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Abstract—The analysis of a multi-source single-destination is allowed to delay packets arbitrarily subject to a maximum
network of mixes is considered under strict latency constraints delay constraint, and the strategies of the mixes in the orétw
at each mix. Mixes are relay nodes that accept packets arriving are designed jointly. The eavesdropper, Eve, observes the

from multiple sources and release them after variable delays to t ission fi f kets between everv pair of nodes
prevent an eavesdropper from perfectly identifying the sourcesf ransmission times of packets very pal

outgoing packets (also, the contents of the packets are encgal  IN the network. Since packets are encrypted, she cannot use
to prevent these from being used to correlate the arrivals to the contents to determine the path of any packet except for
the mix with its departures). Using an entropy-based measure to the link it was observed on. Using the timing information in

quantify anonymity, the anonymity provided by such a single- iha observed point processes and her knowledge of the mixing

destination network of mixes is analyzed, with the focus on trat Eve’ lis to det . th iqinati ot
light traffic conditions. A general upper bound is presented that SU@l€gy, EVE's goal Is 1o determine the originaling sowrce

bounds the anonymity of a single-destination mix network in €Very packet arriving at the destination node.

terms of a linear combination of the anonymity of two-stage Based on the analytical model formulated in [2], we quan-
networks. By using a specific mixing strategy, a lower bound tify anonymity of mix networks using the entropy of the a
is provided on the light traffic derivative of the anonymity of  hhtariori distribution (from Eve’s perspective) of origiing
single-destination mix networks. The light traffic derivative of . S .

the upper bound coincides with the lower bound for the case of §ourc§s of the packgts a”'V'”g_ atthe destlnatl(_)n. Ourigaal .
mix-cascades (linear single-destination mix networks). Thus, the investigate the maximum achievable anonymity as a function
optimal light traffic derivative of the anonymity is characterized of the network topology and the delay constraints of the
for mix cascades. individual mixes. In this work, we analyze the anonymity of
general single-destination mix networks, with the focugme

on light traffic conditions.

Mix networks, first proposed by David Chaum [1], are used Subsequent to the original design of a mixing strategy by
extensively on the Internet to facilitate anonymous comm@haum, different low latency mix networks were designed for
nication in applications such as e-mail and web browsindelay-limited applications [3]. However, a timing analysif
Conceptually, mixes are relay nodes or proxy servers thatoming and outgoing processes [4] exposed the vulnésabil
accept packets from multiple nodes and output them inoh such low-latency systems. Theoretical analyses of the
manner that makes it infeasible for an external observer aaonymity of mix networks or the fundamental trade-off be-
determine the originating sources of transmitted packets ptween anonymity and latency in mix networks are limited. The
fectly. Specifically, a mix uses encryption techniquesdmamn information-theoretic metric of anonymity of mix networks
delaying, and reordering of packets to minimize the informgroposed in [5] treats every departing packet indepengentl
tion available to an eavesdropper. As expected, delayinlg sand does not take into account delay limitations and traffic
reordering would increase the latency of transmitted packestatistics. In [2], we quantified anonymity in a single mix
Alternatively, if mixes are subjected to hard delay coristea system using the complete observation of the eavesdropper,
then theanonymityachievable decreases. In [2], we studiednd provided bounds on the maximum achievable anonymity
the anonymity of a single mix under a hard delay constrairds a function of traffic load and the delay constraint. In this
and provided inner and outer bounds on the fundamentedrk, we analyze the general class of single-destination mi
trade-off between latency and anonymity. In this work, weetworks. We provide an upper bound for the anonymity
analyze the anonymity of a single-destination network aichievable in such a network in terms of the anonymity of
delay-constrained mixes, with the focus being on lightficaf related two-stage networks, and provide a lower bound on
conditions. the light traffic derivative of the anonymity for such netksr

Consider the example network as shown in Figure 1, wheg analyzing a specific mixing strategy. For the case of mix
a set of source nodes are connected to a single destinattascades (linear single-destination mix networks) thétlig
through anin-tree network of mixes. The sources transmitraffic derivative of our upper bound coincides with our lowe
packets according to independent Poisson processes. Eachbound. A slightly related problem is the study of timing
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channels with jammers [6] or spurious departures [7]. WhiEmple (i.e. batch transmissions are permitted).

