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Abstract. We consider a distributed medium access protocol, Opportunistic ALOHA, for reachback in sensor
networks with mobile access points (AP). We briefly discuss some properties of the protocol, like throughput and
transmission control for an orthogonal CDMA physical layer. We then consider the incorporation of necessary side
information like location into the transmission control and numerically demonstrate the loss in throughput in the
absence of such information. Through simulations, we discuss the robustness and sensitivity of the protocol under
various modeling errors and propose strategies to allow for errors in estimation of some parameters without reduction
in the throughput. For networks, where the sensors are allowed to collaborate, we consider three coding schemes for
reliable transmission: spreading code independent, spreading code dependent transmission and coding across sen-
sors. These schemes are compared in terms of achievable rates and random coding error exponents. The coding across
sensors scheme has comparable achievable rates to the spreading code dependent scheme, but requires the additional
transmission of sensor ID. However, the scheme does not require the mobile AP to send data through the beacon
unlike the other two schemes. The use of these coding schemes to overcome sensitivity is demonstrated through
simulations.
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1. Introduction

Medium access control (MAC) is crucial in large scale
sensor networks. Some of the most difficult challenges
include the presence of a large number of potentially
interfering sensors, the lack of synchronization among
sensors, the lack of feedback in some cases, and se-
vere power constraints on transmission power. These
special features of sensor networks call for a reex-

amination of MAC strategies. Furthermore, the pos-
sibility of sensors collaboratively transmitting mes-
sages brings a new dimension in MAC design and
challenges the traditional view of layered network
design.

MAC design is intimately connected with the net-
work architecture. We consider SENMA—Sensor Net-
works with Mobile Access—for large scale wireless
sensor networks [13, 14, 25]. As shown in Fig. 1,
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Figure 1. Sensor network with mobile access point.

SENMA has two types of nodes: a large number of
low power sensors distributed randomly on a field and
a few more powerful mobile access points (APs). The
mobile access points can be unmanned ground/aerial
vehicles that move randomly around the field equipped
with sophisticated receivers and processors and may
have connection to satellites for reachback to remote
control centers. Similar architectures have been pro-
posed by many researchers for different applications
[12, 15, 22, 23, 26].

A fundamental difference between SENMA and
Ad hoc sensor networks is that, in SENMA, sensors
communicate not directly among themselves but
through mobile APs. This shifts many network
functions and management away from the sensor
network to a small set of power nodes. Another
key characteristic of SENMA is the mobility of
the access points. Mobility introduces diversity and
improves overall network throughput [11]. In the
context of sensor networks, the mobility of the APs
makes it possible for sensors to exploit channel state
information.

We consider a distributed random access protocol
Opportunistic ALOHA (O-ALOHA) for retrieving in-
formation from sensors. The idea of O-ALOHA, first
considered in [10, 21], is to let each sensor transmit
based on its own channel state; a sensor transmits with
high probability if it has a good channel to the mo-
bile AP and avoids transmission when the channel
is poor. The benefit of such opportunistic transmis-
sions is twofold. First, it enhances the chance that the
transmission will be successful thereby improving the
throughput of the network. Second, it avoids unneces-
sary transmissions that have little chance to succeed
and create only interference.

1.1. Related Work

Previously, several different aspects of sensor networks
have been considered under the SENMA architecture.
Distributed detection with a large number of iden-
tical sensors was considered in [9, 20]. In [8, 19],
the authors focus on the impact of MAC design on
the reconstruction performance of a random signal
field. Energy-efficient distributed MAC schemes for
SENMA were proposed in [18]. In [16, 17], the authors
discuss optimal configurations of multiple mobile APs
for maximizing throughput and efficiency. The hierar-
chical architecture for sensor networks, where mobile
access points perform most of the network functions
has been considered in different forms [12, 15, 22,
23, 26]. There has also been a lot of work in the re-
cent past on medium access in ad-hoc sensor networks
[4, 7]. Self-Organizing medium access for sensor net-
works or SMACS [12] is a distributed protocol a collec-
tion of sensors discover their neighbours and schedule
communications. They however do not require the use
of mobile nodes. The EAR algorithm (Eavesdrop and
Register) [12] coniders medium access for sensor net-
works where mobile nodes are incorporated into the
system. These mobile nodes maintain a partial reg-
istry, initiate hand-shaking when required and are not
responsible for data transfer. The use of mobile nodes
called message ferries to carry messages between sta-
tionary disconnected nodes was proposed in [15]. The
main consideration here is proactive routing by exploit-
ing non-randomness in the mobility of the message
ferries. In [26], mobile entities called MULEs pick up
data from the sensors in close range and drop it off at
access points.

