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Abstract—We consider random access and coding schemes for
sensor networks with mobile access (SENMA). Using an orthog-
onal code-division multiple access (CDMA) as the physical layer, an
opportunistic ALOHA (O-ALOHA) protocol that utilizes channel
state information is proposed. Under the packet capture model
and using the asymptotic throughput as the performance metric,
we show that O-ALOHA approaches the throughput equal to the
spreading gain with an arbitrarily small power at each sensor. This
result implies that O-ALOHA is close to the optimal centralized
scheduling scheme for the orthogonal CDMA networks. When side
information such as location is available, the transmission control
is modified to incorporate either the distribution or the actual re-
alization of the side information. Convergence of the throughput
with respect to the size of the network is analyzed. For networks
allowing sensor collaborations, we combine coding with random
access by proposing two coded random access schemes: spreading
code dependent and independent transmissions. In the low rate
regime, the spreading code independent transmission has a larger
random coding exponent (therefore, faster decay of error proba-
bility) than that of the spreading code dependent transmission. On
the other hand, the spreading code dependent transmission gives
higher achievable rate.

Index Terms—Coding, mobile access point, random access,
sensor network, throughput.

1. INTRODUCTION
A. Multiple Access in SENMA

E CONSIDER the design of multiple access and coding

for large scale sensor networks with mobile access
(SENMA) points [1]. As an architecture illustrated in Fig. 1,
SENMA has two types of nodes: a large number of low-power
sensors randomly deployed in a wide geographical area, and
a few more powerful mobile access points (APs) that are ca-
pable of performing more sophisticated tasks from information
retrieval and processing to network maintenance. Examples of
mobile APs include manned/unmanned aerial vehicles (UAV5s),
ground vehicles equipped with sophisticated terminals and

Manuscript received July 15, 2003; revised February 1, 2004. This work
was supported in part by the Multidisciplinary University Research Initiative
(MURI) under the Office of Naval Research Contract N0O0014-00-1-0564, in
part by the Army Research Laboratory CTA on Communication and Networks
under Grant DAAD19-01-2-0011, and in part by the Army Research Office
under Grant ARO-DAAB19-00-1-0507. This paper was presented at the IEEE
Military Communications Conference (MILCOM’03), Boston, MA, October
13-16, 2003.

P. Venkitasubramaniam and L. Tong are with the Department of Electrical
and Computer Engineering, Cornell University, Ithaca, NY 14853 USA (e-mail:
pv45@cornell.edu; ltong @ece.cornell.edu).

S. Adireddy is with Silicon Laboratory, Inc., Austin, TX 78735 USA.

Digital Object Identifier 10.1109/JSAC.2004.830899

Mobile Access Points

Sensors

Fig. 1. Sensor network with mobile access points.
power generators, or specially designed light nodes that can
hop around in the network.

Architecturally, SENMA is the opposite of cellular network;
while mobile nodes communicate with fixed base station in
cellular networks, mobile APs communicate with stationary
sensors in SENMA. The main reason that SENMA is a fa-
vorable choice for some applications is the power and energy
efficiency for sensors. For battery operated microsensors, sen-
sors should transmit or receive as infrequently as possible. It is,
thus, crucial to shift networking functions away from sensors to
a set of interconnected super nodes—the mobile access points in
SENMA—that are less power and bandwidth constrained. The
mobility of APs makes it possible that sensors communicate,
for the most part, directly with access points. Consequently,
as in cellular networks, most transmissions of sensors are for
information delivery rather than network maintenance. For ad
hoc sensor networks, in contrast, the transmission of protocol
overhead by sensors can be a source of overwhelming power
consumption. A key component of SENMA, then, is medium
access control that governs the interaction between sensors and
mobile APs.

In any multiaccess system, centralized scheduling provides
the highest network throughput. In SENMA, centralized sched-
uling would mean that the mobile AP is able to address each
sensor individually and is aware of the channel between itself
and the sensor. The complexity of such schemes is unaccept-
able for large networks. A more practical choice, although
in general suboptimal, is distributed medium access, where
each sensor schedules its transmission locally. The design of
distributed access protocol for SENMA, however, is nontrivial.
The large number of sensor nodes, the lack of central control,
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the channel fading, and node duty cycle, all make the design
especially challenging. The multiaccess protocol for SENMA
should have certain basic properties like high throughput, effi-
cient channel utilization and power efficiency. While the data
rate from each sensor is low, the time allowed for the mobile
AP to collect data can be constrained, especially in military
applications. For large scale sensor networks, battery operated
sensors have limited power and range. It is, therefore, nec-
essary that the sensor transmits only under favorable fading
conditions. The protocol should also be easy to implement.
Each node should involve minimal processing and rely as little
as possible on feedback.

