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Abstract. The resonant modes of sessile water drops on a hydrophobic substrate subjected to a small-
amplitude lateral vibration are investigated using computational fluid dynamic (CFD) modeling. As the
substrate is vibrated laterally, its momentum diffuses within the Stokes layer of the drop. Above the Stokes
layer, the competition between the inertial and Laplace forces causes the formation of capillary waves on
the surface of the drop. In the first part of this paper, the resonant states of water drops are illustrated
by investigating the velocity profile and the hydrostatic force using a 3d simulation of the Navier-Stokes
equation. The simulation also allows an estimation of the contact angle variation on both sides of the drop.
In the second part of the paper, we investigate the effect of vibration on a water drop in contact with a
vertical plate. Here, as the plate vibrates parallel to gravity, the contact line oscillates. Each oscillation is,
however, rectified by hysteresis, thus inducing a ratcheting motion to the water droplet vertically downward.
Maximum rectification occurs at the resonant states of the drop. A comparison between the frequency-
dependent motion of these drops and the variation of contact angles on their both sides is made. The paper
ends with a discussion on the movements of the drops on a horizontal hydrophobic surface subjected to an
asymmetric vibration.

PACS. 47.55.D- Drops and bubbles – 47.61.-k Micro- and nano- scale flow phenomena – 68.08.Bc Wetting

1 Introduction

Recently, Daniel et al. [1,2] studied the movements of liq-
uid droplets due to surface energy gradient in the presence
of wetting hysteresis. Basic observation was that small
liquid droplets do not move towards the more wettable
part of the gradient, because they cannot overcome the
force due to contact angle hysteresis. The hysteresis force
on a gradient surface is, however, spatially asymmetric,
its magnitude against the gradient being larger than that
along the gradient. If a periodic force is applied to the
drop, the force against the gradient is reduced whereas
it is enhanced along the gradient; consequently the drops
move with enhanced speeds towards the region of higher
wettability. The situation is somewhat similar to the
common observation that small water drops remain stuck
on window panes or on plastic drinking cups even though
they are attracted downward by gravity. The explanation
of this effect in view of the early works by Frenkel [3] and
others [4,5] lies, again, in wetting hysteresis. It is also a
common observation that slight tapping of these surfaces
often dislodges the water drops temporarily causing them
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to move downward, as the drops overcome the effect of
hysteresis. The relationship between vibration and wet-
ting hysteresis has been studied systematically by several
investigators [6–9]. The general conclusion of these studies
is that the wetting hysteresis can be partially or fully miti-
gated by vibration. This effect was used by Daniel et al. [1,
2] to induce motion of small drops on flat surfaces. Several
other authors [10–12] have also demonstrated similar
effects with an asymmetrically rough surface. In all these
studies it has been found that matching of the forcing
frequency with the natural frequency of drop vibration is
critical to obtaining maximum rectification of the periodic
disturbances by any asymmetric property of the surface,
be it asymmetric roughness or wettability gradient.

The resonant frequencies of vibration of sessile or pen-
dant liquid drops have in the past been studied exten-
sively [13–23] due to their relevance to various techno-
logical processes, such as liquid–liquid extraction, syn-
thesis of ceramic powders, crystal growth in micrograv-
ity, and the measurement of dynamic surface tension to
name a few. The first basic result of oscillation of free
liquid drops dates back to Kelvin [13] and Rayleigh [14].
Later Lamb [15], ignoring the viscous damping in the drop,
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developed a general expression for the different vibration
modes of a free liquid drop as follows:

ω =

√

γ

3πm
l(l − 1)(l + 2) , (1)