the goal in [6], [7] is to analyze the timing information that

can be relayed between a single source-destination pauein Mix: Mix AM; € M observes the processé¥ 4 s, (t) :
presence of an adversary, our task is to obfuscate the sourdel;) € E}, which is the set of incoming streams of packets
information of packets by multiplexing transmissions fronto the mix. The packets on any individual stredm, M)
multiple nodes. have identical headers, and the contents do not reveal any

The remainder of the paper is organized as follows. Information about the path of the packet prior to arriving at
Section Il, we provide the mathematical formulation of theode A. Each mix has exactly one outgoing stream (as is
problem, and provide a brief recap of the light traffic detiix@ evident from the tree structure of the network). Each argvi
of single mix systems. In Section lll, we present an upp@acket on{Ya s, (t) : (A, M;) € E} may be delayed by
bound on the anonymity of general single-destination mixix M; using a randomized strategy subject to causality and
networks. In Section 1V, we provide a lower bound on the ligld maximum delay constraint of;,7. A mix is allowed to
traffic derivative of anonymity of general single-destioat transmit multiple packets in a single batch, in which case th
mix networks and prove its optimality for the class of lineaorder of packets within a batch does not matter. We assume
networks (mix cascades). Some concluding remarks are malat the mixes do not share any common randomness, but the
in Section V. strategies of the mixes can be jointly designed given cotaple

knowledge of the network topology. L&t(M) denote the set
Il. PROBLEM SETUP of all valid mixing strategies for the netwotk.

A single-destination mix networls defined by a3-tuple Eavesdropper: The eavesdropper, Eve, observes every in-
M = (G,D,A). G = (V,E) is anin-tree directed graph, dividual point process in{Y.(t),e € E}. As in the case
where the set of nodds can be divided into a set of leaf node®f the mixes, the individual packets on each stream are
S ={S),---,8S,} denoting the sources, a set of intermediat@distinguishable to her. She is aware of the topology of the
nodesM = {Mj,--- , M,,} denoting the mixes, and the roothetwork and the mixing strategies of all the mixes, but dags n
node R that represents the final destination. Without loss #fave access to the realization of the private randomness use
generality, we letA/,, € M be the only node in the graphby_each mix to implement its randomized mixing strategy.
connected taR. D = (dy,- -+ ,djn) and A = (ry,- -+, 7)) Using her complete knowledge, Eve’s goal is to determine
are vectors of positive integers such that denotes the arrival the original sources of the departed packets on the stream
rate from sources;, andd; T denotes the delay constraint ofd (., ) (t)-

mix M;. A andT are positive real constants. We partition th%\ Anonvmit
set of edges a& = F;|J E,, U E. where : ymity
Consider the joint arrival procesy(t) = U.cp Ye(t)
Es = {(A,B)e E:AeS], to the network.Y(t) is a stationary Poisson process of
E, = {(A,B)eE:A BecM]}, rate >, ;. We know that each mix is connected to the
E, = {(Mn R)} destination through exactly one directed path. For a mix

My, let My, My, ,---, My, , M, be the sequence of mixes
An example of a single-destination mix network is showon the directed path frond/, to the destination. Then let

in Figure 1. ly = di + Z?:l di, + dpn,. Note thatl;T is the maximum
delay that can be experienced by a packet from its arrivad tim
S10—— @ at mix My, to its departure from the final mitZ,,. Define
S;O; M M O/ Ms ' i A
S5 O— Sy lmaz = sup l.
SeO— Ms k<m
5387 M, O Source A packet transmitted by any source can be delayed in the
4

mix-network by at most,,... T seconds. Accordingly, the joint
arrival process is divided into cycles of observation. Eaatie

_ _ is initiated by the arrival of a packet on the strediit) after
gf'zl'{(é7“§'\f[‘1;\f‘3(g";‘?rj'\‘;[1)7(SS’MQ)V(S%M2)7(557Mg)7 a period of at leasty.I" seconds of no arrivals. The cycle
(S6, M3), (S7, Ms)}, Em = {(M1, My), (M2, Ms), M3, My), (M, Ms)}. continues until the first time when there have been no asrival
n1 =2,n2 =2,n3 =3,n4a =2,n5 =2,s="7,51 =2,52=2,s3 = for at leastl,,,,T seconds, up until the time the next cycle
4,84 =6,55 =7 is initiated by the arrival of a packet. Because of the delay