B. Main Results and Organization

In this paper, we consider a general form of distributed access,
referred to as opportunistic ALOHA (O-ALOHA), that incorpo-
rates channel state information. Specifically, each sensor trans-
mits a packet with a probability s(+y) that is a function of its own
channel state -y. The transmission control s( - ) is chosen to opti-
mize the network throughput. Details are presented in Section II.
We then investigate the fundamental limits of SENMA using
asymptotic throughput as the performance metric. Based on a
physical layer using orthogonal code-division multiple access
(CDMA), we show in Section III that, in the presence of fading,
the optimal O-ALOHA performs as well as the optimal cen-
tralized scheduling. The use of channel state information and
multiuser diversity are crucial to this result. By trading network
size for power, we also show that the maximum asymptotic
throughput can be achieved with arbitrarily small transmitting
power of each sensor. An interesting feature of sensor networks
is collaborative transmission. Because random access does not
guarantee that all packets are received by the mobile access
point, we propose in Section IV two coded O-ALOHA schemes
for reliable information retrieval. Achievable rates and error ex-
ponents of these schemes are characterized. Finally, numerical
results are presented in Section V.

C. Related Work

The idea of using centralized channel state information in
multiple access was considered by Knopp and Humblet [2], Tse
and Hanly [3], and others, all in an information theoretic setting.
The main conclusion is twofold. First, significant gains can be
realized by scheduling transmissions based on users’ channel
states. Knopp and Humblet showed that the optimal centralized
scheduler, in the sense of maximizing the sum rate, is a de-
terministic single user transmission [2]. The distributed use of
channel state information was considered by Telatar and Shamai
[4] and Viswanath et al. [5], again using the sum rate as the per-
formance metric. They concluded that the the use of distributed
scheduling incurs little loss. Qin and Berry [6] proposed the use
of channel state information in ALOHA coupled with power
control at the transmitter. Using a simple threshold policy under
the collision channel model, they demonstrate the effect of mul-
tiuser diversity. In particular, they show that, the throughput of
their scheme grows (with the number of users) at the same rate as
that of the centralized scheduler. The throughput achieved, how-
ever, is only a fraction (1/e) of that of the centralized scheduler

[7].
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We adopt the framework established in [8] and [9] for using
channel state information in transmission control. Our focus is
on a practical implementation using orthogonal CDMA as the
physical layer with a fixed number of spreading codes. We also
characterize the rate of convergence of the throughput of finite
networks to the asymptotic results in [8] and [9].

The literature on medium access control for ad hoc sensor
network is extensive [10], [11]. Self-organizing medium access
for sensor networks or SMACS [12] is a distributed protocol,
which enables a collection of nodes to discover their neighbors
and schedule communications. They consider a flat topology
and do not require the use of mobile nodes. In the Eavesdrop and
Register (EAR) algorithm [12], mobile nodes are incorporated
into the system, which continuously monitor the stationary
network and initiate handshaking procedures when desired.
These mobile nodes maintain a partial registry of stationary
nodes, and are not responsible for data transfer in the network.
Heinzelman et al. in [13] proposed LEACH, a medium access
control (MAC) protocol for sensor networks, where nodes are
grouped into clusters with one node in each cluster acting as the
cluster-head. The cluster-head is stationary and is responsible
for collecting data from the nodes and deliver them to the base
station. In the message ferrying (MF) scheme proposed in [14],
mobile nodes (termed as ferries) take responsibility of carrying
messages between disconnected stationary nodes. The authors
mainly consider proactive routing by exploiting nonrandomness
in the mobility of the message ferries. Similarly, in [15], mobile
entities called MULEs are present in the sensor environment.
MULEs pick up data from the sensors when in close range and
drop off the data at access points. A MAC protocol for wireless
ad hoc networks with mobile relaying nodes has also been
considered by Bansal and Liu in [16], however, their focus is on
delay and routing. Other MAC protocols for wireless networks
are based on contention resolution and involve overhead in
the form of requests or transmission of user ID [11].

II. OPPORTUNISTIC ALOHA

A. Protocol Discipline

In this section, we describe the working of the O-ALOHA
protocol [8], [9]. We consider a network where n sensors
communicate to a mobile AP over a common channel. Time
is slotted into equal intervals of one unit, corresponding to the
size of one packet. Slot ¢ occupies the time interval [¢,¢ + 1).

The slot structure is shown in Fig. 2. The network is assumed
to operate in the time-division duplex (TDD) mode. At the be-
ginning of each slot, the mobile AP transmits a beacon that is
used by each sensor to gain synchronization and estimate its
channel gain. By reciprocity, we assume that this is the channel
gain from the sensor to the mobile AP. We denote 'yi(t) as the
channel from the 7th sensor to the AP in slot ¢. During the
data transmission period, each sensor transmits its packet with
a probability s(%(t)). Function s( -) is called the transmission
control that maps the channel state to a probability. Since the
protocol mandates that the probability of transmission be a func-
tion of the channel state, it is called O-ALOHA.
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Fig. 2. Slot structure.

