure relay secrecy. In
general, it may be possible to design schedules such that the
transmission epochs are not independent and yet guarantee
relay secrecy.

We assume that the sources generate packets at Poisson
time points which determine the schedules of the source
nodes. In order to satisfy the secrecy condition, the relay
nodes generate departure epochs from independent Poisson
processes. To an eavesdropper monitoring the nodes, it is
impossible to decipher the actual flows by observing time
points, since at all times, the schedules are statistically
independent. However, due to the delay constraint, the se-
crecy condition leads to a reduced rate region, which is
characterized in the following sections.

A. Single Relay Achievable Rate
To characterize the achievable rates for a 1 × 1 relay

map, we use the Bounded-Greedy-Match (BGM) algorithm
proposed in [14] that optimally maps Point processes with
the least packet drops. Since epochs are generated according
to independent Poisson processes, the delay constraint makes
it impossible to relay all transmitted packets. Hence, the relay
rate is strictly less than the transmission rates of the nodes.
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Fig. 5: 1 × 1 Relay

Let node A be the transmitting node and B the relay. The
algorithm is as follows; When a packet arrives at B, if there
exists a departure epoch within ∆ of the arrival instant and
has not been matched to any previous arrival, it is assigned
to the arrived packet. Otherwise, the packet is dropped. The
transmission schedule of A is obtained from the generation
times of packets while node B generates an independent
Poisson process of a fixed rate and uses the algorithm to
map arrival epochs to the generated schedule.

Theorem 1: If the maximum transmission rates allowed
for nodes A,B are CA, CB respectively, the maximum
achievable relay rate R between (A,B), when YA,YB are
independent Poisson processes is obtained when TA =
CA, TB = CB and is given by

R =







CA
CB(e−∆(CB−CA)

−1)
CBe−∆(CB−CA)−CA

CA 6= CB

C2
A∆

1+CA∆ CA = CB

(3)

Proof: Refer to Appendix.

A special case of this result, when nodes have equal
transmission rates was obtained in [15] under a different
context. As the delay constraint ∆ increases, it is easy to see
that the relay rate converges to min{CA, CB} which is the
optimal rate under no secrecy constraint. The minimization is
due to the stability requirement in the network. Furthermore,
the convergence of the relay rate with ∆ can be shown to
be exponential. The optimal rate can be obtained for a finite
∆ when at least one of the transmission constraints CA, CB

becomes infinite. Intuitively, this is easy to see; since one of
the nodes has an infinite transmission rate, every transmitted
packet can be matched perfectly.

Clearly, when ∆, CA, CB are finite, the transmission rates
TA, TB of the nodes are strictly greater than the achievable
information relay rate, thereby resulting in packet drops.
Therefore, the source needs to employ forward error cor-
recting (FEC) schemes in order to deliver the information to
the destination reliably. A detailed exposition of the packet
loss and coding is discussed in section IV.

B. Multiplex Relay Region
When the signaling is transmitter directed, the constraint

on the transmission rates are independent for each source
node and the relay. Moreover, since the transmission rate
constraint for the relay is independent of the number of
destinations, the following results hold even if multiple
source nodes share a common destination.

If there is no delay constraint (∆ = ∞), then the
achievable rate region is identical to the rate region without

any secrecy constraint; the rate region is then determined
solely based on medium access and stability constraints,

Ri ≤ CAi
;
∑

i

Ri ≤ CB . (4)

A straightforward achievable rate region when ∆ is finite
can be obtained through a direct extension of the single
source relay case considered in the previous section. The
relay node ignores the origin of the packets and executes the
BGM algorithm on the joint traffic from all the nodes. This
strategy, which we refer to as homogenous relay map results
in an achievable rate region RH given by

Theorem 2: (R1, · · · , Rm) belongs to RH iff
∃ TAi

∈ [0, CAi
], i = 1, · · · ,m s.t

Ri = TAi

CB(e−∆(ΣjTAj
−CB) − 1)

CBe(−∆(ΣjTAj
−CB)) −

∑

j TAj

.

Proof : Since the relay ignores the source of the packets,
it applies BGM algorithm on the joint arrival process of
transmission rate

∑

j TAj
. The proof follows from Theorem

1.
2

It is easily shown that as ∆ increases, the region RH

converges to the optimal rate region given by (4). Similarly,
when ∆ is finite and CB → ∞, it is also possible to achieve
all rate vectors satisfying the medium access constraints. The
homogenous map region (denoted by RH ) is shown in Figure
6.
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Fig. 6: Achievable Regions for 2 × 1 relay with
Transmitter directed signaling : ∆ = 1

The region in Theorem 2 can be significantly improved if
origin of packets are taken into consideration. The algorithm
we propose is the following. The nodes transmitting to
the relay are assigned unique indices from 1 to m such
that the node with a higher index is given more priority
when in contention. Every subset of nodes S ⊂ 2A is



assigned a priority value α(S) ∈ [0, 1]. As long as there
is no contention between packets from different sources
for a particular departure epoch, the relay functions as a
homogenous relay map. If packets from any subset of nodes
S contend for the same departure epoch, the relay generates
a Bernoulli random variable Z ∼ B(α(S)). Let Ai be the
node in S with the highest index. If Z = 1, then the packet
from Ai is assigned that epoch. If Z = 0, then the packet
that arrived earlier is assigned that epoch. By considering
all possible index assignments and priority values, the rate
region is obtained. The algorithm for 2 nodes is formally
stated in Table I (refer to Appendix) assuming A1 has index
1 and priority value α.