where ω is the resonant frequency, l is an integer value of
2 or higher, γ and m are the surface tension and mass of
the drop, respectively. Later research by Strani and Sa-
betta [24] showed that a drop in partial contact with a
surface has an extra low-frequency mode related to the
center-of-mass oscillation. These authors [24] also showed
that the solid support could also raise slightly the resonant
frequencies of Rayleigh modes. Even though extensive ef-
forts have been made to model the oscillation of drops
in partial contact with a substrate undergoing vertical vi-
bration, similar studies for the case of a drop undergo-
ing lateral vibration are rather scanty. Nevertheless, a few
recent studies [25–27] have made significant advances to
this important problem. Lyubimov et al. [25] provided an
elegant solution to the lateral oscillation of an inviscid
drop by taking into account the oscillation of contact line.
These authors predicted a low-frequency rocking vibration
(rocking mode) of the drop in contact with a solid surface
as well. Celestini and Kofman [26] analyzed this rocking
mode quantitatively and compared their predictions with
experimental observations. Moon et al. [27], on the other
hand, identified a new mode associated with the rotational
motion of the drop subjected to lateral oscillation.
Although not studied for lateral vibration, Noblin et

al. [28] carried out a systematic study of the effect of ver-
tical vibration of large water drops on a hydrophobic sur-
face. These authors observed two types of behavior. At low
amplitude, the contact line remains pinned and the drop
presents various shapes, whereas at higher amplitude, the
contact line exhibits an oscillatory motion by overcoming
hysteresis. This type of oscillation, in the case of lateral
vibration, leads to a net translation of the drop when the
symmetry is broken either by hysteresis [1,2,10–12] or in-
ertial forces [29].
In this paper, we investigate the resonant modes of

a sessile water drop undergoing a lateral vibration us-
ing a 3d numerical simulation of Navier-Stokes equation.
The velocity profile, hydrostatic force, and contact angle
variation are investigated to identify the resonant states.
We are particularly interested in finding out how much
the contact angles of both sides of the drop differ and
how they depend on the frequency of vibration, as it is
this difference of the contact angles that determines the
force and velocity of drops on surfaces. Finally, we attempt
to make a qualitative comparison between the frequency-
dependent contact angles of the vibrating water drop and
its frequency-dependent motion induced by gravity. Fi-
nally we discuss a special case of drop motion induced by
asymmetric vibration.

2 Mathematical formulation

We consider the oscillation of a sessile water drop vibrated
parallel to the substrate as shown in Figure 1. When con-

R

Vibration

x

z

min
y

x

z

y
max

R

x

z

min
y

x

z

y
max

θ

θ
θ

R

Vibration

x

z

min
y

x

z

y
max

R

x

z

min
y

x

z

y
max

θ

θ
θ

 

Fig. 1. Schematic of an oscillating drop on a vibrating sub-
strate. The undisturbed profile of the drop is shown by the
solid line, whereas the disturbed profile is shown by the dashed
line. The contact line is assumed to remain pinned. The drop
has an initial contact angle θ. θmax and θmin are, respectively,
the maximum and minimum contact angles exhibited by the
vibrating drop.

tact angle hysteresis is significant and the external force
is sufficiently weak, the contact line remains pinned, but
the water drop deforms. In order to elucidate the dynam-
ics of the drop deformation, we used a FLUENT pack-
age to implement the numerical analysis, in which the 3d
Navier-Stokes and continuity equations are solved using
a well-established volume of fluid (VOF) model. Here we
provide a brief description of the VOF model based on the
detailed discussions of references [30] and [31]. In the VOF
model, a single Navier-Stokes equation is solved along with
the continuity equation for a domain comprising two fluid
phases, which are water and air in our case. These equa-
tions are solved in conjunction with an extra VOF advec-
tion equation, in which a variable α, denoting the volume
fraction of one of the phases is introduced. α = 1 signifies
that a given computational cell is filled with one of the
phases (i.e. water), whereas α = 0 signifies that the cell
is filled with the other (air). The interface is tracked by
the condition 0 < α < 1. The variables and properties
of a computational cell are characterized by the volume-
average values of the phases. The 3d Navier-Stokes, con-
tinuity, and VOF advection equations used to solve the
problem of the oscillating drop are as follows:

∂

∂t
(ρv) +∇ · (ρvv)=−∇p+∇·[η(∇v+∇v

T )]−ρgk, (2)

∂ρ

∂t
+∇ · (ρv)=0, (3)