B. Data Transmission and Reception

We assume that the physical layer of the sensor network is
based on CDMA with spreading gain V. It is assumed that
there is a pool of N orthogonal codes, and each transmitting
sensor randomly selects one of these N codes to transmit its
data. The receiver at the mobile AP uses N matched filters
to demodulate the received data. By ignoring the interference
from users transmitting on other spreading codes, we can,
without loss of generality, focus on the output of a single
matched filter. We assume that a packet is received successfully
if the signal-to-interference-noise ratio (SINR) is greater than
a threshold (3. Specifically, in slot ¢, if k sensors choose to
transmit using a particular orthogonal code, and their channel
gains are given by 7, = (71,...,7%), then the outcome can
be represented by 6 = (03,...,0%), where 6,?) equal to
one implies the success of the +th sensor and zero otherwise.
The criterion for successful reception of sensor i is well-
approximated [17] by

; L,
0i = {
0,

where Pr is the transmitting power and o? the variance of
the background noise. The parameter 3 is the minimum SINR
needed for successful reception and is determined by factors
such as type of modulation and receiver sensitivity. Depending
on the value of 3, more than one packet can be captured
successfully. However, no more than 1 + |(1/8)] can be
captured [17]. If we assume 8 > 1, then at most one packet
can be captured per orthogonal code. Therefore, the maximum
throughput possible per slot will be equal to the spreading gain
N. The channel is defined by the conditional probability mass
function p(0y, | v;)-

Note that the transmitting power and channel gain jointly de-
termine the outcome. Thus, for arbitrary transmitting power Pr,
a user with sufficiently high channel gain can still be success-
fully decoded. The optimal transmission control ensures that
such events happen with high probability.

P’l'“/a
>
Yy P17 (1)
otherwise

III. PERFORMANCE LIMITS OF O-ALOHA
A. Throughput and Asymptotic Throughput

We now give an expression for the throughput of the system
described. The throughput is the average number of packets suc-
cessfully decoded per slot for a given spreading code. This is a
function of the channel state distribution, reception model, and
transmission control.

We shall assume that the underlying channel state information
'yi(t) has a cumulative distribution function (CDF) F(+y) and is
independent across sensors and from slot to slot. The throughput
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depends not only on F'(y) but also on the transmission control
5(y). The unconditional probability of transmission is given by

Ps = / sdF. )

Assuming ps # 0, the (a posteriori) channel state distribution
seen at the receiver is

1 Yy
T(y) = — / sdF 3)
ps JO

which determines the probability of successful reception [8].

We generalize the multipacket reception model first consid-
ered in [18] to incorporate channel state. Let C(7'( - )) be the
expected number of received packets conditioned on k users
transmitting, i.e.,

k
Ce(T(-)) = Z E { ngi) ’ k users transmit} . 4)
=1

For a system with n sensors, the throughput! per slot (per
spreading code) is given by

n n—k k
M) = (1) a=wrtaprare) ©
where ¢ is the probability of choosing a particular spreading
code conditioned on a sensor transmitting. The power of
using transmission control is that it allows us to manipulate
the a posteriori distribution 7'(-) through s(-). The ideal
approach is to obtain a transmission control which would lead
to an a posteriori distribution that achieves the best throughput.
The problem, however, is complicated because the transmission
control also affects the probability of transmission ps.
Now, we define the notion of the asymptotic throughput of
a network. For a finite number of users n in a network, the
throughput given the channel state distribution, transmission
control and reception model is given by (5). The asymptotic
throughput can be defined as
Ao(s(-)) 2 lim Au(s(-). ©)

n—o0

This quantity is of value for “large” networks, and we can obtain
transmission controls that have good asymptotic behavior based
on this metric. The maximum asymptotic throughput (MAT) of
the system is the best possible asymptotic throughput achievable
among all possible sequences of transmission controls. This is
given by

A (s(+)) = sup lim

- n
sn () n—»ookzzl <k>

(1 = qps)" " (gps)*CW(T(-)). (D)

B. Optimal Transmission Control

Our strategy to obtain optimal transmission control is to shape
the a posteriori channel state distribution to a “target” distribu-
tion whose asymptotic throughput is large and can be character-
ized analytically. Let the underlying channel state be distributed
according to F'(-). Let T(-) be a distribution function that is

IThis is also the maximum stable throughput [8].
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absolutely continuous with respect to F'( - ),i.e., T(-) < F(-).
From the Radon—-Nikodym theorem, there exists a nonnegative
function (d7'/dF") such that, for any measurable set A

ar

A)= | ——=dF. 8
w4 = [ % ®

We choose the sequence of transmission controls as

sn(7) = qmin(%j—? 1) ©)

where we incorporate g—the probability of choosing a
spreading code—into the transmission control s, (7). The
following theorem characterizes the asymptotic throughput of
such a system.

Theorem 1: If the sequence of transmission controls is
chosen as

x dT
n(y) = in{ ——,1 10
sn(7) qm1n<ndF, ) (10)
where x is the average number of transmissions per slot, then
the asymptotic throughput is given by

_ ey 00"
Aoo (8 (+)) = €71y = Cr(T(). (1)
k=1

Proof: Follows from the proof of Proposition 4 in [8].