Let RP denote the set of all rate vectors achievable by
using the priority relay map (all priority assignments). The
following theorem provides bounds for RP .

Theorem 3:

Let Rout = {(R1, R2) :

Ri ≤ f(CAi
, CD),

∑

i

Ri ≤ f(
∑

CAi
, CD)}, (5)

where f(a, b) = a
b(e−∆(a−b) − 1)

be(−∆(a−b)) − a
. (6)

Then, RH ⊆ RP ⊆ Rout.

Proof: Refer to Appendix

The piecewise linear shape of the achievable rate region
is due to the two basic components of the algorithm :
priority encoding and time sharing. For example, in the two
node case, the three vertices of the polygon represent the
achievable rates when priority 1 is provided to either A1 or
A2 and the maximum 0 priority sum-rate. The convexity of
the achievable rate region is an outcome of the time-sharing
strategy adopted in the algorithm. The parameter α represents
the fraction of time the relay provides priority to node A1

(or A2).
Although the vertices of the piecewise linear region do

not have a closed form analytical expression, the inner and
outer bounds provided are asymptotically tight. The outer
bound Rout described in the theorem is a sum-rate bound to
the achievable rate region which can be obtained using the
optimality of the BGM algorithm discussed in the previous
section. The inner bound is obtained by using only priority 0,
wherein the region reduces to that of the homogenous relay
map.

Figure 6 plots an example of the different regions for a
2×1 relay. As can be seen, the achievable rate region of the
priority relay map RP nearly coincides with the outer bound.
As ∆ increases, the regions RH ,RP and Rout converge to
the optimal region given by (1).

IV. PACKET LOSS AND CODING

As mentioned in Section III-A, the finite delay constraint
imposed on the transmission schedule results in packet loss.
Hence, it is necessary for the source to use a forward error

correction scheme to ensure reliable recovery of packets
at the destination. Coding for packet recovery has been
addressed in literature[16], [17]. In particular, in [16], the
authors propose coding schemes to recover packets when
transmissions result in packet erasures. Since packets can
be appended with a sequence number, the erasure positions
are known to the receiver. For every block of information
packets, parity packets are transmitted such that, for every i,
the ith bit from every packet arranged in sequence forms a
codeword from an erasure correcting codebook.

It can be shown that the erasures arising for an independent
Poisson schedule using Greedy algorithm and Priority encod-
ing are Markovian. Moreover, due to the memoryless nature
of the Poisson process, the marginal probability of erasure
for a source destination pair (S,D) is given by RS,D/TS

where RS,D is the achieved relay rate and TS is the Tx.
rate of the source. Hence, as the block length increases, it is
possible to obtain an end-to-end information packet rate of
1 − ε[18], where ε is the fraction of packets dropped.

For a fixed block length, the information packet rate
reliably delivered would be strictly less than the capacity
of the erasure channel. However, as the block length of
packets considered increases, it is possible to design codes
with rates arbitrarily close to capacity. In practice, it may be
necessary to design strategies for a fixed packet drop fraction
ε depending on the nature of data and availability of good
codes. The following theorem characterizes an achievable
rate region for the m × 1 relay, such that the packet drop
fraction is less than a fixed ε.

Theorem 4: The achievable relay rate region Rε for the
m × 1 relay with packet loss constraint ε for transmitter
directed signaling is given by Rε = RH ∩ Sε, where

Sε =

{

(R1, · · · , Rm) :
∑

i

Ri ≤ x(1 − ε)

}

,

and x is the solution of

ε =
CB − x

CB exp(−∆(x − CB)) − x
. (7)

Proof: Refer to Appendix

The packet loss for the greedy algorithm can be shown to
be a monotonic function of the sum-rate of transmissions.
Since the packet loss constraints are identical for the nodes,
the rate region in Theorem 4 is obtained by using the
homogenous relay map scheme described in SectionIII-B
coupled with the constraint on sum-transmission rate due
to the packet loss fraction ε. An example plot for the two
node case is plotted in Fig. 7.