1.2. Main Results and Organization

This paper focuses on several new aspects of O-
ALOHA not considered in the past [13, 14, 25].
In particular, we are interested in the sensitivity of
O-ALOHA under various modeling errors. A brief
description of the protocol is given in Section 2. In
Section 4.1, we discuss two methods of incorporat-
ing side information like location into the protocol,
and plot the variation of throughput in the absence of
such information. The throughput is found to decrease
when necessary side information is not available. In
Sections 5.1, 5.2, 5.3, and 5.4 we look at the sensitivity
of O-ALOHA under errors in the path-loss parame-
ter, rayleigh fading parameter, channel gain and size
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of the network respectively. The protocol is found to
be sensitive to errors in fading and path-loss parame-
ters, primarily due to the exponential dependence on
these parameters. It is however fairly robust to changes
in network size and error in estimated channel gain.
When the error in channel gain is due to an additive
noise, we show that the transmission control can be
modified to handle the error and achieve the desired
asymptotic throughput.

In Section 6, we discuss three schemes that com-
bine coding and random access for reliable transmis-
sion. The first two schemes—Spreading Code Inde-
pendent Transmission and Spreading Code Dependent
Transmission—require the sensors to decode informa-
tion from the beacon. These schemes were previously
discussed in [13]. The new scheme proposed in this
paper—Coding Across Sensors—does not require de-
coding of beacons, but mandates the transmission of
node ID in every packet. We show that the achiev-
able rate for the spreading code dependent and coding
across sensors scheme are higher whereas for low rate
codebooks, the spreading code independent scheme
has a better error exponent. In Section 7.3, we demon-
strate how coding can be used to overcome the sensitiv-
ity of the protocol to fading parameters. Conclusions
are given in Section 8.

2. Opportunistic ALOHA

2.1. Protocol Discipline

In this section, we briefly describe the working of the
O-ALOHA protocol [10, 21]. We consider a sensor net-
work, where n sensors try to communicate to a mobile
access point (AP) over a common time-slotted channel.

The slot structure is shown in Fig. 2. All slots have
identical lengths equal to the duration of transmission
of one packet. The network is assumed to operate in
the time division duplex (TDD) mode. The mobile AP
broadcasts a beacon at the beginning of each slot, which
is used by the sensors to estimate the channel gain from
the mobile AP to itself. The beacon is also used by the
sensors for time synchronization. Due to reciprocity,
the channel gain between the ith sensor and the mobile

Slot t

Beacon

Data

Figure 2. Slot structure.

AP during slot t, denoted by γ i
(t), is assumed to be the

same as the channel gain estimated from the beacon
at the beginning of that slot. Each sensor then trans-
mits its packet with a probability s(γ i

(t)), known as the
transmission control. The transmission control will be
discussed in more detail in Section 3.2.

2.2. Data Transmission and Reception

The physical layer of the sensor network is based on
orthogonal CDMA with spreading gain N. There is
a pool of N orthogonal codes, and each transmitting
sensor randomly selects one of these N codes to trans-
mit its data. The receiver at the mobile AP uses N
matched filters to demodulate the received data. We ig-
nore the interference from users transmitting on other
orthogonal spreading codes. Therefore, it is enough
to consider the output of a single matched filter. We
assume that a packet is received successfully if the sig-
nal to interference-noise ratio (SINR) is greater than
a threshold β [6]. Specifically, in slot t, if k sensors
choose to transmit using the same orthogonal code,
and their channel gains are given by (γ1, . . . , γk), the
ith sensor is successful if

PT γi

σ 2 + ∑k
j=1, j �=i PT γ j

> β, (1)

where PT is the transmitting power and σ 2 the vari-
ance of the background noise. The parameter β is the
minimum SINR needed for successful reception and is
determined by factors such as type of modulation and
receiver sensitivity. Depending on the value of β, mul-
tiple packet reception is possible per orthogonal code.
However, if we assume β > 1, then at most one packet
can be captured per orthogonal code [6]. Therefore, the
maximum throughput possible per slot will be equal to
the spreading gain N.