∂α

∂t
+v · ∇α=0, (4)

where v = (u, v, w) and p are velocity vector and pressure.
ρ = ρwα + ρa(1 − α) is the density in the computational
cell, ρw and ρa being the density of water and air, re-
spectively. η = ηwα + ηa(1 − α) is the viscosity in the
computational cell, ηw and ηa being the viscosity of wa-
ter and air, respectively. k = (0, 0, 1) is a unit vector in
the z-direction for horizontal vibration and k = (1, 0, 0) is
a unit vector in the x-direction for vertical vibration. In
order to account for the effect of the interface, a source
term f is added to the right side of equation (2), which
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Fig. 2. First four resonance modes of a vibrating water drop: (a) simulated images, (b) pressure contours, and (c) experimental
images. The first mode (n = 1) corresponds to the rocking mode. The second (n = 2), third (n = 3), and fourth modes
(n = 4) here correspond to the Rayleigh first, second, and third modes, respectively. In (b), the pressure decreases from red
color representing higher pressure to sky-blue representing lower pressure. The plate amplitude for these simulations is 0.5mm,
the diameter of the drop is 2mm and the equilibrium contact angle is 110◦. The images of the vibrating water drops as shown
in panel (c) were captured using a high-speed camera (Midas) at a frame rate of 2000. The drops were placed on a horizontal
silanized glass slide, which was vibrated along its long axis at an amplitude of 0.3mm [32]. The details of the apparatus used
for these studies have been described in references [2,29] and [33].

is a volume force originating from the surface tension and
curvature of the interface. This is the continuum surface
force (CSF) model as developed by Brackbill et al. [31]. f
is defined in the CSF model as

f = γ κ∇α (5)

where γ is surface tension, and κ is the curvature of in-
terface. According to equation (5), f is finite within a
computational cell that contains the interface. Away from
the interface it vanishes as ∇α = 0. In the CSF model, the
interface curvature is calculated according to the outward
unit normal vector n by

κ = −∇ · n, (6)

where n = −∇α/|∇α|. The interface interpolation algo-
rithm used in this study is the geometric reconstruction
scheme, which tracks the interface using a piecewise linear
approach as described in reference [30]. Using this scheme,
the water-air interface is assumed to have a linear slope in
each interface-containing computational cell. In the VOF
model, the cells that contains the interface are first located
by the condition 0 < α < 1. The position of the linear in-
terface relative to the center of the cell is then calculated

according to the volume fraction α and the unit normal
vector n.
The boundary conditions on the solid surface at z = 0

are the no-slip and the no-penetration conditions,

u = Up , v = 0, w = 0 (7)

where, Up is the velocity of the vibrating substrate. For
a sinusoidal periodic vibration, Up = 2πωA cos(2πωt), A
and ω being the amplitude of displacement and frequency
of vibration, respectively. In the VOF model, the contact
angle between the water and wall is defined by adjusting
the curvature of the surface and the unit normal vector in
the computational cells near a wall [30,31].
In our study, the numerical analysis was carried out

on a uniform rectangular mesh with the size of 40µm ×
40µm×40µm, which was found to be optimum in terms of
accuracy and computation time. We arrived at this mesh
size after experimenting with various mesh sizes of de-
creasing order until the simulation result no longer de-
pended on the mesh size. In the calculation, the pressure
and velocity are coupled with pressure-implicit with split-
ting of operator (PISO) algorithm, which uses a guess-
and-correct procedure for the calculation of pressure and
a high degree of approximation relation between pressure
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and velocity correction. A 2nd-order upwind scheme was
used for the discretization of the model equations, which
calculates the momentum quantity at the cell face from
the value of the upstream cell using a second-order linear
interpolation scheme [30].

3 Results and discussion

3.1 Drops on a vibrating horizontal surface

We first discuss the case where the water drop vibrates
on a horizontal surface, i.e. the direction of vibration is
perpendicular to that of gravity. After discussing various
ways to identify the natural resonant frequencies of a liq-
uid drop, we discuss in the next section the case of the
drop on a vibrating vertical surface in which the drop
moves down by gravity. In Section 3.3, we briefly discuss
the drop motion on an asymmetric vibrating surface.
By varying the vibration frequency, the resonant

modes of a water drop can be easily identified from the
phase contour of the drop at different times. The shapes of
a water drop at various resonant modes as obtained from
the CFD simulation are compared with those obtained
experimentally in Figure 2.
Here the first mode (n = 1) corresponds to the rocking

