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he design of medium access control (MAC) proto-
cols has traditionally been separated from that of
the physical (PHY) layer. To a MAC protocol
designer, the PHY layer is a black box satisfying the

so-called collision model: when only one user transmits, the
packet arrives at the receiving node error free. But when
transmissions are simultaneous, packets are lost due to
collision. Until recently, the theory of random access
was based on such an idealized model, and random
access protocols were viewed as collision resolution or
collision avoidance techniques.

In practice, the collision model is both optimistic
and pessimistic: optimistic, for it ignores channel
effects such as fading and noise on reception, and
pessimistic, because it does not accommodate the pos-
sibility that packets may be successfully decoded in the
presence of simultaneous transmissions. Given the

advances in multiuser communications at the PHY
layer, the collision model no longer represents all the

characteristics of the PHY layer, missing some of its most
important properties.
Is there a need to go beyond the collision model for wireless

networks? Should the MAC layer assume a multiuser PHY layer
and be designed with a cross-layer principle in mind? Is the gain of a

cross-layer design significant enough to justify replacing a well-tested
protocol with a more sophisticated one? Will the cross-layer design be too

complicated to implement, and too sensitive to channel changes to be useful?
The idea of cross-layer design has been brought to the fore by the phenomenal

growth in wireless applications and a continuing push for broadband access. The funda-
mental challenge, as noted by Gallager in 1985 [1] and more recently by Ephremides
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and Hajek [2], lies in the choice of a proper model that
interfaces the PHY layer and network layers. From an
information theoretic viewpoint, multiaccess communi-
cations can be made error free via error control so long
as the rates fall within the capacity region. The multiac-
cess channel is “smooth” in the sense that bits continu-
ously flow from each user to the receiver;
retransmissions are not necessary. From a network the-
oretic perspective, on the other hand, there is the basic
notion of a packet. The multiaccess channel is “hard”
in the sense that a packet either gets through or is lost
in a collision; collisions need to be resolved by retrans-
missions. A major point of Gallager’s paper [1] is that,
in his words, “a better set of models and approaches
are needed for multiaccess communication than colli-
sion resolution or information theory alone.”

In this article, we consider the interactions between
the PHY and MAC layers where there are reasonable
models that interface the two. Specifically, we focus
on roles of signal processing in random access net-
works: How does a multiuser PHY layer enabled by
advanced signal processing affect the design of ran-
dom access protocols? If a node is able to estimate the
channel state via signal processing, how should that
information be exploited at the protocol layer for
higher efficiency?

We present two cases where cross-layer design has a
quantifiable impact on system performance. The first is
a small network (such as wireless LAN) where a few
nodes with bursty arrivals communicate with an access
point. The design objective is to achieve the highest
throughput among users with variable rate and delay
constraints. We examine the impact of PHY layer
design on MAC protocols and illustrate a tradeoff
between allocating resources to the PHY layer and to
the MAC layer. The second case, in contrast, deals with
large-scale sensor networks where each node carries lit-
tle information but is severely constrained by its com-
putation and communication complexity and, most
importantly, battery power. The goal there is not nec-
essarily achieving the highest throughput nor is it
about assuring quality of service. The design must take
into account the need of sensors transmitting with
diminishing power. Here, the cross-layer design takes a
different form where we illustrate the need to incorpo-
rate PHY layer parameters into MAC protocols.

A Brief Historical Perspective
The story of random access began with Abramson’s
landmark work [3]. In designing a multiaccess scheme
that allows terminals in different islands access a central
unit through a common wireless channel, Abramson
devised a simple and elegant solution known as
ALOHA: transmit when the terminal has a packet; back
off randomly if the transmission is not successful.
Transmissions fail because multiple users transmit
simultaneously, and the randomized back-off resolves
collisions probabilistically in a distributed fashion.

Throughput
The analysis of ALOHA by Abramson is equally
remarkable. In its simplest form, it makes two funda-
mental assumptions that led to the magical throughput
figure e−1. The first is the collision model: any simulta-
neous transmissions lead to irrecoverable failure. In the
second assumption, the aggregated traffic including
both transmissions and retransmissions is Poisson. If
the transmissions are slotted, then the average number
of successfully received packets, the throughput λ, is
given by

λ(G ) = Pr(one and only one user transmits) = Ge−G ,

where G , the offered load, is the mean arrival of the
aggregated traffic (packets/slot). (The slotted ALOHA
is a variation by Roberts [4] of the original ALOHA by
making all transmissions follow the same slot struc-
ture.) If each user chooses the retransmission probabili-
ty wisely so that the offered load can be regulated to
maximize λ(G ), we have

λALOHA = max
G

λ(G ) = e−1 ≈ 0.36.

The Poisson assumption implicitly assumes the
model in which infinitely many new arrivals and
retransmissions, each with infinitesimally small rate,
jointly form a traffic with mean G . In spite of the intu-
itive appeal of such an infinite population model, the
offered traffic cannot be Poisson, and the model at best
is a rough approximation under special circumstances.
A variation of this assumption is the Bernoulli model
with a finite number of users [3], where, in an M-user
system, user i transmits with probability pi . Again,
under the collision model and the assumption that all
users have packets waiting to be transmitted, the aver-
age number of successfully-received packets is given by

λM (p) = Pr(one and only one user transmits)

=
∑

i

pi

∏
j �=i

(1 − pj ).