{Y.(t) : e € E}, which represent the arrival processessonstraints on the mixes, every packet that arrived in tlodecy

are modeled as independent stationary Poisson processiisdepart the network before the cycle ends. Furthermibre,
with their corresponding rates as specified byDuring the joint arrival process within each cycle is i.i.d, with resp&
operation of the network, on each edgé B) € E, a stream the Palm distribution relative to the starting time of cycl@or
of packets is transmitted by nodé to B, which is denoted the basic facts about Palm theory, see e.g. [8], [9].) Withou
by a point proces$l 4 p)(t). This point process need not beloss of generality, we restrict ourselves to mixing stregeg
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that are Palm stationary from cycle to cycle. Then the joint € ¥(M) is defined as:
realization of all the point process¢y.(¢),e € E} restricted 0T

. X ) » _ E°(I'v(O))
to a cycle is Palm stationary from cycle to cycle. In this Palm AL (AT = W,
stationary view, we focus on the cycle starting at tilmee. the
cycle initiated by the arrival of a packet at timeto the mix- whereE® is the Palm expectation corresponding to the Palm
network that has had no arrivals for at ledst,,7 seconds distributionP?.
(and is hence empty). The joint realization of all the point It is a standard fact in Palm theory that this quantity, even
processeqY.(t),e € E} restricted to this cycle is preciselythough defined in terms of the Palm distribution correspogdi
the complete observation available to Eve over this cyaid, ato a particular way of decomposing the dynamics into cycles,
will be denoted by®. The underlying sample space on whiclis really an ergodic quantity, i.e. other ways of decompgsin
O is defined is the one supporting the arrival processes athe dynamics into cycles (as long as one can describe the a
the individual private sources of randomness used by thesnipposteriori distribution of the eavesdropper over ways @bas
in implementing their randomized strategies. Let this dampciating departing packets to originating sources as a ifoimct
space be denoted)(F, PY). We have used the notatidf  of cycles) will result in the same quantity. For details, tee
for the probability distribution to remind ourselves thag are discussion on transfer formulas in [8]. This observatiotl wi
talking about a the Palm distribution over cycles. be used in one of the later results.

Let N(©) denote the total number of arrivals in the cycle W& have given a very elaborate sample space description

starting at time0, of which N;(©) packets belong to source®f the system prior to defining the anonymity of a policy, in
S;. The number of departing packets &y, ) (t) during order to clarify the subsequent discussion. This definiton
the cycle is thus alsdv(6). For each edge emE we choose identical to the one that was made for single mixes in [2],

an ordering for the packets travelling over this edge duriﬁ’(\v.’lhere It was not necessary to be SO el_aborate._
the cycle, i.e we choose a way to index the realization of '€ maximum achievable anonymity in the mix-netwodk

{Y.(t),e € E} over this cycle. The choice of this indexing'S 9Ven by:
system is irrelevant; since the mixes are allowed to transmi Ant(A\T) = sup A‘Z’M(AT).
packets in batches, we may also consider any particular YET (M)

ordering of packets departing in any batch over this edggig easy 10 se@ < Ay (A\T) < log(s).

Given the realization in the underlying sample space Me. t  The focus of this work is on understanding the maximum
realization of the arrival processes and the private ramés® anonymity of M under light traffic conditions, which we
of the mixes) and a mixing strategy € W(M), the action gjscuss via the light traffic derivative:

of the mixes over this cycle can be viewed as determirting

and then a sequence of bipartite matchings starting from the Ag(M) = lim LAM(AT).

points corresponding to the source transmissions in thke cyc AT—0 dAT

through the points on the intermediate processes genasgtedi0 be concrete, we will think of” as fixed and let — 0.

the mixes until the points on the destination procgss, r(t) In the following subsection, we briefly recap the optimal
(restricted to this cyclé) Given©, we define random variableslight traffic performance of a single-mix system from [2].

X1, -+, Xn(e), €ach taking values ifl, ..., s}, by working B.
our way backwards through these bipartite matchings fram th

destination proces$,,, r(t) (restricted to this cycle), thatis i o ;
to say, since this process hag®©) points indexed in some arrival processes with equal rake Note that this is a special

way, we letX;,(0) denote the originating source of theth case of a mix-network. From Theorem 3 of [2], we know that

of theseN (©) departing packets. The eavesdropper cannot, B light traffic derivative of a single mix systeM, with two
equal rate sources is given by:

Recap: Single Mix
In [2], we analyzed the anonymity of a single mix with two

course, determine the realization®f, - - - , X (). However,
the joint distribution of Xy,--- , Xx(e), conditioned on®, . d _
under PY, is precisely the a posteriori distribution that the /\ITI”IEO d)\TAMl()\T) =1

eavesdropper has over the originating sources of the degart ysing the same strategy and techniques used in [2], follow-
packets over this cycle, conditioned on her available mir jng is a straightforward generalization of the result toragk

tion ©. mix with & sources with unequal arrival rates.
Let I'¥(©) denote the entropy of the joint distribution of Theorem 1:Let My = (G, Df,A}) be a mix-network
(X1, Xn(o))- with k& sources transmitting packets at rates\,--- ,rpA

Definition 1: The anonymityachieved by a mixing strategy respectively, and a single mix with delay constraifit Then,

d d k k
lim ——Ayp(A\T) = —— o
AT—0 dAT Ml( ) Srg Z k Z k
1The requirement that the mixing strategy be causal and catetrby i=1 i=1
each mix based on its own private randomness of course redtoth® and

the kinds of matchings that can result.

1>

AG(AY, d).



We now proceed to present our results on single-destinatioriTheorem 2:For a single-destination mix netwof\,
mix networks. m
An(AT) < Y Ane, AT) 2%,

[1l. GENERAL UPPERBOUND k=1 o

In this section we give an upper bound on the maximu#i’€reM is the auxiliary network for mxd/j in M.

achievable anonymity of a single-destination mix netwaka Froof: Consider the set of incoming edges into the final
linear combination of the anonymity of smaller subnetwork§X Mm In M, denoted bye, 1, -+, €m,n,,. FOr €ach edge
We will later use this upper bound to characterize the lighite.¢ that does not originate at a source, we defimesadual

traffic derivative for linear networks (mix cascades). NEWOrk My ;s = (Gim,is Dimis A i) as follows: Gy, ; is the
Let n,, denote the number of incoming edges to mif, subgraph that connects the sources,ij; to M,, in G, such

ie., ny = [{(A, M) : (A, M,) € E}|. Each packet stream that G, ; |nclude58_m7i and nodeM?n. This subgraphG,, ;

observed byM; contains packets from some set of sourceLN,ould also be an |n-t.ree gr.aph W'Mm as the root node.
and these are mutually disjoint. L8}, --- , Sy, represent Let My, ; den(_)te the final m_6< in this (e§|dual_ network. T_he
the respective sets of originating sources of packets oh eéjt,elay constraint of every mix itM, ; is identical to that in

incoming stream. Let the number of sources connected o M, excgpt for M, i, who_se_delay constraint 'M’W Is the
through thei incoming edge bdS, ;| = s and the total sum of its delay constraint iM andd,,,. The arrival rates of

number of sources connected id,, be Z?ﬁl Ski = Sk sources iV, ; are identical to their arrival rates in. See

For each mixM;, € M in network M, we define an Figure 3 for an example.
auxiliary networkM, = (Gg, Dy, Ag). Gy is obtained from
G after the following modifications: S5 (O M
1. From graph’, remove all mixes that do not relay packets Se Qi 3
from source$in |J*, ..

2. From graphG, remove all mixes that occur in the forwardss ( ———
path from M, to R and connect\/;, to R by a single edge. My
3. From graphG, for every incoming edge;, ; to M, replace 51 C
the sjtd[k:graphthat connects the sourcesdnto M, by a single Fig. 3. Residual network for edgeV, My) in Figure 1
mix M, ,.

4. For everyi, remove all the sources i, ; and their source
edges, and replace them by a single souﬁ‘{;;—;. If a source
that was replaced was directly connectedM in M, then

the new source replacing it is also connected directiyjfo ) . ]
Otherwise,S), . is connected ta\/} .. where M, ;. is the residual network for edge,, ; in M.

In the auxiliary networkMy, Ay is anny length vector (If ém.i originates at a source the expressidny,, ,(AT) is
and the vectorD,, has length no greater tham, + 1. The Interpreted a9.) _ _ o
arrival rate from source’, . is s, ;\. The delay constraint of Proof: As in theT discussion leading up to the' definition of
mix M/ . in M, is the maximum total delay on a directeo?‘”onym'ty’ con5|der_the cycle started by the arrlyal of &kphac
path in the replaced subgraph. The delay constraint of nifk 9(¢) after a duration of length at leat,.. 7" without any
M, in My is ;.. It is easy to see thab(, is also a single- arrivals. leen any mixing strategy e_ U (M), assumed
destination mix network. Its anonymity, denotéd, (AT, is Palm stationary without loss of generality, &t denote the

given using Definition 1. See Figure 2 for an example of gfPServations of the eavesdropper over this cycle, Wit®)
auxiliary network. arrivals, of whichV;(©) packets are transmitted by sourgge