An intuitive interpretation of the above theorem is that, for a
large network, the specific choice of transmission control makes
the number of transmissions distributed as a Poisson process
with mean 2:¢ and channel state distribution T'( - ). To obtain the
optimal transmission control, a direct approach is to maximize
Aoo(Z, 8,(+)) with respect to T'(-) and z. Such an approach,
unfortunately, is not tractable. We take an indirect approach by
considering the class of distributions with a roll-off §, which
has been analyzed in [17] and [19] and proving the optimality
using such a class of target distributions. The following theorem
shows the asymptotic optimality of O-ALOHA.

Theorem 2: Let T'(y) be a target distribution with roll-off §
defined by

6
"0
T(v)=1- <7> Ly>

where 9 > 0 is any constant and 1. is the indicator function.
Assume that T'(-) < F(-). For any Pr > 0, the transmission
control given by

dT z
n,i = ¢; mi T AR 1 12
$ni () qmln(an ) (12)
where ¢; > 0 is the probability of choosing the :th code, has
asymptotic throughput Ao (2, 55, ;( - )) satisfying

N

1=1

13)

Proof: Refer to the Appendix.
When the threshold 8 > 1, the above theorem implies the
asymptotic optimality of O-ALOHA given in (12). Specifically,
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Asymptotic throughput of O-ALOHA
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Fig. 3. Asymptotic throughput of O-ALOHA with N = 16,6 = 0.01, 3 =

4 dB.

with a sufficiently large mean transmissions z, the throughput of
O-ALOHA approaches N, which is the maximum throughput
possible using any scheduler. The fact that the maximum
throughput can be achieved with arbitrary Py demonstrates the
idea of trading the size of the network for power: for any power
Pr at the transmitter, one can choose a sensor network large
enough and the mean transmission high enough such that there
are always IV packets captured.

The assumption that 7'(-) <« F(-) is reasonable for prac-
tical fading models. Typically, prior channel state distributions
with infinite support (Rayleigh, Rician, etc.) satisfy this require-
ment. For distributions with finite support, a truncated roll-off
distribution can be used in (12).

One should be cautioned that, although O-ALOHA is
throughput optimal, it is not necessarily energy efficient be-
cause the large number of transmissions required to achieve
the maximum throughput. In practice, a sufficiently high
throughput can be realized using a moderate value of mean
transmissions as shown in Fig. 3. The centralized scheduler is
in general more energy efficient. See [20] for such protocols
for SENMA.

C. Convergence of Throughput

In the previous sections, we characterized the limiting
throughput. However, from a practical standpoint, we are inter-
ested in the case where both n and x are finite. In this section,
we characterize the rate of convergence of the throughput of
the finite user system.

Theorem 3: Given the a priori channel state distribution
F(v), any target distribution 7'(-) < F(-), and the design
parameter z, if sup{(d1'/dF)} < oo, then

x2 d?

(o) = Al = 0 (505 0m@)) . b
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Proof: Refer to the Appendix.

The rate of convergence with respect to the size of the
networks is (1/n). One may notice that the condition
sup{(dT/dF)} < oo may exclude some practical distri-
butions. For example, a Rayleigh-fading model that is shaped
to be a target distribution with roll-off violates this condition.
However, by truncating the target distribution, the expression
for rate of convergence is still valid. An example of such
truncation is discussed in Section V.

D. Incorporating Side Information

In some applications, additional side information is available
at the sensor. For example, the distance between the sensor and
the mobile AP can be computed via the use of geolocation de-
vices. Even without explicit measurement, one may obtain the
distance distribution from the way sensors are deployed and the
mobility pattern of the mobile AP. We consider here two types
of transmission controls: one with the realization of the side in-
formation, the other with only the distribution. We shall use the
location as an example of side information.

Let r represent the location parameter distributed with prob-
ability density function (pdf) g(-). By location independent
transmission (LIT) control we mean that the transmission con-
trol s( - ) is independent of r; it is only a function of g( - ). Let
f(v]7) be the pdf of the channel state conditioned on location
r and t(-) the pdf of the target distribution. The LIT control is
given by

15)

sn(7) = q min( ) =@ 1) .

[ f(y[r)g(r)ydrn’

Note that the above LIT control can be obtained prior to the
sensor deployment and is, therefore, easy to implement.

By location aware transmission (LAT) control we mean that
the sensor has access to the location parameter 7. To obtain the
target distribution with roll-off characteristics, it is sufficient to
consider the transmission control of the following form:

- 55

This can be verified by following the steps in the proof of
Theorem 1 and integrating over r. Since the transmission con-
trol of each sensor is different and dependent on their respective
locations, LAT is more complicated to implement and would
demand more processing on the part of the sensors. However,
as we shall see in Section V, the LAT control has some desirable
properties.