If all users are statistically the same and each user trans-
mits with probability pi = G /M (so that the total traf-
fic has mean G ), then the throughput is given by

λM (G ) = G
(

1 − G
M

)M −1

→ Ge−G as M → ∞.

Again we arrive at the same expression and the same
maximum throughput figure.

Stability
Hidden in the above throughput analysis is the notion
of stability. For the finite user model, had each node
stored infinitely many packets to start with, the
throughput figure above would indeed have been the
maximum number of packets that can be extracted by
the central unit. But if each user’s buffer size is finite,
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then we are faced with the constraint that the number
of packets stored in each user’s buffer must not go
unbounded. To avoid buffer overflow, we need to
reduce the arrival rate to some equilibrium point above
which overflow is inevitable but below which the prob-
ability of overflow can be made arbitrarily small.
Typically, the probability of a stable queue being empty
is nonzero. (This is true for queues forming an irre-
ducible and aperiodic Markov chain.) Thus, for a stable
random access protocol, we have to deal with the case
when there are no packets to transmit from some of the
users. For the infinite population model, stability is
closely connected with the number of users waiting to
transmit their packets (backlogs). It turns out that, if
each user retransmits with fixed probability in an infi-
nite user system, a simple drift analysis [5] shows that
the stable throughput is zero! While in practice, the
network instability can be coped with by rebooting the
network and flushing out all backlogged packets, this
sharp discrepancy between 0 and 1/e underscores the
need for a fundamental understanding of the queuing
dynamics of random access protocols.

The failure to stabilize ALOHA in an infinite user
system has a simple intuitive explanation: the greater
the number of users having packets to transmit, the
smaller their transmission probability must be to make
the system stable. If each user transmits with a constant
probability and by chance there are more users than the
transmission probability can handle, more users will be
backlogged and the system will become unstable. But
what if we can estimate the number of users having
packets to transmit by looking at how often collisions
occur and adjust transmission probability accordingly?
It was shown later that the maximum stabilized
throughput is, almost miraculously, what was obtained
in the first place: 1/e [6].

It was not until 1979 that Tsybakov and Mikhailov
[7] tackled the stability issue for the finite user
ALOHA rigorously. Under the collision model, they
obtained, for the two-user case, the complete charac-
terization of the stability region of slotted ALOHA.
This region, shown in Figure 1, clearly demonstrates
the suboptimality of ALOHA when compared with the
deterministic scheduling protocol time division multi-
ple access (TDMA). By time sharing the common
channel, TDMA makes any rate pair on the line con-
necting the two single user rates (point A and B in
Figure 1) stable. For ALOHA, on the other hand, the
stability region is not convex, which means that if one
user is to increase his rate, the other user may have to
sacrifice disproportionally.

Unfortunately, the characterization of the stability
region of ALOHA for the general M-user case remains
an open problem with only inner and outer bounds
available [8]–[10]. An exception is the symmetrical case
when all users have the same rate. In that case,
Tsybakov and Mikhailov [7] showed that an arrival rate
λ(M )is stable if

λ(M ) <

(
1 − 1

M

)M −1

and unstable if the inequality is reversed. Letting
M → ∞, we again obtain the throughput 1/e . It
should be pointed out that the limiting case of the
finite user model does not represent the infinite popu-
lation model even though the maximum stabilizable
throughput is the same.

Collision Resolution
A breakthrough was made by Capetanakis [11] and
independently by Tsybakov and Mikhailov by recogniz-
ing the fact that the sequence of collision events tell us
something about the state of the network, and infer-
ences can be made about who may or may not have
packets. Using the idea of splitting the transmissions of
collided users, Capetanakis developed a random access
protocol that offers a stable throughput of 0.43. This
discovery ignited an intensive search for stable random
access protocols that achieve the maximum through-
put. Despite having established upper and lower
bounds on the achievable throughput, the maximum
stable throughput remains elusive to this day.

The idea of making inferences about the state of the
network, i.e., the users who have packets to transmit, was
crystallized by Berger et al. [12] and Wolf [13] when they
found a connection between collision resolution and classi-
cal group testing. During World War II, the U.S. military
needed to administer syphilis tests for millions of
inductees. Given the probability that a person having the
disease is small, it would have been grossly inefficient had
each person been tested individually (in a TDMA fashion).
According to Wolf, Dorfman [14] suggested pooling
blood samples from a group of persons and applying the

▲ 1. The stability region of a two-user ALOHA system: A = B = 1.

λ2

λ1

λ1 +   λ2 = 1
A

B
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so-called Wasserman test. The test was sensitive enough to
give a positive reading if and only if one or more among
the tested group had the disease. Thus, persons with the
disease were identified by a sequence of tests referred to as
the test plan. The connection between group testing and
collision resolution is therefore natural: the person with a
packet to transmit is a user with the disease (to talk, per-
haps?); to enable a set of users to transmit is to perform a
group testing; a collision in the transmission means a posi-
tive test, silence the negative. An efficientcollision resolu-
tion algorithm is an efficient group testing plan that, on
the average, has the smallest number of tests. It turns out
that many ideas developed for random access protocols
were directly related with statistical methods of devising
group testing plans [15].