Let Xy,---, Xn(e) be as defined in Section II-A; eackiy

, ) takes values if{1,. ..., s} and denotes the originating source
Sin O——Ma, of the k-the departure from the network, where the departures
have been listed in some arbitrary manner. By definition, we

My —@ have Er(e)

Lemma 1:For a single-destination mix netwofk,

Anc(AT) < Ao, (AT) + Y 2 An,, (NT).

i=1

AY (\T) = ————2
, , ) = E(we))
S M .
4,2 4,2 wherel'¥(©) may also be written afl* (X1, , Xn(e)). It
_ N o is important to note that in the latter expression the egtrop
Fig. 2. Auxiliary network for mixMy in Figure 1 is being calculatedafter conditioning on ©, namely this

expression denotes a random variable (which is a function of
2Such a mix would not be connected Adj, in the unique path from it to @).
the root.
3Note that, due to the in-tree nature ©f the corresponding subgraphs for “The final mix of G, is the node inG that is connected td4,,, through
the incoming edges td/;, are mutually exclusive edgee,, ;



Consider the final mix}/,, in M. Each edgee,,; to
M,, contains packets from an exclusive set of soulggs,
such that|J!" 8,,; is the set of all sources. Define
random variables/,,--- , Zn
Xl, e aXN(G)):

Z; :j if X, € Sm,j' (1)

Since Z; is a deterministic functions ok; we have

Hw(Xla 7XN(@))
= HY%Z, - ,Zyne))
+Hw(Xla 7XN((~))|Z15"' aZN(@)) )

where this equation should be interpreted as holding after
i.e. it is actually an equality between

conditioning on©,
random variables.
Lemma 2:For any mixing strategy) in M,

EO(HY(Zy,- -+, ZNo)))
<A AT).
mve) et
Proof: Refer to the Appendix a
Consider the termHY (X1, -, Xn(e)|Z1,  , Zn(o))-
Since Z;s are deterministic functions ofy,- -, Xy e),

any realization of the variable&, - - - , Zy @) would divide

X1, ,Xn(e) into mutually exclusive set{{X; : j €
I;(©)} :i=1---n,}, such thatvj € I,(0),Z; = i. Then,
for any strategyy

HY (X1, Xy 21, . Zne))

< Y HY({X;.j € LOWZ, -
i=1

where again this inequality should be thought of as hoIdingM

after conditioning or®.
Lemma 3:For any mixing strategy) in M

E°(HY({Xj,j € Li(©)} Z1,-- , Zn(e)))

Smii
< —An.. . (AT).
EO(N(0)) = 75 e 00
Proof: Refer to the Appendix O
Using Lemmas 2 and 3, Lemma 1 is proved. O

(o) as deterministic functions of

Theorem 3:For any single-destination mix netwo,

w |

For a mix-cascade, note that the optimal light traffic deriva
tive is equivalently expressible in the form:

i S
o) = 3~ % Ad(Aw. 1),
k=1

whereA} is the single mix light traffic derivative (see Theorem
1), and Ay is the set of sources in the auxiliary network for
M. Observe that the above linear form of the light traffic
anonymity is identical to that in the upper bound of Theorem
2.

The theorem is proved by specifying a mixing strategy and
characterizing its light traffic derivative. Since we areefrto
choose the strategy in this approach, we work with a strategy
v that does not explicitly depend ok, but does depend on
T'. In discussing the light traffic derivative, think @f as fixed
and A — 0, sot is unambiguously defined.

Proof: Lower bound for general mix-networks For any
strategy ¢, let © denote the information available to the
eavesdropper over the cycle starting at tithén the Palm
stationary view with respect to cycles. We have

Alb by ) _ EO(IWZJ(@)) . 27010:2 PO(N = n)EO(Fﬂ"N = n)

- EY(N(®)) EO(N)
For a Poisson arrival process, it is easily shown that cycles
with more than2 packets do not contribute to the light traffic
derivative, andAy(M) is lower bounded as:
4 EATY(©))
AT—0 dAT IEO( (©))
PO(N(®) =

Ao(M)

. 2)E° (I (0)|N(6) = 2)
AT—0 dAT EO(N(O))
Our lower bound for the light traffic derivative is achieved

)

The proof of Theorem 2 follows from a recursive apphcatlouay the following strategy, denoted hy. Mix M, in M waits

of Lemma 1 on the termgly,, , (AT).