3. Properties of Opportunistic ALOHA

3.1. Throughput

We consider the throughput to be the number of
packets successfully decoded per slot, as defined in
[13]. This is a function of the underlying channel state
CDF F(γ ), network size n, reception model and the
transmission control s(γ ). It is assumed that the distri-
bution of channel state is i.i.d across sensors and from
slot to slot. It has been shown [10] that the probability
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of successful reception is dependent on the aposteriori
(as seen by the receiver) channel state distribution

T (γ ) = 1

ps

∫ γ

0
sd F, (2)

where

ps =
∫

sd F �= 0 (3)

is the unconditional probability of transmission. The
throughput per slot (per spreading code) is given by

λn(s(·)) =
n∑

k=1

(
n

k

)

(1 − qps)n−k(qps)kCk(T (·)),

(4)

where q is the probability of choosing a particular
spreading code conditioned on a sensor transmitting.
Ck(T(·)) is the average number of packets successfully
received when k users transmit and their channel states
are drawn from the distribution T(·). It is clear that the
throughput is dependent on the aposteriori channel
state distribution T(·). Therefore, it is possible to
obtain a high throughput by manipulating the channel
state distribution through the transmission control.

We are interested in the performance of very large
sensor networks. Therefore, we use the notion of the
asymptotic throughput of a network. As in [10, 13], the
asymptotic throughput (for systems with n → ∞) can
be defined as

λ∞(s(·)) �= lim
n→∞ λn(s(·)). (5)

For large networks, it is possible to obtain good asymp-
totic behaviour based on this metric.

3.2. Transmission Control

In this section, we consider a general form of transmis-
sion control that demonstrate good performance for
the physical layer under consideration. The fundamen-
tal approach is to modify the aposteriori distribution
in order to increase the throughput. The transmission
control can also be used to control interference by reg-
ulating the average number of transmitting sensors.

Let the underlying channel state be distributed ac-
cording to F(·). Let T(·) be a distribution function that is
absolutely continuous with respect to F(·) i.e., T (·) �

F(·). We choose the sequence of transmission controls
as

sn(γ ) = q min

(
x

n

dT

d F
, 1

)

, (6)

where we incorporate q—the probability of choosing a
spreading code—into the transmission control sn(γ ).
The parameter x represents the average number of
transmissions per slot per orthogonal code. For such
a transmission control, the asymptotic throughput has
been characterized in [10, 21] and is given by

λ∞(x, sn(·)) = e−xq
∞∑

k=1

(xq)k

k!
Ck(T (·)). (7)

The above throughput can be optimized by choosing an
appropriate target distribution. For the physical layer
in consideration, it was shown that good target pdf
are distributions with a roll-off [10, 13]. The choice
of target distribution was motivated by [6], where the
authors show that when the channel state distribution
has a roll-off, the probability of capture is non-zero
even when the number of transmitting users is very
large. Any pdf that is of the form

g(γ ) = δ

γ −δ
0

1

γ 1+δ
1[γ0<γ ], (8)

where 0< δ <1, is considered to be a density function
with roll-off. The parameters γ 0 and δ have to be opti-
mized in order to maximize the throughput. It is shown
in [13] that by choosing the parameters appropriately,
the transmission control achieves the maximum possi-
ble throughput, equal to the spreading gain N.