The connection between group testing and collision
resolution tells us more than the protocol side of the
story; it also gives us insight into the difficulty of extend-
ing the collision model to more elaborate models dis-
cussed in following sections. For example, were the
outcome of a (group) test random, repeatable only by the
law of large numbers, the test plans in [15] would not
have worked, nor would the collision resolution protocols
under probabilistic reception models. This is one of the
reasons that the extension to multipacket and probabilistic
receptions is much more challenging, requiring perhaps
an entirely new way of treating random access.

Multipacket Reception: 
A Step Toward Cross-Layer Design
The collision model represents a simplistic PHY layer that
leaves the MAC layer to handle the difficult task of sepa-
rating users via scheduling. But there is no fundamental
reason that collided transmissions cannot be recovered by
other means such as coding and signal processing. In the
information theoretic setting for a multiaccess channel,
the capacity region is achieved by making all users trans-
mit at the same time, and it is the decoder that is respon-
sible for untangling each user’s transmission.

The advent of multiaccess techniques such as code
division multiple access (CDMA) and multiuser detec-
tion led to a new examination of random access under
a multiuser PHY layer. In 1988, Ghez et al. [16] made
a fundamental change in the collision model that has
been the foundation of virtually all PHY protocols.
They offered the generalization that, when there are
simultaneous transmissions, the reception can be
described by conditional probabilities (instead of
deterministic failure). They proposed the multipacket
reception (MPR) model defined by the MPR matrix

C =



C10 C11
C20 C21 C22

...
. . .


 , (1)

where Ci j is the conditional probability that, given i
users transmit, j out of i transmissions are successful.

Given k users transmit at the same time, the average
number of successfully received packets is given by

Ck =
∑

j

jCkj .

Note that the model used by Ghez et al. captures
only certain symmetrical channel models. Specifically,
Ckj models only j success out of k transmissions but
not which j transmissions are successful. Such a
model is inadequate for some practical spatial diversi-
ty systems in which one set of j users may be quite
different from the other. A more detailed model
described later is needed.

The MPR model describes a multiuser PHY layer for
random access. Focusing on ALOHA under MPR
model, Ghez et al. illustrated that a major reason for the
infinite user ALOHA to have zero stable throughput for
any fixed retransmission probability comes from the
classical collision model. In particular, they showed that
ALOHA under MPR achieves stable throughput
limk→∞ Ck assuming the limit exists. The significance of
that finding became even greater when Zorzi and Rao
[17] and later Hajek [18] showed that under the cap-
ture model in fading, limk→∞ Ck does exist and is posi-
tive. The capture model assumes that if a user’s signal to
interference and noise ratio (SINR) exceeds a threshold
β, then his packet will be successfully received. For a
very general class of fading models where the fading has
distribution with rolloff factor δ, Hajek showed suc-
cinctly that

lim
k→∞

Ck =
{

β−δ sin(πδ)

πδ
, 0 < δ < 1,

0, δ ≥ 1.

The contribution of Ghez et al. is more than a tech-
nical one. By allowing a much broader class of PHY
layers to be considered together with random access,
they brought to light the interaction between PHY and
MAC layers. Their work begged the question of how
to take advantage of the enhanced PHY layer that can
separate users and whether the notion of collision reso-
lution is still a valid one.

Allowing MPR at the PHY layer changed the ran-
dom access problem considerably. For example, the
inference from the reception outcome of a slot is no
longer simple. In the collision model, if a packet is suc-
cessfully received, it implies that no one else transmitted
in that slot. The probabilistic modeling of MPR means
that the state of a user cannot be inferred with certainty
until either an empty slot occurs when the user is sched-
uled to transmit or a packet from that user is received
successfully; the successful reception of other users’
packet does not imply that this user has not transmitted.
It is such uncertainty that makes the splitting idea, so
crucial in the classical collision resolution protocols, dif-
ficult to apply for MPR channels.
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While splitting the transmissions of colliding users
according to collision events is not directly applicable
to the MPR model, the idea of inferring the state of
the users and scheduling their transmissions is still
valid. In [19], the so-called service room protocol is
developed that performs a posteriori estimates of net-
work state based on the entire reception history. The
protocol then grants an optimal subset of users access
to the MPR channel. The dynamic queue protocol
[20] is a random access scheme designed also for the
MPR channel, which offers a much simpler imple-
mentation and limited performance degradation. By
and large, however, exploiting MPR for random
access is a research area with many open theoretical
and practical problems.

Signal Processing Versus Scheduling: 
A Cross-Layer View
In this section, we revisit the classical work of Tsybakov
and Mikhailov [7] and Rao and Ephremides [8] on
finite user ALOHA, this time under a general multi-
packet reception model. We know that, for the single
user collision model, centralized scheduling is superior
to a simple and distributed protocol such as ALOHA.
At the other extreme, if the PHY layer completely
decouples simultaneous transmissions, for example
using orthogonal CDMA, then there is little advantage
having any scheduling. It is not surprising that putting
resources in the PHY layer will simplify the MAC
design and vice versa. It is more instructive, however,
to see where and how such transitions happen. Details
of our discussion here can be found in [21].