(16)

IV. CODED RANDOM ACCESS

Under certain circumstances, sensors may be able collaborate
in their transmission. The assumption here is that all nodes agree
upon the transmission of a particular message, which makes it
possible that the transmissions are coded to cope with packet
loss. In this section, we characterize C, the number of bits per
slot, that can be reliably transmitted back to the mobile AP. We
propose two schemes combining coding and random access for
this purpose and characterize their achievable rates and error
exponents.
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A. Spreading Code Independent Transmission

We assume that the entire network has agreed to transmit
a particular codeword from the same binary codebook of size
[2ME] x M, where M is the codeword length and R is the rate
of the codebook. The bits in the codeword are transmitted se-
quentially in time. In the ith slot, the mobile AP requests the
transmission of the sth bit of the codeword C in its beacon. All
the transmitting sensors transmit the requested bit of the code-
word in their packets. We assume that those packets received
successfully (depending on the SINR threshold) are decoded
without error. If no packet is received in a particular slot, the cor-
responding bit is erased. We then have an erasure channel, where
the probability of erasure is the probability that no packet was
received successfully in a slot. Assuming that the probability of
choosing the ¢th spreading code g; is equal for all N codes, the
channel between the sensor network and the mobile AP for the
spreading code independent transmission can be viewed as an
erasure channel with erasure probability

Pina(w) = (1 - )\OOT(:E)>N

where Ao (z) is the asymptotic throughput of the sensor
network. To see (17), note in Theorem 1 that the asymptotic
throughput per spreading code is given by

Mool = e~ 30 L 6 )
k=1

where Cy(T(-)) is the expected number of captures condi-
tioned on k sensors transmitting. Since we have assumed that
the SINR threshold 3 > 1, at most one packet can be captured
per spreading code. Therefore, Cy(7'(-)) is the probability
of capture conditioned on k users transmitting [17]. Thus,
Aoo(,1) is the unconditional probability of capture from the
tth spreading code. Since ¢; = q;, Vi, j

Aso ()

N )
The probability of erasure is the probability that there are no
captures from any of the N matched filters and is, hence, given
by (17). Since channel state is i.i.d across slots, the transmission
of bits is also independent identically distributed (i.i.d.). There-
fore, the achievable rate of the binary erasure channel [21] for
spreading code independent transmission given x is

N
Cina(z) =1- (1 - )“”T(x)) bits/slot. (20)

7)

(18)

Aoo(2,1) =

Vi. (19)

For a codebook size [2Y %] x M, the probability of detection
error can be upper bounded by error exponent expressions [22]

Pénd(M’ :E) S eXp(_Mloge(Z)gind(R, .T)) (21)
gind(R7 .217) = (22)
(1~ R)log, (Ze242)) — Rlog, (2-Tp2),

R<1- Pind(x)~
0,
R >1- Pya(a).
(23)

The error exponents £,q(R, ) and the achievable rate given in
(20) can be optimized with respect to z.
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B. Spreading Code Dependent Transmission

In the previous coding scheme, it is evident that by trans-
mitting only one bit per slot, the orthogonality of the spreading
codes is not being utilized. In this section, we propose a modi-
fied scheme which utilizes the fact that transmissions using dif-
ferent orthogonal codes are independent.

The structure for the codebook in this case is similar.
Each codeword is divided into blocks of N bits, where N is the
spreading gain. Therefore, each codeword of length M = M’ N
can be visualized as a two-dimensional array M’ x N, where
M’ is the number of blocks and N is the number of bits per
block. The codebook size is, therefore, [2M N x M'N. The
spreading codes available for transmission are ordered from 1
to N. If the kth message in the codebook is to be sent to the
mobile AP, then the encoding is as follows. In the «th slot, the
mobile AP requests transmission of the ¢th block. Every sensor
that decides to transmit using spreading code j, transmits the
(4, 7) bit of the kth codeword. In every slot, therefore, one block
of the codeword is transmitted. The number of slots required to
transmit a codeword is, therefore, M. Here, a bit is erased if
there is no capture at the output of a particular matched filter.
The channel between the sensors and the mobile AP can, there-
fore, be viewed as an erasure channel with erasure probability

)‘00(55)
N

I)dep(x) =1- (24)
Recall that (A (x)/N) is the probability of successful recep-
tion from a particular matched filter. It is again assumed that
the packets received successfully are decoded without error.
Therefore, the probability of erasure of a bit in a codeword is
the probability that no packet was received successfully using
a particular spreading code. Since the transmission of each bit
in a slot is using a different orthogonal code, there is no in-
terbit-interference and, therefore, transmissions within a slot
are i.i.d. provided each spreading code is chosen with equal
probability. Since channel state is i.i.d. across slots, transmis-
sions across slots are also i.i.d. Therefore, the achievable rate
in bits/channel use of the Spreading code dependent transmis-
sion is (Aso(2)/N). Since there are N channel uses per slot, the
achievable rate given x, in bits per slot is

Clep(T) = Aso(z) bits/slot (25)
and the error exponent is given by

Eaep(R, ) = (26)

—(1 = R)log, (—Pi‘e_"}f)) — Rlog, (—1*’3;;13(1")) ,

R<1- Pdep(x).

0,

R Z 1-— Pdep(l’).