IV. LIGHT TRAFFIC DERIVATIVE

Mix-Cascade: A mix-cascadas a special case of a single-
destination mix network, where all mixes lie on the sam,
directed path to the destination (see example in Figure 4).

530

510
5,0

W M

Fig. 4. Example of a Mix cascade

540

for an arrival after an idle period of at ledst.,. 7" seconds. All
packets that arrive in thé,T'—second period following this
arrival are transmitted along with this arrival in a singketdh
at the end of thel;, T—second period. During th€y, — di)T
Second period following this batched transmission, alkp&
that arrive toM), are transmitted without any delay. At this
point (i.e. I, T seconds following the initiating arrival), the
mix resets and waits for a new arrival to restart this pracess
Note that the initial wait forl,,.,7" seconds was merely an
initialization step in the strategy.

Owing to (2), we can restrict our analysis of the stratégy
to cycles withN(©) = 2 packets. The maximum achievable



entropy in a2—packet cycle isl' = 1, which occurs when Therefore, using (2), we can write
the two packets belong to different sources and eventually d (1 —e=stmexT)(Ty + o(AT))

depart in a single batch from the final mi,,,. Consider the Ag(M) lim
. . . L AT—0 d\T e28lmaxT
following events defined with respect to the cycle initiatsd T
a packet arriving at tim@ after a duration with no arrivals of max 2 5
length at least,,,,.T ™o ng e
= (X ) X
E2' N(@) = 2. k=1 j=1 j=1

: There is exactly one arrival each frof) and S;,
thf/a packet froms; initiating the cycle. -
EY: A packet from S; and a packet fromS; depart in a Sk
iJ ; , J A < — lim ——An, (AT
batch from mixM,,, when strategy); is used. o) < — 5 AT—0 d/\T 2 (AT).

with Upper bound for Mix-cascades Using Theoren®,

We can write Therefore, to prove the theorem, it is sufficient to show:that

2
dArt,(\T) 1 - o
B = SIS R dm < () -2
i=1 j7i Jj=1 Jj=1
_ ZZPU{Egj|E2}Po{Ewl| B, Bs} . In a mix-cascade, each mix/;, has at most one incoming
=1 2 ' packet stream that does not arrive directly from a sourcenod
Therefore, the auxiliary network(, for any & < m would
Since all sources transmit at equal rate, #of j, contain at most two mixes (see Figure 5).¥,; contains
only one mix, then the statement of Lemridollows from
PO{EZﬂEz} — S% (3) Theorem 1.
. Sk,1A e
Letl; T andl; ;T denote the total delay experienced by thé )——— M} 5.0
packets fromS;, S; respectively until they reach;, where 3 My [——
M, denotes the first mix at which the paths fra#pand .S; 540
to the root meet. Fig. 5. Equivalent NetworkM> for mix M in Figure 2
Lemma 4:
When the auxiliary networlv;, for mix M contains two
PO{ESES, By} = max{0, (I + lik — lik)T} mixes, let the penultimate mix be denoted ki, The delay
lmax T’ constraint of mixM}, is (ImaxT — IxT'), and that of mixM;,
max{0, (=lx +lix — 1jx)T} is I, T. There is exactly one source connectedMfj with
B lmaxT transmission rate;, ; A, and there are; —1 sources connected
+o(AT) . directly to M, with equal transmission rates We label the
sourcesS], - -+ , S}, such thatS] is connected tal/].
Proof: Refer to the Appendix. ] Consider a modified definition of cycles in the joint arrival

process to analyze the anonymity of this network. A cycle
Combining the terms fofi, j) and (j,7) in Lemma 4 and starts following an idle period oéxactly!,,..7" seconds, and

using (3), we can write continues until the first time an idle period of exacty,T
seconds occurs after the arrival of at least one packet frgm a
IEO(F””( )|E2) of the sourcesS),--- S, . We refer to the first packet that
m_ Nk arrives in a cycle from any of these sources as the defining
T 2 Z Z Z Sk,iSk,j ( I ()\T)> packet of the cycle. According to this definition of a cyclé, a