A General MPR Model
for Packet Switched Multiaccess
The MPR model of Ghez et al. has several limitations.
It assumes a symmetrical model with indistinguishable
users analogous to the the classical urn model with
indistinguishable balls. Such a model does not allow
the specification of a region where each user has his
own rate. We now describe a more general MPR model
that differentiates users. Such a generalization is neces-
sary for systems with spatial diversity because users in
different geographical locations interfere with each
other differently.

We consider a wireless LAN of N users communi-
cating with an access point as illustrated in Figure 2.
The access point may have multiple antennas for beam-
forming or for other diversity techniques, thus allowing
simultaneous transmissions to be received. The i th user
generates packets at the rate of λi . Each user has a
buffer for arriving and backlogged packets. The chan-
nel is slotted, and the slot duration equals the packet
transmission time. The state of the queue in slot t is
defined by the number of packets Q t

i in the queue at
the beginning of the slot.

For a system involving a set of N users
U = {1, 2, . . . ,N }, we consider a multiuser PHY layer

defined by a set of conditional probabilities. For any sub-
set of users T ⊆ U transmitting in a slot, the probability
of successfully receiving packets from R ⊆ T is given by 

PR,T = Pr{only packets from users in R are
successfully received|users in T transmit}.

(2)

P = {PR,T , T ⊆ 2U , R ⊆ T }, the set of conditional
probabilities completely specifies the probability space for
reception. Note also that all PHY layer characteristics are
summarized by P in the sense that, for each PHY config-
uration, there is a corresponding probability space P.

It turns out that [21] the achievable rate and the
stability regions depend only on a set of marginal con-
ditional probabilities

Pi |T
�=

∑

R⊆T :i∈R
PR,T ,

where Pi |T is the probability that the i th user is suc-
cessfully received given users in T transmit. The achiev-
able rate for user i should depend on the probability
Pi |T of its own successful transmission. However, since
interference from simultaneous transmissions results in
a system of interacting queues, it is less obvious that
only the marginal probabilities are needed to specify
the rate region.

MAC Capacity and Stability Characterizations

MAC Capacity
We begin by allowing centralized scheduling: the access
point knows the complete network state including the
queue state of each user. We use the notion of MAC
capacity in the sense of Abramson [3] and Kleinrock
[22], [23]. Assuming each node always has packets for

▲ 2. A wireless LAN.

Access 
Point

Q t
i

User i

Interference

λi
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transmission, we define the MAC capacity region as the
set C of (departure) rate vectors such that for each rate
vector r = [r1, · · · , rN ] ∈ C , there exists a MAC proto-
col with which the rate of successfully received packets
from user i is higher than ri . For the N user wireless
LAN system, under the reception model given in (2),
the MAC capacity region can be obtained as a special
case of [24]. In words, the capacity region is given by
the convex hull of points (s(T )),T ⊆ {1, 2, · · ·N }
whose coordinates are given by

s i (T ) =
{

Pi |T , if i ∈ T ,

0, otherwise.

Illustrated in Figure 3 is the two-user case. Notice
that the capacity region is bounded by straight lines, a
fact from taking the convex hull of vertices involving
marginal reception probabilities. The linear boundaries
have the implication of scheduled time-sharing among
users. The MAC capacity region resembles the
Shannon capacity region for multiaccess channels [25]
except that the linear boundaries are slanted due to the
lack of perfect packet separation.

MAC Stability
A primary concern in MAC design is stability. By stabil-
ity we mean that the probability of buffer overflow can
be made arbitrarily small by making the buffer size suf-
ficiently large [26], [7]–[9]. (Let Qt = (Q t

1 , . . . , Q t
N )

be the queue lengths of an N user system. The system
is stable if for x ∈ N

N ,  limt→∞ Pr{Qt < x} = F (x) and
limx→∞ F (x) = 1.) The stability region is a set S of
(arrival) rate vectors such that for each rate vector
λλλ = [λ1, · · · , λN ] ∈ S , there exists a MAC protocol
that makes all queues stable. The stability region for a
particular MAC protocol is the set of rates that are sta-
ble under that MAC. For example, the stability region
of ALOHA, SALOHA is the set of all arrival rate vectors
that are stable under ALOHA.

The capacity region C and the stability region S are
not always the same [24]. In general, S ⊆ C. Only in
rare cases does the stability region of a specific MAC
protocol coincide with the capacity region. For exam-
ple, under the collision channel model, the MAC capac-
ity C of a two-user system is the convex hull obtained
from three rate vectors (0, 0), (0, P2|2), (P1|1, 0). The
stability region of ALOHA [7] under the collision chan-
nel, in contrast, is SALOHA = {(λ1, λ2), λi ≥ 0,√

λ1 + √
λ2 < 1}, which is strictly inside C.

ALOHA with Spatial Diversity May Achieve MAC Capacity
The ALOHA protocol can be parameterized by a vector
of transmission probabilities p = [p1, · · · , pN ]. Node i
transmits a packet with probability pi if its queue is not
empty. If λλλ ∈ SALOHA, then there exists a p such that all
queues are stable. The ALOHA stability region for an
N user system is unknown in general. For the collision
channel, characterizing stability region has been a long
standing open problem. There is, however, a simple case
when an antenna array is used. If a zero-forcing antenna
array is used to eliminate all interfering nodes, we then
have N independent MAC channels, albeit each may
have a much smaller stability region due to noise
enhancement of the zero-forcing operation.