27)

C. Comparison of the Two Schemes

We shall now compare the two schemes proposed above in
terms of the achievable rates and the error exponents. For a
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given average transmissions per slot x and spreading gain IV,
the achievable rates are given by

Ao\ .
Cina(z)=1-(1- N bits/slot (28)

Clep(x) = Moo () bits/slot. (29)

From (20), it is clear that C;,,4(z) is always less than 1. However,
depending on the spreading gain and parameters of the trans-
mission control such as mean transmissions and roll-off factor,
Cyep(x) can take values much greater than 1. The following
proposition characterizes the limiting value for the ratio of the

two achievable rates.
Proposition 1: Letn(z) 2 (Caep(2))/(Cina(z)). For any x
Aso ()

lim n(z) = —————=>1

N—oo o 1— e_Aw(z) = (30)

Proof: Refer to the Appendix.

From the above theorem, it is clear that the capacity of the
spreading code dependent transmission is uniformly better than
that of the spreading code independent transmission.

We shall now compare the error exponents of the two coding
schemes for a fixed codebook size. We know that for a given
codeword length, the number of slots required for transmission
for the spreading code independent scheme is [V times greater
than that required by the spreading code dependent transmis-
sion. Therefore, for comparison of error probability, it is nec-
essary to choose the mean transmissions per slot appropriately,
so that the total number of transmissions required is identical.
Assuming z mean transmissions per slot for the spreading code
dependent scheme, we consider the ratio of error exponents nor-
malized to the same energy used for each message
Lo Eina (B, %)

a(R, N, ) fan(Bo) 31
We know that the spreading code dependent scheme has a
higher capacity compared with the spreading code independent
scheme. However, in low rate regimes, it can be shown that the
spreading code independent scheme has a better error exponent.

Proposition 2: For given mean transmissions z, target distri-
bution 7'(- ), and 5 > 1

im o= — zECi(ZF{( )
R—0,N—oo Zk:l Tck(T( . ))

Proof: Refer to the Appendix.

Therefore, in the limiting case, « > 1, if x > 1. Since z is
the mean transmissions per orthogonal code, it would be at least
equal to 1. This implies that for low-rates, the spreading code
independent scheme can have a greater error exponent than the
spreading code dependent scheme.

>z (32)

V. NUMERICAL RESULTS
A. Channel Model

We now consider a practical Rayleigh-fading channel with
path loss. We assume that all the sensors are located in a disc of
radius 1. As shown in Fig. 4, the mobile AP is assumed to be at a
distance h above the center of the disc. Let r;, the radial distance
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Fig. 4. Sensor deployment.

of sensor 7, be modeled as a random variable that is distributed
with p.d.f g(r) = sqrt(r), 0 < r < 1. The propagation channel
gain between sensor ¢ and the base station is modeled as

2
— Rit

0 _
i 7'12 + h2

(33)

where R;; is Rayleigh distributed. The attenuation due to dis-
tance is based on a free-space path loss model [23]. Let f(7)
be the pdf of ’y,ft). We also use f( |r) to denote the probability

density function of the channel state given the radial distance r.

B. Asymptotic Throughput and Convergence

Fig. 3 shows the asymptotic throughput of the O-ALOHA
protocol with transmission control as given in (12). Thus, for
a small value of roll-off factor ¢, it is possible to obtain a suffi-
ciently high throughput (close to spreading gain) for moderate
values of mean transmissions .

We now look at the convergence of the throughput of finite
user systems to the asymptotic throughput. In order to satisfy the
condition in Theorem 3, we consider a transmission control as
described in (9) with the target pdf given by a truncated roll-off
distribution

) 1
t(y) = 70_5 _ 71_5 A1+ Lyo <y

(34)
where ~p,v1 are positive constants. The throughputs of
this scheme are compared with a simple TDMA scheduling
scheme, where in each slot a particular sensor is chosen a priori
to transmit using each orthogonal spreading code. Therefore, in
each slot, we have N sensors transmitting independently. The
sensors scheduled to transmit are chosen a priori. Therefore,
the channel state information is not utilized. In this case, the
probability of success for a sensor is given by
—(h2+1)Bo2

—e Pr ) (35)

P —h2Bs2
p=P,(SINR > ) = /372 (e b
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Location Aware Transmission Control(Tx SNR = 6dB)
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Fig. 5. Throughput of LAT and LIT controls with following parameters: 3 =

4 dB, (P;)/(0?) =6 dB, v, = 1.5,7; = 14, and h = 2.

where (3 is the threshold of the reception model, o2 is the vari-
ance of the noise, and h is the height of the mobile AP (see
Fig. 4). This probability is obtained directly from the channel
state CDF F'(«y). The throughput per slot is, therefore, given by

=(h2+1)3o2
—e Fr . (36)

_h2p02
Pr

Atpma = Np = e

N Pr
Bo? <

The throughput for the LIT and LAT controls are plotted in
Fig. 5 versus the design parameter x, the average transmissions
per slot. The throughput for the TDMA scheme described above
is also plotted for different transmission powers. It is evident
from the plots that, for the TDMA scheme, the throughput goes
to zero as Pr — 0, irrespective of the size of the network.
However, from Theorem 3, we know that for O-ALOHA, given
any nonzero Pr, it is possible to reach as close to the theoret-
ical throughput as possible by increasing the size of the net-
work. The convergence of finite-user networks to the asymptotic
throughput can also be observed in the figures.
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g. 6. Transmission and success patterns.