vibration. The second (n = 2), third (n = 3), and fourth
(n = 4) modes correspond to the Rayleigh first (l = 2),
second (l = 3), and third (l = 4) modes, respectively.
At the Rayleigh modes, regular capillary waves appear on
the drop surface with its crests varying with the resonant
modes. The pressure contours (Fig. 2b) also clearly high-
light the different higher-pressure spots corresponding to
various modes.
The understanding of the dynamics of a laterally os-

cillating drop can begin with the close observation of the
profile of the horizontal velocity along the vertical direc-
tion (Fig. 3). The velocity profile for a 2mm size drop cor-
responding to the vibration frequency of 130Hz (Fig. 3)
shows three characterized regions: the Stokes layer region
(∼ (2µ/ρω)1/2), the free-surface region, and a sublinear
velocity gradient region. Within the Stokes layer, the fluid
has a very large velocity gradient due to the diffusion of
the substrate momentum. Above this layer, the fluid ex-
periences an inertial force, which causes the drop to de-
form. The deformation is characterized by the oscillation
of the center of mass, which leads to a contact angle dif-
ference between two sides of the drop (Fig. 1). The defor-
mation is also associated with an increase of the surface
area of the drop and the variation of the local curvature
along the drop surface. Thus a restoring force arises due
to the Laplace pressure acting inside the deformed drop,
which attempts to decrease the surface area and restore
the drop to its original shape. Competition of these two
forces causes capillary waves to develop on the free surface.
As Laplace pressure varies according to the local curva-
ture, the velocity profile in the free-surface region shows
an oscillating behavior. The drop performs something like
a swinging oscillation of a one-end pivoted spring in the
sublinear velocity gradient region. The drop deformation
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Fig. 3. Horizontal-velocity profile along the vertical direction
in the central (x = 0 and y = 0) part of the drop at differ-
ent times. These simulations were carried out with a drop of
2mm diameter at a vibration frequency of 130Hz. The plate
amplitude and the equilibrium contact angle are 0.5mm and
110◦, respectively. The liquid-solid interface is at z = 0. Here,
the dimensionless velocity, U = u/U∗

p , U
∗

p being the maximum
velocity of the plate (2πAω). The dimensionless vertical coor-
dinate Z = z/H, where z is the dimensional vertical coordinate
and H is the equilibrium height of the drop. The difference of
the interface position is due to the evolving shape of the drop
at different times. This plot shows that the momentum dissi-
pation is confined within the Stokes layer (∼ (2µ/ρω)1/2). The
velocity profile of an oscillating drop can be roughly divided
into three regions: Stokes layer, surface layer, and a sublinear
velocity gradient region.
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Fig. 4. The horizontal-velocity gradient along the vertical di-
rection at different planes inside a vibrating drop versus the
vibration frequency. U and Z are the dimensionless velocity
and vertical distance, respectively. ω∗ = (γ/m)1/2, where m is
the mass of the drop. These are averages of maximum values
of dU/dZ obtained from several cycles, which are calculated
at various values of Z as indicated in the figure. All these
positions are outside the Stokes layer, and in the sublinear
velocity gradient region. At resonant frequencies, the drop ex-
periences larger deformation, thus larger velocity gradient [34].
The first three resonant frequencies are around 60Hz, 130Hz,
and 290Hz, respectively.
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Fig. 5. The hydrostatic force (integration of pressure gradi-
ent over the entire drop) for a water drop of 2mm diameter
as a function of the vibration frequency. The dimensionless
hydrostatic force F = F ∗/mg, where F ∗ is the dimensional
hydrostatic force, m is the mass of the drop as defined in Fig-
ure 4 and g is the gravitational acceleration. ω∗ is defined in
the caption of Figure 4. The figure shows that the hydrostatic
force has minima at the resonant frequencies.