The generalization of the work of Tsybakov and
Mikhailov [7] for MPR channels reveals important fea-
tures masked previously by the collision model. It is
shown in [21] and depicted in Figure 4 that there are
only four possible stability regions, each corresponding
to a different level of MPR capability: Figure 4(a) is the
collision channel case with no MPR. The instability
region is convex. Figure 4(b) corresponds to weak
MPR where the point (P1|(1,2), P2|(1,2)) is below the line
connecting (0, P2|2) and (P1|1, 0). The stability region
in this case is bounded by linear boundaries in the low
interference regions below certain critical rates λic and
by a quadratic curve (in 

√
λ) in the strong interference

region. Figure 4(c) is the critical MPR case when the
stability region, for the first time, becomes convex and
is bounded by straight lines. This case happens when
(P1|(1,2), P2|(1,2)) is on the line connecting (0, P2|2) and
(P1|1, 0). Figure 4(d) shows the strong MPR case when
the capacity region is convex and bounded by straight
lines. This happens when (P1|(1,2), P2|(1,2)) is above the
line connecting (0, P2|2) and (P1|1, 0). To summarize,
we have the following theorem.

Theorem 1 [21]
Assume that P1|1 ≥ P1|(1,2) , P2|2 ≥ P2|(1,2) . Then, the
stability region of ALOHA coincides with the MAC
capacity region, i.e., SALOHA = C if and only if the fol-
lowing critical MPR condition is satisfied:

P2|(1,2) ≥ (
P1|1 − P1|(1,2)

) P2|2
P1|1

. (3)

▲ 3. Capacity region of a two-user system.

r2

Capacity
Region

r1

P2/2

(P1|(1,2),P2|(1,2))

P1/1
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The message to system designers from Theorem 1 is
unmistakable: if one can provide MPR capability at the
PHY layer beyond the critical level [Figure 4(c) and (d)],
the optimal MAC layer is none other than the simplest—
the ALOHA. There are several ramifications. First, it
shows that no centralized scheduling is needed, and the
best MAC is ALOHA. This appears to be the second
instance in which the ALOHA stability region coincides
with a certain capacity region; the first case was discovered
by Massey and Mathys [27] who showed that, for the col-
lision channel, the ALOHA stability region coincides with
the (zero-error) capacity region of the collision channel
without feedback. See also the work of Anantharam [28].
Second, the convexity of the ALOHA stability region has
special theoretical significance. Such a property assures
that any rate vector between two stable rate vectors is sta-
ble; the rate increases of some users can be accommodat-
ed by proportional rate decreases of others, which is
useful for rate allocations in a dynamic environment.

But can the result in Theorem 1 be extended to the
more general N user case? We do not yet know. We
suspect that the complete characterization will be diffi-
cult for general MPR models. Still, there are reasons
for optimism. For the general N user ALOHA when all
users generate packets at the same rate, i.e., the sym-
metrical case, ALOHA is again optimal under strong
MPR conditions. Next, if it is possible to decouple all
users by zero forcing, ALOHA will again achieve
capacity. One suspects that ALOHA remains optimal
under strong MPR conditions. Nonetheless, inner
bounds for the stability region can be developed [21]
following the techniques by Rao and Ephremides [8],
Lou and Ephremides [10], and Szpankowski [9].

Exploiting Queue Statistics
in Signal Processing
We have seen that signal processing techniques that
offer a multiuser PHY layer can have a significant
impact on queuing behavior of random access proto-
cols. We now examine this interaction in the reverse
direction and explore the possibility of using queue sta-
tistics for enhanced signal processing.

As an example, we consider the problem of design-
ing a beamformer that maximizes the stability region of
ALOHA, an unconventional metric that involves cross-
layer issues. As illustrated in Figure 5, the wireless
channel is modeled as

y[t ] = H[t ]s[t ] + n[t ],

where t is the slot index, y[t ] the received vector at
the antenna elements, H[t ] the channel matrix that
models a MIMO random fading channel, s[t ] the vec-
tor of user’s transmitted signal, and n[t ] the additive
noise. We consider the class of adaptive linear beam-
formers F[t ]

ŝ[t ] = FH [t ]y[t ],

where ŝ[t ], assumed to be a stationary ergodic process,
is the signal estimate. Under the SINR threshold
model, conditional on H[t ] = H, a packet of user i is
successfully received if its SINR γi (H) exceeds a
threshold βi . The choice of βi depends, of course, on
the coding and decoding strategy used for user i .

Given a set of transmitting users, and a beamformer
F(t ), the probability space for the reception is given by
PF = {PF

i|T } as defined in the previous section by 

PF
i |T = Pr(γi (H) ≥ βi ).

▲ 4. The stability regions for different multiuser PHY layers. (a) The collision model. (b) The weak MPR model. (c) The critical MPR model.
(d) The strong MPR model.