>

k=1i=1 j=1,j#i packets that arrive prior to the defining packet would be from
m ne 2 source S;, while packets arriving after the defining packet
= iz Z Zslw' — Zsi’j + o(AT) c_ould_ be frpm any source. We consider the Palm stationary
=1 Imax ) = situation with respect to such cycles and tdenote the
observation of the eavesdropper over the cycle that starts a
Ty + o(AT). time 0 after an idle period of duration exactly,,.T (note
that there is now no packet at but there is some packet at
Using the properties o/ /D /oo queues, we know that time —l,,,4. 7). Whatever the strategy of the two mixes, all
0 T packets arriving during this cycle must leave before the end
PP(Es) = (1—e Pmmt)em Sty of the cycle, so if we lel™¥(©) denote the entropy of the a
EO(N(Q)) = estmaxT, posteriori distribution of the eavesdropper over the oaging



sources of the departing packets over this cycle when the APPENDIX
. , . ) :
m|x.esJ_VI;c qnde use strategyy, then the optimal light traffic Proof of Lemma 2
derivative is given by: '
Consider the networl,,,, where the subnetwork connected
to incoming edge,, ; is replaced by a single mix/,, ;. There

d E(I'*(©
Ag(My) =sup lim —— (r(6)
is a single sources;, ; that transmits packets to/;, ; at a

o AT—0 d\T E°(N(0©))’

The form of the upper bound in the statement of the theoremate equal to the total arrival rate in the replaced subngdwo
is reminiscent of the formula for the light traffic derivativ The maximum delay allowed for mid/;, ; is equal to the
of the anonymity in a single mix with multiple sources thamaximum delay that can be experienced by a packet within
was present in Theorem 1. This analogy can be understabd replaced subnetwork. As a result, any mixing strategy
by considering the mix\/;, as receiving input flows all but employed by the mixes of the replaced subnetwork can be
one of which are Poisson, while one of the inputs is th&mulated by the single miZ;, ; in M,,. Specifically,M,, ;
output from mix M. With the current definition of cycles can use its randomness to thin the single arrival process
one can view the portion 0® for a durationi,,,,T" after from S/ , into multiple independent Poisson processes to
the defining packet of the cycle as a Poisson process wifimulate the multiple sources @, ;. M, ; then simulates
rate s; A\, the approximation becoming increasingly accurathe actions of the mixes in the replaced subnetwork and
in light traffic, irrespective of the strategy used by mi%;, generates the corresponding intermediate point proceEsiss
while the portion of©® for a durationi,,..T' prior to the constitutes a potentially suboptimal mixing strategy i th
defining packet can be viewed as a Poisson process of nafie network M,,,, hence its associated anonymity is at most
skp,1A (comprised only of packets from the source to mid,, (\T). Note that in the mix networ®1,, the problem of
Mj), the approximation becoming increasingly accurate ihe eavesdropper is that of associating the departuresthéth
light traffic, irrespective of the strategy used by miiX/. In  corresponding aggregated arrival processes.
light traffic it is still true that the contribution to the amgmity We now visualize the situation where a genie provides
is dominated by cycles containing exactly two packets, so we Eve the realization of the intermediate processes within
may assume that one or the other situation obtains: eitlg&ich simulated subnetwork (including the artificial adriva
there is a packet ahead of the defining packet or there is gnecesses created by thinning). Then Eve’s net observation
before the defining packet. The result comes from summinguld be no different than what she would have observed
the resulting individual contributions, each of which hdsra  in the original networkM. Therefore, the a posteriori dis-
similar to that in Theorem 1. The details are available i.[10tribution, at the aggregated level, of sources of departing

V. CONCLUDING REMARKS packets inM,, conditioned on the genie information (in

addition to the usual observations M,,) is identical to the

The main result in this paper is the characterization of tqﬁstribution of (Z1,- - . Zn(o), Where® now represents the
optimal light traffic derivative for the anonymity achievab overall information of Eve (i.e. the genie-provided infation

by mix-cascades (linear single-destination mix networké nd the usual observation ¥,,) which corresponds one-to-

;’ﬂso prowde.ta Lower bounld 9” Ithz I'gt.ht ttraﬁlc Qerlvattwe I?gne to observations that would have occurred in the network
€ anonymily for general singie-destination mix networ (note that the cycle structure was defined purely in terms