C. LIT Versus LAT

We observe little difference in the throughputs of finite user
systems using LIT and LAT controls. The difference between
LIT and LAT is primarily in the distribution of transmitting and
successful sensors as a function of radial distance (r;) to the
mobile AP (see Fig. 4). If a sensor network employs LAT, the
probability of transmission for sensor 7, conditioned on the event
that r; = r is given by

Pr{LAT Tx|r; =71} = /sn('y7r)f('y |7)dy (37)
lim nPr{LAT Tx|r; =r} — . (38)

Therefore, for LAT control, the probability of transmission is
independent of the radial distance. However, for the LIT case

Pr{LIT Tx|r; = r} = / SV F(r ) dy (39)

(v17)

dy (40)
(7)

lim nPr{LIT Tx|r; = r} —>/ V)f

1065

Error Exponent vs Rate
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Fig. 7. Error exponents.

which evidently depends on the radial distance. These facts
are illustrated in Fig. 6. For the LIT control, the probability of
transmission decreases with increase in radial distance. This
is because all sensors use an identical transmission control
independent of their location, whereas the path loss increases
with distance. Therefore, sensors farthest from the mobile AP
are less likely to transmit. Fig. 6 also shows the distribution
of successful sensors versus radial distance. Using a similar
argument, it can be shown that the probability of success
of a sensor in LAT is independent of the radial distance. In
LIT, the probability of success decreases with radial distance.
The intuitive explanation for this observation is that, in LIT
control, the transmitting sensors are unaware of the distance
and, therefore, the transmission control does not compensate
for the path loss.

Fig. 7 shows the variation of error exponent with code rate
for the protocol described earlier in this section. It is clear from
the plot that, though spreading code dependent transmission has
a higher achievable rate, the spreading code independent trans-
mission has a greater error exponent for low rate regimes.

VI. CONCLUSION

We present in this work the design of random access and
coding schemes for large scale sensor networks with mobile ac-
cess points. This paper primarily focuses on sensor networks
with one mobile access point. Sensor networks with multiple
mobile access points have been analyzed in [24].

In this work, we have shown, for the physical layer using or-
thogonal CDMA, that O-ALOHA is asymptotically optimal and
is close to the optimal centralized scheduler under the single
packet capture model. Although we have used the channel gain
and the sensor location as part of the transmission control, our
framework, first established in [8], allows the incorporation of
other side information, either in the form of probability distri-
bution or in the form of actual measurements.

Although O-ALOHA is throughput optimal asymptotically,
and it allows the power at each sensor to be arbitrarily small,
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we caution that O-ALOHA is not necessarily energy efficient.
Specifically, O-ALOHA tends to over transmit for higher
throughput. To this end, centralized scheduling for sensor
networks [20] would have eliminated redundant transmissions
while maintaining high throughput. Further results on robust-
ness and sensitivity issues of O-ALOHA are presented in [25].

A new feature presented in this paper is the coded random
access that combines coding, CDMA, and O-ALOHA. Al-
though we have used random coding as a tool for characterizing
the performance, the type of codes used by the network can
be arbitrary. This opens to the possibility of using some of the
most efficient codes such as the class of low-density parity
check (LDPC) codes. However, the scenario that coded random
access considered in this paper is applicable is restricted to
the case that sensors are allow to collaborate. Specifically, the
network as a whole must decide which codeword to transmit
and the codebook must be distributed to the sensors. In general,
this need not be the case, and there may be misinformed sensors
present in the network. An information theoretic analysis of
such networks is given in [26].

APPENDIX

A. Proof of Theorem 2

We known from Theorem 1
gi min((dT/dF)(x/n),1), then

that if s,.(7) =

(41)

where ¢; is the probability of choosing the 4th spreading code.
We are interested in the throughput of this system as the av-
erage number of transmitting sensors goes to infinity, that is
lim, 00 Ao (8n,i( - )). Hajek et al. in [17] have shown that the
throughput of an infinite user system, where the received power
is distributed with a roll-off ¢ is equal to 3% (sin(78)/mé).
Therefore

lim Aco(sni(+)) = 5Sln( 6).

r— 00

5

(42)

Taking limits with respect to 6 and summing the throughputs
across the IV spreading codes

N

; lim Ao (sn.i(+)) = N. 43)

We have already seen that the best possible throughput for
such a system using orthogonal spreading codes is IV (refer to
Section II). Hence, this transmission control is optimal.