P2/2

(a) (b) (c) (d)

P2/2

Linear

Linear

Nonlinear
P2/2 P2/2 (P1|(1,2), P2|(1,2)) 

P1|1 P1|1 P1|1 P1|1

λ2 λ2 λ2 λ2

λ1

λ1 λ1

λ2c

λ1c

λ1

▲ 5. Beamforming in MAC.

h1[t]

h1[t] h2[t]

h2[t]
F[t]

p1

p2

t t

λ1

λ2
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Thus, for every front end, there corresponds an
ALOHA stability region (SF). For a class F of beam-
formers, we define the stability region as

S =
⋃

F∈F
SF.

We can then evaluate a number of design strategies
by examining their stability region. For this we assume
a special model where the MIMO channel is given by
H[t ] = VG[t ] where V is the deterministic and time
invariant array response, and G[t ] = diag
(G1[t ], · · · ,GN [t ]) is a diagonal matrix with the i th
entry modeling the fading gain of user i . We assume
that V is known at the receiver but the fading G i [t ]
varies from slot to slot.
▲ Beamforming via matched filtering. This is perhaps
the simplest form of beamforming. Without access to
queue and the fading states, the receiver beamformer is
the simple nonadaptive matched filter F = VH . The
matched filter approach is, of course, not optimal
unless there is only one user transmitting.
▲ Pseudo-MMSE beamformer. If the receiver assumes
that all users have packets in their queues, a minimum
mean-squared error  receiver beamformer can be imple-
mented either coherently (when fading states are
known) or noncoherently (when the fading states are
unknown). For the noncoherent beamformer, the
receiver matrix F does not vary from slot to slot.
Because the queues of the users are occasionally empty,
such a beamformer is not the true MMSE beamformer. 
▲ MMSE beamformer. If we do not have access to the
queue state but know instead the probability that a queue is
empty, then the true MMSE beamformer can be imple-
mented [29].
▲ The clairvoyant MMSE beamformer. We begin by
making the assumption that the access point knows
everything about the system from channel fading to
queue state of each user. Unrealistic as it is, the “clair-

voyant” receiver maximizes the SINR for each user and
gives an outer bound on the stability region. Since fad-
ing and queue state both vary from slot to slot, the
clairvoyant MMSE beamformer adaptively changes its
weight in each slot.

Figure 6 illustrates two cases in which these beam-
formers are used. In (a) is the case in which the two
users have equal power with well-conditioned channels.
In this case, the simple nonadaptive matched filter
receiver offers nearly as large a stability region as the
clairvoyant beamformer. This indicates that the gain of
using sophisticated signal processing may not justify the
complexity of implementations. In (b) is the case when
one user has significantly stronger power then the other.
The difference among these receivers becomes evident.
The simple matched filter offers a substantially smaller
stability region than that of the clairvoyant beamformer.
However, if both users operate in the lower-left corner
of the rate region, the matched filter beamformer will
perform reasonably well because it is often the case that
only one user has packets to transmit. The pseudo-
MMSE that assumes both users always have packets to
transmit can perform poorly in the high rate region of
the weaker user. In fact, despite its more complex imple-
mentation, the pseudo-MMSE becomes unstable when
user 1 exceeds the rate of 0.6 packets/slot. In this
region, the use of queue statistics becomes crucial. Note
also that when queue statistics are used, the stability
region of the true MMSE receiver is not much smaller
than the clairvoyant receiver.

Incorporating Channel State 
in Random Access
A prime example of cross-layer design is the use of chan-
nel-state information in random access. Classical random-
access protocols assume a static PHY layer. Even the
MPR channel model that reveals more PHY layer charac-
teristics is still a black box to the MAC layer. For wireless
networks, channel fluctuations at the PHY layer provide

▲ 6. Stability regions of several beamformers. (a) Equal power users. (b) Unequal power users (near-far effects). User 2 is the stronger one.
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valuable information for random access. For example, if a
user is in a deep fade and its transmission has little chance
of being decoded successfully, then it is better that the
user not transmit and wait for a better channel state.

We discuss in this section the use of channel state in
random access, specifically in ALOHA. The idea of using
channel state information was sparked by the work of
Knopp and Humblet [30] where they showed that,
under the information theoretic setting, maximizing the
sum-rate under the average power constraint leads to
scheduling only the best user to transmit. Exploiting
channel state information induces multiuser diversity,
and the performance improves with the increase of the
number of users [31], [32]. Decentralized use of chan-
nel state was investigated by Telatar and Shamai under
the metric of sum-rate [33]. Qin and Berry [34] pro-
posed the use of channel state information to vary the
transmission probability in ALOHA. They analyzed the
system under the collision model, and demonstrated the
effect of multiuser diversity on the throughput.

Opportunistic ALOHA
Consider again the ALOHA random access shown in
Figure 7 where the channel between the node and the
access point has random fading gain γ with cumulative
distribution F (γ ). Suppose that the access point broad-
casts a beacon, and each user measures the signal
strength γ . Assuming reciprocity, the node transmits
with probability s (γ ), which is a function of its own
channel state. What then should be the best transmission
probability s (·) that maximizes the stable throughput?

The use of channel state at the transmitter creates an
“illusion” at the receiver. For example, if all the users
transmit only if their channel gain is greater than a
threshold γ0, then the receiver will never receive signals
from those users with poor channel states, and the
reception performance is only determined by the group
of strong users (users with channel state greater than
γ0)). In other words, by allowing the transmission prob-
ability to depend on the channel state, the prior channel
distribution F (γ ) given by nature is shaped into a dif-
ferent a posteriori channel state distribution G (γ ).
Conditioned on a user transmitting [with probability
s(γ )], the a posteriori distribution (probability density
function as viewed by the receiver) of the channel is

dG (γ ) = dF (γ )s (γ )∫
s (γ )dF (γ )

.