4. Incorporating Side Information

In some applications, additional side information
maybe necessary to determine the exact channel state
distribution. For example, the distance between the
sensor and the mobile AP can influence the attenu-
ation or path loss. Such location information can be
computed via the use of geolocation devices. In the
absence of such devices, it is also possible to obtain
the distribution of the location information from the
distribution of sensors around the field and the mobil-
ity pattern of the collecting agent. Such side informa-
tion can therefore be incorporated into the transmission
control using two methods: one with the realization of
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the side information, the other using only the distri-
bution. The absence of any such information however
results in an erroneous assumption of prior distribution
and hence the aposteriori distribution does not con-
verge to the designed target distribution. We shall now
briefly describe the two methods with location as the
side information.

4.1. Location Independent and Location Aware
Transmission Controls

By Location Independent Transmission Control (LIT),
we mean that the transmission control is not depen-
dent on the exact location, but only the distribution
of the location parameter. In other words, if the lo-
cation information r has a pdf g(·), then the trans-
mission control is only a function of g(·). Assuming
that the pdf of the channel state conditioned on the
location r is given by f(γ | r), the LIT control can be
written as

sn(γ ) = q min

(
t(γ )

∫
f (γ | r )g(r )dr

x

n
, 1

)

(9)

Implementation of the LIT control does not require use
of geolocation devices, and can be done apriori to the
sensor deployment.

By Location Aware Transmission (LAT) control we
mean that the sensor has access to the location param-
eter r. The transmission probability is directly depen-
dent on the parameter. If the pdf of the channel state
conditioned on r is given by f(γ | r), the LAT control
can be written as

sn(γ, r ) = q min

(
t(γ )

f (γ | r )

x

n
, 1

)

(10)

Since the transmission control of each sensor is differ-
ent and dependent on their respective locations, LAT
is more complicated to implement and would demand
more processing on the part of the sensors. However,
the LAT control ensures a uniform distribution of trans-
mitting and successful sensors over the field, whereas
the LIT control results in the reduction of density of
transmitting and successful sensors with increase in
distance from mobile AP [13].

4.2. Numerical Results

We now compare the performance of the protocol
in the presence and absence of location information.

Figure 3. Sensor deployment.

We consider a practical Rayleigh fading channel with
path-loss dependent on the distance between the sen-
sor and mobile AP. We assume that all the sensors
are uniformly located in a disc of radius 1. As shown
in Fig. 3, the mobile AP is assumed to be at a dis-
tance h = 1 above the center of the disc. Let ri, the
radial distance of sensor i, be modeled as a random
variable that has a pdf g(r) = 2r, 0 < r < 1. The
transmit SNR is assumed to be 6 dB. The propagation
channel gain between sensor i and the base station is
modeled as

γ
(t)
i = R2

i t

r2
i + h2

(11)

where Rit is Rayleigh distributed. We assume that Rit

are independent and identically distributed across sen-
sors and time. The attenuation due to distance is based
on a free-space path loss model [1]. Let f(γ ) be the
probability density function (pdf) of γ i(t). We also use
f(γ | r ) to denote the probability density function of
the channel state given the radial distance r. Since Rit

is a Rayleigh distributed random variable, for a given
r, γ has an exponential distribution.

Figure 4 compares the throughputs of the LIT and
LAT controls to the throughput of the protocol when
the location information is unavailable. The network
size is assumed to be n = 1000. Since the location
information is absent, the channel gain is assumed
to be

γ
(t)
i = R2

i t

h2
(12)

As can be seen from the figure, for the given set of
parameters, the throughput of LIT and LAT are almost
identical. The difference between the two controls is
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Figure 4. Throughput without location information.

the final distribution of transmitting sensors with re-
spect to location [13]. However, when the location in-
formation is not available in the form of measurement
or distribution, the throughput is lower than the LAT
and LIT controls. The absence of necessary side in-
formation results in an incorrect assumption of prior
channel state distribution and the pdf of aposteriori CSI
does not converge to the desired target distribution.

5. Robustness and Sensitivity

In this section, we discuss the performance of the
O-ALOHA protocol under errors in assumption of
channel state distribution, size and other parameters
through simulations. The assumptions of the channel
and parameters of the network are as mentioned in
Section 4.2. We consider a particular implementation
of the O-ALOHA protocol to demonstrate the sensi-
tivity. The parameters of the protocol have not been
optimized to obtain maximum throughput.