can be characterized by the amplitude of this swinging os-
cillation, which can be quantitatively estimated from the
velocity gradient. Moreover, one can compare the veloc-
ity gradients at different vibration frequencies to identify
the resonant states. Figure 4 shows the vertical gradient
of the horizontal velocity (dU/dZ) for a 2mm diameter
water drop as a function of the vibration frequency. As ex-
pected, the velocity gradient dU/dZ exhibits a sinusoidal
oscillation at the steady state. The dU/dZ data reported
in Figure 4 are the average maximum over several cycles
at a specific frequency. All the three positions reported in
Figure 4 are outside the Stokes layer, but are in the sub-
linear velocity gradient region. It is evident from the data
summarized in Figure 4 that the drop undergoes larger de-
formations at resonant frequencies compared to the non-
resonant frequencies. Figure 4 identifies three resonant fre-
quencies at 60Hz, 130Hz, and 290Hz, respectively.
At any given instance, the inertial force of the entire

drop is balanced by the pressure (hydrostatic) and viscous
forces as shown in equation (8), which is the volume inte-
gral form of equation (2) (ignoring the gravitational term
for horizontal vibration):

ρ

(
∫

V

vtdV +

∫

V

(v · ∇)vdV

)

=

−

∫

V

∇pdV +

∫

V

∇ ·
[

η
(

∇v +∇v
T
)]

dV. (8)

Numerical simulation shows that all the three terms of
equation (8), i.e. the inertial force (the term on the left),
the hydrostatic force (first term on right), and the viscous
force (second term on the right), change at resonance, with
the hydrostatic force varying with a different phase than
the other two forces. While any of the above forces can
be used to identify the resonance modes of a drop, we use
the hydrostatic force to achieve this goal. Numerical sim-
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Fig. 6. The experimental and computed resonant frequencies
of water drops as a function of ω∗ or the mass of the drop. The
open symbols correspond to the experimentally obtained data,
which were reported previously by Daniel et al. [2,29,33]. The
closed symbols correspond to the frequencies obtained from
the CFD simulations for water drops of different masses (thus
for different values of ω∗). The closed-diamond, closed-square,
and closed-triangle symbols correspond to the frequencies ob-
tained from the calculation of the hydrostatic force (as shown
in Fig. 5). The closed-circle symbols correspond to the fre-
quencies from the calculation of dU/dZ (as shown in Fig. 4).
Some of the simulated data calculated from two ways collapse
together. The solid lines correspond to the first and second
Rayleigh modes (Eq. (1)). The dashed line corresponds to the
linear regression through the points corresponding to the ex-
perimental rocking-mode data.

ulations show that the hydrostatic force exhibits minima
at resonance frequencies as shown in Figure 5. These min-
ima are due to the fact that the pressure gradient in the
Stokes layer is at 180◦ out of phase with that above the
Stokes layer at resonance. Away from the resonance, this
phase difference is less than 180◦. This results in the max-
imum cancellation of the hydrostatic forces in the two re-
gions at resonance, but not at non-resonance frequencies.
In Figure 5, the hydrostatic force is non-dimensionalized
by dividing it with the weight of the drop instead of Aω2,
although non-dimensionalization with the latter would be
a more logical thing to do. The objective here is to pro-
vide an idea of the magnitude of the hydrostatic force in
comparison to the weight of the drop and to show that
the position of the resonance frequency does not depend
on the choice of either the constant amplitude A, constant
Aω, or constant Aω2 criterion. We, however, find that the
plot with the constant Aω allows us to identify the peak
position most clearly, which is therefore used in the sub-
sequent analysis.

The resonance frequencies obtained from the max-
ima of the dU/dZ values (Fig. 4), however, are in good
agreement with those obtained from the minima of the
hydrostatic force (Fig. 5). These data are summarized
in Figure 6. As expected from equation (1), the reso-
nant frequencies decrease with the drop mass following
a square-root relationship, which conforms well to Lamb’s
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Fig. 7. Contact angle as a function of the vibration frequency
for a water drop. (a) θmax and θmin correspond to the maxi-
mum and minimum angles at both sides of the drop when the
equilibrium contact angle is 110◦. (b) The contact angle dif-
ference θmax − θmin for the equilibrium contact angle is 110◦

(solid squares) and 70◦ (solid diamonds). These calculations
were carried out with drops of the same mass (3.2× 10−6 kg).
The solid lines are used only as a guide to the eye.

analysis [15]. The CFD results also agree well with the ex-
perimental resonant frequencies of the drops as reported
earlier by Daniel et al. [2,29,33]. Moreover, both the ex-
perimental and theoretical data show good agreement
with the predictions based on Rayleigh equation (Eq. (1))
for the second and third modes (Rayleigh first and second
modes).