The key point is that the reception performance is
determined not by the prior channel distribution F but
by the a posteriori distribution G , which can be
designed with a judicious choice of s (γ ).

For example, for the MPR reception model given in
(1), the average number of successfully received packets
given that k users transmit is then Ck(G ), which is a
function of the a posteriori distribution G that can be
manipulated by the transmission probability sn(γ ),

where n denotes the size of the network. It can then be
shown [35] that an n user ALOHA system is stable if
the total arrival rate R satisfies

R <

n∑
k=1

(
n
k

)(
1 − psn

)n−kpk
sn

Ck(G )
�= λn(sn), (4)

where psn = ∫ ∞
0 sn(γ )dF (γ ) is the unconditional prob-

ability that a node transmits. If the inequality is
reversed, the system becomes unstable. The design of
transmission control sn(γ ) affects both psn and Ck(G )

and therefore the maximum throughput.
Optimizing the maximum throughput (λn) for n users

over all possible transmission probability functions
[sn(·)], is in general, difficult. For large networks, howev-
er, it is more appropriate to consider the asymptotic
throughput λ∞(sn) = lim infn→∞ λn(sn). For a specific
class of transmission controls [35], it can be shown that
the maximum asymptotic stable throughput has the form

λ∞ = sup
x ,G

e−x
∞∑

k=1

x k

k!
Ck(G ), (5)

where x is a design parameter that regulates the aver-
age number of transmissions per slot and G the a pos-
teriori channel distribution. Thus, the problem of
choosing the optimal transmission probability becomes
selecting the best a posteriori channel distribution G .
We next apply this strategy to large-scale sensor net-
works, where the benefit of exploiting channel state for
random access becomes evident.

Opportunistic ALOHA 
in Large-Scale Sensor Networks
Consider the problem of information retrieval in a large-
scale sensor network. Suppose that the PHY layer uses
orthogonal CDMA with K codes, and each sensor choos-
es randomly one of the orthogonal codes for transmission.
We assume that there is a mobile access point which trav-
els over the sensor network sending beacons to sensors, to
collect the observed data as shown in Figure 8. Each
sensor synchronizes with the beacon, measures the

▲ 7. Opportunistic ALOHA.
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strength of the beacon γ , and transmits opportunistically
with probability sn(γ ), where n is the size of the network.

At the mobile access point, a bank of matched filters
is used; the transmission of a sensor is successful if its
channel gain γ is such that the SINR at the receiver
exceeds a certain threshold β. If β > 1, then at most
one packet can be received successfully per orthogonal
code [18]. It is therefore clear that the maximum
throughput achievable from such a model is at most
the spreading gain K . A centralized scheduler could
easily achieve such a throughput by choosing the top
K users for transmission.

Interestingly, the throughput of K packets per slot can
in fact be closely approximated by opportunistic ALOHA.
Suppose that the prior channel state has the Rayleigh dis-
tribution. By choosing the transmission control

sn(γ ) =
{

min{ δPT e γ/PT

γ δ+1
x
n , 1}, γ > γ0

0, otherwise

with sufficiently small γ0, one can show [35], [36] that
the a posteriori channel distribution has a heavy tail dis-
tribution with rolloff δ. Again x is the average number
of transmissions per slot. By setting δ small and letting
the average number of transmitting users x be suffi-
ciently large, there will be a user with channel gain sig-
nificantly larger than the other transmitting users for
each orthogonal code. Thus, one packet will be success-
fully received for each code, and the overall throughput
will be equal to that of the centralized scheduler.

A less obvious result (and one more relevant for
low-power sensor networks) is that the throughput K
can be achieved with arbitrarily small transmission
power PT . The price paid for this is that there must be
enough sensors in the network and the access point
must be mobile to provide a rich fading environment.
Apart from channel state, the protocol can be used to
incorporate other parameters like location into the
transmission probability. It is possible to incorporate
such information either using the actual realization of
the parameter or using its distribution function [36].

An interesting feature of sensor networks is the pos-
sibility of collaborative transmission, where all sensors
decide upon the transmission of a particular message.
In such a situation, it is possible to design cross-layer
coding schemes for reliable transmission by embedding
coding in the random access. Examples of such
schemes are discussed in [36].

Conclusion
We presented a cross-layer view for roles of signal pro-
cessing in random access and vice versa. Our discus-
sion is by no means comprehensive and is meant to
stimulate interest in what we believe to be a promising
research area. (See also [37].) For example, the idea of
cross-layer design applies also to the PHY layer
described in an information theoretic setting, taking
the view that the PHY layer provides an information
flow determined by power allocations and scheduling.
A particular relevant paper is by Telatar and Gallager
[38] where the stability of the multiaccess systems is
analyzed using the processor share model. See also the
paper by Berry and Yeh [39].