5.1. Error in Path-Loss Parameter

We consider the effect of incorrect path loss param-
eter on the performance of O-ALOHA. We assume

that the measurement of r is available and consider
the LAT control. The path loss is inversely propor-
tional to rα , where α is a positive constant. The actual
value of α = 1.5. Figure 5 shows the throughputs of
the protocol when the assumed α = 1.1 and α = 2. It
is clear from the figures that the transmission control
is highly sensitive to the path loss parameter. Since
the underlying channel gain is assumed to be expo-
nentially distributed, a small change in the order of r
leads to significant change in throughput. It is also in-
teresting to note that an overestimation of the path loss
parameter yields a higher throughput than the accurate
protocol. The reasoning behind this is that, when the
path-loss parameter is overestimated, the transmission
control results in an increase in the number of trans-
missions, and hence a better throughput for the same
value of x. Similarly, when α is underestimated, the
throughput is lower because for the same x, the aver-
age number of actual transmissions is much lower than
the designed value. Therefore, a good strategy to retain
a high throughput would be to design the transmission
control with a higher value of α than expected to allow
for variations. Such a strategy would however result
in an increased number of transmissions than desired
and could prove detrimental to the efficiency of the
network.
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Figure 5. Incorrect path loss.
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Figure 6. Error in fading parameter.

5.2. Error in Rayleigh Fading Parameter

We now consider the performance of the protocol under
error in assumption of the Rayleigh fading parameter.
As given in (11), the fading depends on Rit

2, where Rit

is Rayleigh distributed. We consider Y = R2
i t , an ex-

ponentially distributed random variable as the fading
parameter. For the given network, let Y be distributed
with mean Ȳ . Figure 6 plots the throughput of the LAT
control when the assumed Ȳ = 1.5 and Ȳ = .75 whereas
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the actual value is Ȳ = 1. When the Rayleigh param-
eter is underestimated, the performance is better than
the accurate transmission control. An underestimation
of the parameter results in a different shape of the as-
sumed CSI distribution. Therefore, for a given value of
x, the number of transmitters with a good γ is higher
than the estimated number. This results in an increase
in the number of transmissions than the designed x,
and hence a higher throughput. Similarly, an overesti-
mation results in a reduced average transmissions per
slot and hence a lower throughput. The transmission
control in this case should assume a lower estimate of
the parameter, so that variations in the parameter do
not reduce the throughput.

5.3. Error in Channel Estimation

In this section, we consider error in the estimation of the
channel gain through the beacon. It is assumed that the
noise in beacon transmission is AWGN with variance
No. If the beacon is assumed to have unit power and
the variance of the channel gain can be represented by
γ̄ , we can write the average SNR as

SN R = γ̄

No
. (13)

Figure 7 plots the throughput for different values of
SNR. It can be seen that, a significant change in
throughput is observed only for very low values of
SNR. This is because only signals with low channel
gain are affected significantly by noise and the trans-
mission control ensures that only sensors with high
channel gain transmit.

For some target distributions, it is possible to modify
the transmission control to account for the additive
noise in the channel gain estimate. Let γ ′ represent
the channel gain estimated by the sensor. Let fe(γ ′)
represent the channel state distribution as seen by the
sensors. We know that

γ ′ = γ + n, where n ∼ w(n). (14)

Therefore, if F(ω), W(ω) and Fe(ω) represent the char-
acteristic functions of f(γ ), w(n) and fe(γ ′) respectively,
then

Fe(ω) = F(ω)W (ω).

We shall assume the transmission control to be of the
form

sn(γ ′) = q min

(
x

n

te(γ ′)
fe(γ ′)

, 1

)

. (15)
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The transmission control in (15) shapes the aposteriori
distribution of the estimated channel state γ ′ to the
distribution te(γ ′). We need to choose an appropriate
te(·) so that the aposteriori distribution of the channel
state γ observed by the mobile AP is t(·). If we assume
the characteristic functions of t(γ ), te(γ ’) to be equal
to T(ω) and Te(ω) respectively, from (14), we can say
that

Te(ω) = T (ω)W (ω).