V. CONCLUSIONS

In this work, we formally defined the problem of hid-
ing data flows from eavesdroppers observing transmission
epochs. We proposed a possible solution for providing
perfect secrecy and characterized achievable rates for a
multiplex relay in Poisson traffic. Achievable rate regions
when the medium access constraints are based on receiver
directed signaling is considered in [19].
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Although we have considered only a single relay system,
the basic ideas are extendable to longer routes also. As routes
get longer, the packet loss fraction increases with every
hop. Hence the perfect secrecy consideration may not be
ideally suited. In such situations, the notion of equivocation
lends to a partial secrecy metric, when H(F |Y) = αH(F ).
Furthermore, allowing a node to perform block re-encoding
is also an interesting direction to pursue.
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APPENDIX

Bounded Priority Match Algorithm

TABLE I: BOUNDED-PRIORITY-MATCH (α-BPM).
BOUNDED-PRIORITY-MATCH(YA1

, YA2
, YB , α, ∆):

m1 = m2 = n = 1;
while (m1 ≤ |YA1

| or m2 ≤ |YA1
|) and n ≤ |YB |

if YB(n) − YA1
(m1) < 0 and YB(n) − YA2

(m1) < 0
At YB(n) Tx dummy packet; n = n + 1;

else if YB(n) − YA1
(m1) ≤ ∆, YB(n) − YA2

(m2) > ∆
Ys

A1
= Ys

A1
∪ YA1

(m1),Ys

B
= Ys

B
∪ YB(n) ;

Drop YA2
(m2) ; Increment m1, m2, n by 1 ;

else if YB(n) − YA1
(m1) > ∆, YB(n) − YA2

(m2) ≤ ∆
Ys

A2
= Ys

A2
∪ YA2

(m2),Ys

B
= Ys

B
∪ YB(n) ;

Drop YA1
(m2) ; Increment m1, m2, n by 1 ;

else if YB(n) − YA1
(m1) ≤ ∆, YB(n) − YA2

(m2) ≤ ∆
Generate random variable Z ∼ B(α)
If Z = 0, i = arg min{YA1

(m1), YA2
(m2)}

else i = 1
Ys

Ai
= Ys

Ai
∪ YAi

(mi),Y
s

B
= Ys

B
∪ YB(n) ;

mi = mi + 1, n = n + 1

else
Drop YA1

(m1), YA2
(m2); Increment m1, m2 by 1 ;

end
end

Proof of Theorem 1
To prove the theorem, we adopt the technique used in

[20]. Consider the two point processes YA,YB . If a packet
in YA, say at time t is designated as dummy packet by the
BGM algorithm, we insert a virtual packet at the t + ∆ in
YB . Similarly, if a packet at time t in YB is designated
as dummy packet, we insert a virtual packet at time t in
YA. Now we consider the difference process Z = {YB(i)−
YA(i)} between the two processes. At every occurrence of a
dummy packet, the difference process hits a reflecting barrier,



either at 0 or at ∆. The net probability of chaff is, therefore,
the probability of hitting either barrier.

If the transmission rates of node A and B are TA and
TB respectively, from the analysis in [21], we know that the
probability of hitting ∆ is given by

Pr{Z(i) = ∆} =
1 − TA

TB

TB

TA
e−∆(TA−TB) − TA

TB

.

It is easy to see that the fraction of chaff in YA is

εA =
TB Pr{Z(i) = ∆}

TA(1 − Pr{Z(i) = ∆})
=

TB − TA

TBe−∆(TA−TB) − TA

.

Since the rate of relayed packets increases with the trans-
mission rates of either nodes, the achievability of the theorem
is proved. In [14], the authors have shown that the BGM
algorithm inserts the least chaff fraction for any pair of point
processes. Hence, for any (TA, TB), it is impossible to obtain
a higher information relay rate than (3).

2

Proof of Theorem 3
The inner bound is trivially shown as the homogenous map

is a special case of the priority map when α(S) = 0,∀S.
The outer bound is obtained using the optimality of BGM
algorithm. Let node Ai transmit at rates Ti. Then, the sum
information relay rate obtained by using the homogenous
map is given by:

∑

i

Ri = f

(

∑

i

Ti, CB

)

. (8)

Since BGM inserts the least fraction of dummy
packets[14], this is the maximum sum-rate achievable for
the given transmission rates. It is easy to see that

∑

i Ri in
(8) is an increasing function of

∑

i Ti. Therefore, the maxi-
mum sum-rate possible (when transmissions are independent
Poisson processes) is given by

(
∑

i

Ri)max = f

(

∑

i

CAi
, CB

)

. (9)

The best rate for Ai is obtained when Ti = 0, j 6= i is
zero. By replacing

∑

j CAj
by CAi

in (9), we can obtain the
remaining conditions that specify Rout. 2

Proof of Theorem 4
We consider the homogenous relay map. From Theo-

rem 1, we know that for a set of transmission rates of
sources(TA1

, · · · , TAm
) the least fraction of chaff in the

incoming stream is given by

ε =
CB − (

∑

i TAi
)

CB exp(−∆((
∑

i TAi
) − CB)) −

∑

i TAi

,

when the relay transmits at the highest rate.
It is easily shown that ε is an increasing function of

∑

i TAi
. Hence, an upper bound on ε corresponds to an upper

bound on the sum transmission rate
∑

i TAi
. Therefore, for

any rate vector that satisfies
∑

i TAi
≤ x where x is given

by 7, the homogenous relay map guarantees that relay rates
satisfy the packet loss constraint.

2

The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U.S.
Government.