The proliferation of various communication devices
makes the sharing of wireless medium and coping with
interference from coexisting communication systems
inevitable. In a wireless world where connections are ad
hoc and users asynchronous, signal processing will be
crucial for efficiency and reliability. A key point we hoped
to make in this article is that the design of signal process-
ing algorithms must take into account the role of MAC
and the nature of random arrivals and bursty transmis-
sions. It is our hope that cross-layer design will provide a
few useful ideas as we tread this uncharted path.
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[16] S. Ghez, S. Verdú, and S. Schwartz, “Stability properties of slotted
ALOHA with multipacket reception capability,’’ IEEE Trans. Automat.
Contr., vol. 33, pp. 640–649, July 1988.

[17] M. Zorzi and R. Rao, “Capture and retransmission control in mobile
radio,’’ IEEE J. Select. Areas Commun., vol. 12, pp. 1289–1298, Oct. 1994.

[18] B. Hajek, A. Krishna, and R.O. LaMaire, “On the capture probability for
a large number of stations,’’ IEEE Trans. Commun., vol. 45, 
pp. 254–260, Feb. 1997.

[19] Q. Zhao and L. Tong, “A multiqueue service room MAC protocol for
wireless networks with multipacket reception,’’ IEEE/ACM Trans.
Networking, vol. 11, pp. 125–137, Feb. 2003.

[20] Q. Zhao and L. Tong, “A dynamic queue protocol for multiaccess wire-
less networks with multipacket reception,’’ IEEE Transactions on Wireless
Communications, to be published, http://acsp.ece.cornell.edu/pubJ.html.
See also Proc. 2000 Asilomar Conf. Sig., Sys., and Computers. 

[21] V. Naware, G. Mergen, and L. Tong, “Stability and delay of finite user
slotted ALOHA with multipacket reception,’’ IEEE Trans. Inform. Theory,
to be published, http://acsp.ece.cornell.edu/pubJ.html. See also Proc.
30th Allerton Conf. Communications, Control, and Computing, Monticello,
IL, Oct. 2002.

[22] L. Kleinrock, Queueing Systems Volume II: Computer Applications. New
York: Wiley, 1976.

[23] J. Silvester and L. Kleinrock, “On the capacity of multihop slotted
ALOHA networks with regular structure,’’ IEEE Trans. Commun., vol. 31,
pp. 974–982, Aug. 1983.

[24] G. Mergen and L. Tong, “Stability and capacity of wireless networks with
probabilistic receptions,’’ IEEE Trans. Inf. Theory, to be published,
http://acsp.ece.cornell.edu/pubJ.html. See also Proc. 2002 Conf.
Information Sciences and Systems, Princeton, NJ, March 2002. 

[25] T. Cover and J. Thomas, Elements of Information Theory. New York:
Wiley, 1991.

[26] R.M. Loynes, “The stability of a queue with non-independent inter-arrival
and service times,’’ Proc. Cambridge Philos. Soc., vol. 58, pp. 497–520, 1962.

[27] J. Massey and P. Mathys, “The collision channel without feedback,’’ IEEE
Trans. Inform. Theory, vol. 31, pp. 192–204, Mar. 1985.

[28] V. Anantharam, “The stability region of the finite-user slotted ALOHA
protocol,’’ IEEE Trans. Inform. Theory, vol. 37, pp. 535–540, May 1991.

[29] V. Naware and L. Tong, “Using queue statistics for beamforming in
ALOHA,’’ in Proc. Asilomar Conf. on Signals, Systems and Computers,
Monterey, CA, Nov. 2003, pp. 212–215.

[30] R. Knopp and P. Humblet, “Information capacity and power control in
single cell multi-user communications,’’ in Proc. Intl Conf. Comm., Seattle,
WA, June 1995, pp. 331–335.

[31] D.N.C. Tse and S.V. Hanly, “Multiaccess fading channels : I polymatroid
structure, optimal resource allocation and throughput capacities,’’ IEEE
Trans. Inform. Theory, vol. 44, pp. 2796–2815, Nov. 1998.

[32] P. Viswanath, D.N.C. Tse, and R. Laroia, “Opportunistic beamforming
using dumb antennas,’’ IEEE Trans. Inform. Theory, vol. 48, pp.
1277–1294, June 2002.

[33] I.E. Telatar and S. Shamai, “Some information theoretic aspects of decen-
tralized power control in multiple access fading channels,’’ in Proc. Info.
Theory and Networking Workshop, Piscataway, NJ, 1999, pp. 23–23.

[34] X. Qin and R. Berry, “Exploiting multiuser diversity in wireless ALOHA
networks,’’ in Proc. Aller ton Conf. Communication, Control and
Computing, Allerton, IL, Oct. 2001, pp. 793–794.

[35] S. Adireddy and L. Tong, “Exploiting decentralized channel state infor-
mation for random access,’’ IEEE Trans. Information Theory, to be pub-
lished. See also Tech. Rep. ACSP-TR-11-02-01, Cornell University, Nov.
2002. http://acsp.ece.cornell.edu/pubR.html.

[36] P. Venkitasubramaniam, S. Adireddy, and L. Tong, “Sensor networks with
mobile agents: Optimal random access and coding,’’ IEEE J. Sel. Areas in
Comm.: Special Issue on Sensor Networks, to be published. http://acsp.ece.
cornell.edu/pubJ.html.
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