Therefore, if we can obtain the respective characteristic
functions, then we can appropriately design the trans-
mission control based on the estimate γ ′ such that the
actual channel gain γ has an aposteriori distribution
equal to t(γ ). This ensures that the desired asymptotic
throughput is achieved.

5.4. Error in Network Size

In practical sensor networks, it is not possible to esti-
mate the size accurately. Due to random deployment,
the number of sensors in the area activated by the mo-
bile AP may not have a fixed number of sensors. Sec-
ondly, the sensors have low duty cycles and are known
to temporarily go into SLEEP mode and get activated

again later. Therefore, the size of the network is not a
constant in every slot. We assume that the number of
sensors is distributed as a Poisson random variable. The
motivation behind the Poisson assumption is that, the
distribution of sensors in a region is dependent only on
the area of the region [16]. Figure 8 plots the through-
put for networks of different sizes, where the mean
of the Poisson distribution is used as the size n in the
transmission control. As can be seen from the figure,
even for a small n, the throughput is almost identical
to the throughput where the actual size is known. Thus
the system is robust to changes in size.

6. Coded Random Access

An interesting feature of sensor networks is collabora-
tive transmission. After the sensing phase, all sensors in
the network can collaborate and agree upon the trans-
mission of a particular message. The transmissions can
then be coded in order to compensate for packet loss.
In this section, we discuss different coding schemes for
this purpose. For each of these schemes, we character-
ize C, the number of bits per slot that can be reliably
transmitted back to the mobile AP and E , the random
coding error exponent. In all the schemes discussed,
it is assumed that if a packet is successfully received,
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Figure 9. Erasure channel model.

then it is decoded without any error. Therefore, the
channel model is a binary erasure channel as shown in
Fig. 9.

We first consider two schemes, where the message
is coded across time. These schemes have been well
discussed in [13]. We then propose a scheme where the
message is coded across sensors.

6.1. Spreading Code Independent Transmission

We assume that the entire network has agreed upon the
transmission of a message k from a common binary
codebook of size 	2MR
× M, where M is the length
of the codeword. In slot t, the mobile AP requests the
transmission of the tth bit of the codeword through the
beacon. All the sensors that decide to transmit in that
slot, send the tth bit in their packet. As shown in [3],
the channel between the network and the mobile AP
can be viewed as an erasure channel with probability
of erasure given by

Pind(x) =
(

1 − λ∞(x)

N

)N

, (16)

where λ∞(x) is the asymptotic throughput of the sen-
sor network. The above equation gives the expression
for the probability that no packets were successfully
received in any of the N orthogonal spreading codes.
The achievable rate of the binary erasure channel [15]
for Spreading code independent transmission given x
is

Cind(x) = 1 −
(

1 − λ∞(x)

N

)N

bits/slot. (17)

For a codebook size 	2MR
× M, the probability of
detection error can be upper bounded by error exponent
expressions [3]

P ind
e (M, x) ≤ exp (−M loge(2)Eind(R, x))

Eind(R, x) =






−(1 − R) log2

(
Pind(x)

1 − R

)

−R log2

(
1 − Pind(x)

R

)

,

R < 1 − Pind(x)

0,

R ≥ 1 − Pind(x)

.

6.2. Spreading Code Dependent Transmission

In this section we consider a modified version of the
previous scheme, where the bit transmitted is depen-
dent on the spreading code used. It is assumed that
the entire network agrees upon the transmission of
message k from a common binary codebook of size
	2M′NR
× M ′N , where M = M ′N is the codeword
length. Each codeword is viewed as a two dimensional
array of size M ′ × N. The N orthogonal spreading
codes are ordered from 1 to N. In the ith slot, the mo-
bile AP sends a request for transmission of the ith row
of the codeword, through the beacon. All the sensors
that decide to transmit using the jth spreading code,
transmit bit (i, j) of the chosen codeword. The prob-
ability of erasure in this case is the probability that
no packet was received successfully on a particular
spreading code which is given by