Another method to identify the resonance frequencies
was suggested by Celestini and Kofman [26], which is
based on the examination of the contact angles on both
sides of the vibrating drop. The difference of these angles
exhibits maxima at the resonance frequencies, which were
used by Celestini and Kofman [26] to identify the rocking
mode of vibration of liquid mercury on glass. We used this
approach to identify not only the rocking mode, but also
the higher modes by following the frequency-dependent
contact angles as obtained from the CFD simulated im-
ages of the oscillating drops. After capturing these images,
the contact angles were measured using an image analysis
program written in Matlab. As is the case with the velocity
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Fig. 8. Horizontal-velocity profile in the central (x = 0 and
y = 0) part of a drop on a vertically vibrating surface. U
and Z are defined in Figure 3. These calculations were carried
out with a 2µl size drop at a vibration frequency of 90Hz. The
plate amplitude and the equilibrium contact angle are 0.12mm
and 97◦, respectively. This figure shows that the drop deforms
more along the direction of gravity than against it. During
the vibration, the plate experiences a maximum acceleration
of 3.85m/s2, which is considerably lower than the magnitude
of the gravitational acceleration (9.83m/s2).

gradient, the contact angles on both the left and the right
sides of the drop exhibit sinusoidal oscillation at steady
state. θmax (maximum contact angle) and θmin (minimum
contact angle) reported in Figure 7a are the average maxi-
mum and minimum values of both left- and right-side con-
tact angles over several cycles. As anticipated (based on
the analysis of Celestini and Kofman [26]), both θmax and
θmin vary as a function of the vibration frequency. θmax

passes through maximum and θmin passes through mini-
mum values leading to large values for θmax− θmin at the
resonant frequencies. Thus, at the resonant frequencies,
the two sides of an oscillating drop experience maximum
contact angle differences. It is also important to notice
that the general pattern of the behavior of the oscillat-
ing drop is not too sensitive to the equilibrium contact
angle. For example, the resonant frequencies of a drop
(3.2 × 10−6 kg) on a surface of equilibrium contact angle
of 110◦ are about 4 to 8% lower than those obtained with
a drop of the same mass, but with a lower equilibrium
contact angle (70◦) (Fig. 7b).

In the simulation, it was assumed that the drop re-
mains pinned on the surface. In reality, when the contact
angle difference between two sides of the drop is larger
than the contact angle hysteresis, the drop would move
relative to the vibrating substrate. Since the drop experi-
ences larger contact angle difference at resonant frequen-
cies, one expects that the drop would overcome the hys-
teretic threshold force most readily at the resonant fre-
quencies and exhibit forward and backward motions rela-
tive to the vibrating substrate. With an asymmetric hys-
teresis or when an asymmetric inertial force acts on the
drop, the drop should translate on the substrate with max-
imum velocities at the resonant frequencies.
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Fig. 9. The resonant frequencies of water drops on both the
horizontal vibrating surface and the vertical vibrating surface
as a function of ω∗ or the mass of the drop. The closed symbols
correspond to the horizontally vibrating surface, whereas the
open symbols correspond to the vertically vibrating surface.
The solid lines correspond to the first and second Rayleigh
modes (Eq. (1)). The dashed line corresponds to the linear
regression through the points corresponding to the data of the
rocking mode for the drop on a horizontal vibrating surface.
ω∗ is defined in Figure 4.