The_ strateg_y used to prove_thls bound is, however, not aIWi%yisthe overall arrival process, so it does not change, since
optimal. This can be explained by the fact that the proposed T'is the same in both{ andM,,). When calculating the

strategy does not incorporate the common information abc?%ﬂr;erator term for the anonymity in the netwavk,, in the
apsolute time ave.lilable to the.mixes. As opposed to the q‘ase nie-aided case, we may first average over the information
mix-cascades, this common time reference can be explojted ovided by the genie. Thus the contribution in the genie-

m|>t<es \I/(vct)rkmqt mlpar\]rtatllelﬁlp g g'ente.ral St'ngtlle'?)e‘;’:matﬂ(;:xmaided case stands in relation to that in the non-genie-aided
network 1o get a ight fraflic derivative strictly better € case as conditional entropy does to entropy. Since conditio

pLesented Iow_er boqln(;l).l A_n e;gllc:i_exlellmple '":JStratmgSﬂ:c n only reduce entropy we conclude that the numerator term
phenomenon is available in [10]. Finally, we also presen (HY(Zy, - . Zyey)) is no bigger the numerator term in

an upper bou_nd for the :_;monymny ach|evable In any S'ng.lﬁie computation of the anonymity for the given potentially
destination mix network in terms of simpler networks. Thi Pboptimal mixing strategy itM,,, and since this in turn is

can be c_omblngd with any upper bounq for the an_o_nym|ty fio bigger than the optimal numerator term in the computation
single mixes with multiple inputs to give an explicit upper, anonymity ofM,,, this completes the proof O
bound on the anonymity of single-destination mix networks. m |
For instance, a technique similar to that used in [2] in th8oof of Lemma 3

case of two inputs can be used to generate such explicit upper . .
bounds. P g P PP Consider the networkM,, ;, the residual network corre-

sponding to edge,, ; in M. The delay constraint of the final
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M, ; as follows. All mixes common to networkRg andM,,, ;, Proof of Lemma 4

except the final mix ofM,, ;, use identical strategies. The cgnsider a two-packet cycle initiated at tirioy a packet

final mix of M, ; uses its available randomness to simulaigriginating from S, after an idle period of duration at least
the excluded arrival processes, and the strategies of tkesmi; 7 and where the other packet is froly. Let M;

removed fromM (to obtainM,,, ;). Note that any arrivals from pe the first mix where the paths frorf; and S; to the

the simulated arr_ival processes are just dummies and do pgktination node meet. Subsequent to thix, their paths to
have any real existence. . o the destination would be identical. In other wordd;, is the
We now imagine a genie which, under this simulateghjy common mix on their paths, where the packets fr§m
strategy, reveals to the eavesdropper the realizationsl of g, S; arrive on different edges. According tg, in such a2
the simulated excluded arrival processes and the simulaiggbiet cycle, the packets frof) and.S; would be delayed by
intermediate processes, and also, over the &ddg, ;. ). 4T seconds at every mix; on their respective paths until
for each simulated departure, the identity of the simulatgqay reachns;. If and only if the delay between arrival times
incoming link to the simulated mixZ,, over which it arrived. f the packets abf, is within 1,7 seconds, the packets would
We decide to analyze the netwof,, ; under this strategy eventually depart in a batch from the final mix,,,.
by using cycles defined in terms of an overall arrival process| et , , 7 and1; , 7' denote the total delay experienced by
including the true arrivals td/(,, ; and the simulated arrivals, the paci(ets fron,, S; respectively until they reach/y. Let

with the minimal length of idle period determining the end - genote the time of arrival of the second packet in the
of a cycle being/,.q., T, as in the original networ(. Then, cycle je. the packet frons;. Then,

for the cycle starting at tim®, in the Palm stationary view
with respect to cycles, Eve's total observation (comprised ~ PY{E[!|Ef;, Ea}

of the information provided by the genie and the original — PO{|7 + 1; 1T — ;1 T| < lkT\Eg”j.Eg}

observations irM,, ;) would be no different from what she o= max{0, [, T+, T—U; kT _ o l}lax{o,lkT+li,kT—zj,kT}
would have observed in the original network when strategy =
was used, which we may represent ®y(as in the original
network), together with the informatiof¥1, - - - , Zn(e))- =

1 — e~ lmaxT
maX{O, (lk- + l@k — lch)T} — max{O, (—lk + li,k - lj7k)T}

Eve’s problem, in the networl(,, ;, is that of associating bmax T
to the points going over the edg@\,,,, R) their origi- +o(AT) (6)
nating sources. When the potentially suboptimal simulatiofhis proves the lemma. 0
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