Pdep(x) = 1 − λ∞(x)

N
(18)

It has been shown that the transmission of each bit is
i.i.d. Therefore, the achievable rate in bits/channel use
of the Spreading code dependent transmission is λ∞(x)

N .
Since there are N channel uses per slot, the achievable
rate given x, in bits per slot is

Cdep(x) = λ∞(x) bits/slot (19)

and the error exponent is given by

Edep(R, x) =






−(1 − R) log2

(
Pdep(x)

1 − R

)

−R log2

(
1 − Pdep(x)

R

)

,

R < 1 − Pdep(x)

0,

R ≥ 1 − Pdep(x)

.
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Node ID Payload

Figure 10. Packet structure.

In the two schemes discussed, it is necessary for the
mobile AP to send information through the beacon,
which is decoded by the sensors. This demands more
processing power on part of the sensors. We next pro-
pose a scheme, where the beacon does not contain any
information, and the sensors use an energy detector to
estimate the channel gain from the beacon.

6.3. Coding Across Sensors

In this scheme, the message to be transmitted to the
mobile AP is encoded across sensors, and each sensor
is required to transmit its ID along with the data. We
assume that the packets transmitted by the sensors each
have the structure as shown in Fig. 10. The node ID
typically has a length log n, where n is the size of the
network.

The sensor network is assumed to employ a binary
code book of size 	2nR 
× n to transmit data, where n
is the number of sensors. If the sensors decide upon the

transmission of message k, where k ∈ {1, . . . , 	2n R
},
to the mobile AP, the encoding is performed as follows.
The payload of sensor i contains the ith bit of the code-
word m. We assume that the mobile AP stays over the
sensor network for ρn slots (ρ is a design parameter).
During this time, each sensor repeats the same bit in
each slot. Since, the throughput of the reachback pro-
tocol is λ(n,sn(·)) and the packet from sensor i is not
received by the mobile AP only if it is unsuccessful
in every one of the ρn slots, the channel between each
sensor and the mobile AP can be modeled as an erasure
channel with erasure probability

Psen =
(

1 − λ(n, sn(·))
n

)ρn

. (20)

This is shown in Fig. 9. Strictly speaking, in order to
use the information theoretic results from the literature
on discrete memoryless channels (DMC), we need to
show that successful reception of different sensors is
independent. It is however difficult to show that this is
true, since the sensors interfere with one another. For
the moment we ignore the fact that the receptions are
correlated and assume that we can model the transmis-
sions from the sensors as a DMC. Therefore reliable
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transmission at C bits/slot is possible if

C ≤ 1 − Psen

ρ
. (21)

The probability of success of a particular sensor is 1 −
p(n). Since n sensors attempt to transmit every slot and
the mobile AP performs the collection for ρn slots,
we get the above equation for the achievable rate of
the system. As n becomes larger, λ(n, sn(·)) → λ∞(x),
and the erasure probability converges

p(n) → e−λ∞(x)ρ �= p(x, ρ). (22)

Hence for n large, the achievable rate of the system is
given by

Csen = 1 − e−λ∞(x)ρ

ρ
bits/slot. (23)

It is also interesting to characterize how the detection
probability varies with the number of sensors n, rate
R and dwell time ρ. The detection probability can be
bounded by the method of error exponents and we have
for large n

Pe(n, R, x, ρ) ≤ exp(−n loge(2)Esen(R, x, ρ)), (24)

where E(R, x, ρ) = 0 for R ≥ 1 − p(x, ρ) and for
R < 1 − p(x, ρ),

Esen(R, x, ρ) = −(1 − R) log2

(
p(x, ρ)

1 − R

)

−R log2

(
1 − p(x, ρ)

R

)

7. Comparison of Coding Schemes

In this section, we shall compare the different cod-
ing schemes discussed using an implementation of the
O-ALOHA protocol. The parameters of the transmis-
sion control are identical to the example discussed in
Section 4.2.