B. Proof of Theorem 3

We know that, the transmission control is given by

su(v) = min(jf, z 1) (44)
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Since ¢, the probability for choosing a spreading code is
only a constant, it has been conveniently ignored. Since
sup(dT'/dF) < co,Im s.tVn > m

(45)

Since we are concerned with rate of convergence asn — oo, we
can write s, (y) = (d1/dF)(x/n). Proceeding along the lines
of the proof of Theorem 1

Aal) = (Z) (1-2)"T Doty e
k=1
> xke—m

A) = S0 OU(T () @7)
k=1

In order to proceed with the proof, we require the following
lemma.
Lemma 1:

. n z\n—k gk ke T
nllféo”«k)(l_ﬁ) Wk R ) @)

_ LE2 :l?k ZICk_l N mk—Z

2\ K k=1 (B2

From Lemma 1, we can say that

(49)

oo x))

—x k —

A
.Z'2 > xr

(51
2 2
=0 <7EA°°($)) :

(52)
We now need to prove that the right-hand side (RHS) in (51) is
bounded, in order to complete the proof of convergence rate. We
shall, therefore, bound |lim,, — oo n(An(2) — oo (2))]

hm n(An(z) —

| lim ”()\n(ﬂ?) = Ao ()] (53)
[e%) k .Tk_l a;,k—Z
<= Z|C’“ <k'+(k—1)!+(k—2)!>
(54)
e~ T S T .Tk_l iI?k_2
< 2(? ‘ 1)!‘*‘(1@—2)!) &)
2 —x
_7 ; (4¢”) = 242 (56)

The inequality in (55) is due to the assumption that 3 > 1 and,

therefore, Cy,(T'( - )) is the probability of capture and can at most

be equal to one. Hence, for finite x, the expression is bounded.
Proof of Lemma 1: We shall use induction on k. Let

()67 6 (57 e
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We need to show

22—t [ ok 9pk—1 k=2
lim L(k) = — - .
i Lk) = —3 <k! -1 " (k:—2)!) (58)
Consider & = 1
. x\"—1 _z
L(l):nh_{rolon[n(l—ﬁ) — e }
. r\n—1 e

:xnh_)néon[(l—a) —e } . (59)

Replacing n by (1/t)

lim L(1) = z lim [(1 — a:t)%_l — e—z] .

n— 00 t—0 t

Applying L’Hospital’s rule

i — o lim [(1— )bt (=2 log(1—
lim L(l)—wlg% [(1 at) ( I log(1 — xt)

()

=z lim(1 — xt)%f1 {lim <_t12 log(1 — xt))

t—0 t—0

. 1
—lmz|--1
t—0 t

-1 222
— xr M _ _ _ - - _
= ze |:}1H(1) 2 ( xt 2 .. )

o (Eot) )

where we use Taylor series expansion for log(l — xt) and
(1)/(1 — xt). Neglecting higher powers of ¢

2 2,
lim L(1) =ze ™ ® (_x_ +x) =-Z (z—2). (60)

n—o0

/
ok T n! z\n—k gk e
L (G (-3 )

$2
_ e <7 — wh+ k(k — 1)) GY

Consider lim,, o, L(k + 1)
lim L(k+ 1)

n—oo

. n r\n—k—1
=t () (1-3)
k+1 .’L'k+1€7w
e

x
>< p—
nk+1

xk-l—l

. n!
G Dl [(n —k—1)!

r\n—k—1 1
X (1 — —) — = ne_z}
n n
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zkt+l n—Fk
=2 |
(k+1)! [nl—{go <n—:v)
. n! z\"k gk —a

x JEEO”{(n—k)! (1-3) e }

— lim (k—:c)( n >e—1]. (62)
n—o00 n—axT

Substituting from (61)

lim L(k+1)

.Tk+1€_z x?
- - |- _ —1)—
CES] [ 5 +ak—k(k—1) k-i—a:] (63)
_ _x2e—x $k+1 B @ N .Tk_l . (64)
2 (k4 1)! k! (k—1)!
Hence, proved.
C. Proof of Proposition 1
We know that
Odep(x)
) = =V 65
n(w) Cona(2) (65)
Moo (T
= (/\>< ) ~- (66)
- (1-252)
As N —
/\00($)

It is easily shown that if A.(z) > 0, then the RHS of (67)
is a monotonically increasing function of A.(z). Since,
limy_—oo,x. (2)—07(x) = 1, we can say that for all values of
x,limy_,o, n(x) > 1. Hence, proved.

D. Proof of Proposition 2

limp o &na (R, %)

R—»(l)l,%l—)oo “= J\}EPOO limR_,[) gdep(R, .T) (68)
log(Pina (%
— lim L‘i(l\’) (69)
N—o0 IOg(Pdep(LIZ'))
Nlog<1 — LW)
= lim (70)
N—o0 IOg(l _ Aoc>N(z))
. N (%)
=) 70
substituting N by (1/t)
li
Iim o =Ilim Aco(@t) = lim Aso(@t) (72)
R—0,t—0 t=0 tAoo ()  t—=0 Aoo()
_ lim;_,q %()\oo(xt)) 73)
Aoo ()
We know that
oo e—zxk
Aoo(@) = > ——Ci(T(+)) (74)
k=0
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Therefore
_ zC1(T(-)) .
S SR Cr(T())

Since we have assumed that the threshold, 5 > 1, we can say
that

(75)

lim «
R—0,N—oo

CL(T()) > CR(T(+)) V. (76)

This is because C1(T(-)) is the probability of capture in the
absence of interference. Therefore

lim
R—0,N—o0

o> x. 77
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