7.1. Achievable Rates

Figure 11 plots the achievable rates of the different
coding schemes versus the design parameter x, the
average transmissions per slot. The spreading code
dependent scheme has the best achievable rates, equal
to the throughput of the protocol. The spreading
code independent scheme has a low achievable rate
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Figure 13. Sensitivity of coding schemes.

compared to other coding schemes. This is because of
the in-built redundancy in the form of repetitive coding
within a slot, which in some cases yields a better error
exponent (see Section 7.2 ). The achievable rate of the
coding over sensors scheme increases monotonically
towards the throughput with decrease in ρ. This is

clear from the fact that

lim
ρ→0

1 − e−ρλ∞(x)

ρ
= λ∞(x). (25)

The coding over sensors scheme requires the trans-
mission of the sensor ID unlike the schemes involving
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coded random access. This is an additional overhead
in every packet transmitted. However, in the other
two schemes, the mobile AP is required to transmit
data through the beacon. The sensors, in addition to
estimating channel gain, need to decode data from the
beacon, therefore require more processing power.

7.2. Random Coding Error Exponents

As discussed in the previous section, for each coding
scheme, the probability of detection error can be
bounded using the method of error exponents. In
order to compare the schemes, it is necessary to
consider a common codebook and equal energy for
the transmission of a bit.

Figure 12 compares the error exponents of the
proposed coding schemes. It is clear from the figure
that the achievable rate for the coding across sensors
scheme and the spreading code dependent scheme are
much higher in comparison to the spreading code in-
dependent scheme. However for low rate codebooks,
the spreading code independent scheme has a better
error probability. This can be attributed to the fact that
this scheme has an inherent repetitive code that adds
to the redundancy. The spreading code dependent and
the coding across sensors scheme have comparable
achievable rates but the coding across sensors has a
better error probability. This scheme again has an in-
built repetitive code, wherein each sensor transmits the
same bit every slot. The parameters in the plot are cho-
sen such that the average transmissions per bit of the
codeword are equal for the three schemes in order to
provide a fair comparison.

7.3. Sensitivity of Coding Schemes

Figure 13 demonstrates the effect of coded random ac-
cess on sensitivity. As seen in Section 5, the protocol is
sensitive to parameters of the channel state distribution.
However, this sensitivity can be overcome using some
of the coding schemes discussed previously. Figure 13
plots the achievable rates of the protocol when there is
a change in the path-loss parameter. Since the rate for
the spreading code dependent scheme is directly pro-
portional to the throughput, it is sensitive to the change
in parameter. However, as can be seen from the figure,
the spreading code independent scheme normalizes the
variation in throughput. This is because the embedded
repetitive coding involved in the scheme reduces the
sensitivity of the protocol to change in parameter.

Figure 13 also plots the variation in achievable rates
with change in path-loss parameter for the coding over
sensors scheme. The sensitivity of the achievable rate
to the change in parameter reduces with the increase in
ρ. This is because, in this scheme, the sensors attempt
to transmit the same bit in every slot, and a higher
ρ implies more number of slots for transmission and
therefore, more redundancy.

8. Conclusion

In this work, we consider sensitivity and coding issues
of a distributed random access protocol, Opportunistic
ALOHA, for reachback in sensor networks with mo-
bile access points (AP). With throughput as the metric,
we demonstrate the gain in using sensor location in-
formation as a part of the transmission control, either
in the form of probability distribution or as a measure-
ment. We found that the protocol was robust to errors
in network size and estimated channel gain, whereas it
was sensitive to fading and path loss parameters.

We proposed three coding schemes for reliable
transmission. For the spreading code independent and
spreading code dependent schemes, the coding was
done across time and required data to be transmit-
ted through the beacon and decoded by the sensors.
Whereas the coding across sensors scheme mandated
the transmission of node ID in every packet. These
schemes combine coding with the random access and
can be used in combination with low density parity
check codes or turbo codes to achieve high code rates.
In this paper, we have assumed that all sensors collabo-
rate and decide upon a single message for transmission.
An information theoretic approach to the problem of
some sensors having the wrong message has been dealt
with in [5].
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