3.2 Drops on a vibrating vertical surface

The CFD simulation of a drop on a vibrating vertical plate
(Fig. 8 inset) was carried out as before, except that the
gravity now acts parallel to vibration. During the first
half of the stroke, the inertial and the gravitational forces
jointly deform the drop, whereas during the next half of
the stroke, the inertial force is reduced by gravity. Overall,
the drop vibrates asymmetrically as is shown by the non-
symmetrical velocity distribution inside the drop during
the forward and reverse cycles (Fig. 8).
The resonance frequencies of the drop oscillating ver-

tically were determined as before from the integration of
the pressure gradient. The results summarized in Figure 9
show that these resonance frequencies are not noticeably
different from those of the horizontal vibrations. A sim-
ilar picture emerges from the contact angles of the drop
as well. Figure 10a plots the largest difference of the con-
tact angles for a 2µl drop on both sides of the drop as
a function of frequency. As expected, a larger difference
of the contact angles occurs when the drop trajectory is
downward as opposed to the upward movement. Although
the frequencies corresponding to the first, second and third
modes are not all that different from that of the horizontal
vibration, the amplitude of the drop vibration correspond-
ing to each resonance is higher for the case of vertical
vibration. Furthermore, the first mode (i.e. the rocking
mode) for the case of asymmetric vibration is consider-
ably stronger than the second mode, which is opposite to
the trend observed with the vibration on the horizontal
surface.
Apparently, some of the gravitational energy is chan-

neled to the vibration modes of the drop during this asym-
metric vibration. Furthermore, the strengthening of the
first peak relative to the second is indicative of the en-
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Fig. 10. (a) Simulated contact angle difference as a function
of the vibration frequency for a 2µl water drop subjected to
a vibration on a horizontal (solid diamond) and vertical sur-
face. Here, the solid triangle and solid square correspond to
the downward and upward movements of the drop, respec-
tively. (b) The experimental velocities of a 2µl drop moving
vertically downward on a vibrated surface. The surface was
a silanized silicon wafer. In all cases, the maximum vibration
velocity (2πAω) is 69mm/s, while the maximum plate accel-
eration changes from 1.3m/s2 at 30Hz to 13.0m/s2 at 300Hz.
The average of the advancing and receding contact angles at
rest is 97◦. All the simulations of panel (a) were performed
with the equilibrium contact angle of 97◦. The solid lines are
used only as a guide to the eye.

ergy exchange between the two modes. These simulation
results, however, could not be confirmed in the same way
as that of the horizontal vibration since the large drops
move down by gravitational force and the small drops
move downward in the presence of vibration. The simu-
lation results, however, have important implications with
respect to the vibration-induced motion of drops on verti-
cal surfaces [35], which provide an indirect test of the sim-
ulation results. In order to understand the implications of
these results, we have conducted a simple experiment with
a small liquid droplet on a homogeneous surface inclined
vertically. The surface is a silanized silicon wafer, which
exhibits advancing and receding contact angles with water
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of 104◦ and 89◦ (15◦ hysteresis), respectively. Small drops
of water (∼ 2µl) remain stuck to this surface because
the hysteresis force wins over the gravity force. However,
as the plate is vibrated, the contact line oscillates asym-
metrically. Each oscillation is rectified [36] by hysteresis
and the drop moves downward with a speed depending
on the frequency of vibration. When the drop speed is
plotted as a function of frequency, clear velocity maxima
could be identified at the resonance modes of vibration.
Figure 10b summarizes these results, where the velocity
(V ) of the drop is non-dimensionalized by dividing it with
the capillary velocity (γ/η) to yield the capillary number
Ca(V η/γ). It should be noted that the actual velocity of
a drop varies with time. V represents the average drift
velocity.

In agreement with simulation results, the most in-
tense velocity peaks correspond to the first and third res-
onances, respectively. As a first-order approximation, the
velocity of the drop (or Ca) is proportional to the dif-
ference of the cosines of dynamic receding and advanc-
ing angles [37,38]. However, as discussed in reference [29],
some amount of wetting hysteresis is necessary to break
the symmetry of any periodic pulse. Thus, for the dis-
cussion to follow, we assume that a small hysteresis is
intrinsically present at the contact line. The discussion to
follow is not correct in its detailed features, but it pro-
vides an approximate framework with which to examine
the droplet motion. We consider that the ultimate effect of
all the hydrostatic, inertial and viscous forces is to modify
the local contact angles on the two sides of the drop. Let
θ be the intrinsic Young’s contact angle, and θd,r and θd,a

be the receding and advancing contact angles of the drop
during the first half of the downward stroke of the drop.
If θd,a > θ and θd,r < θ, uncompensated forces would act
on the advancing and receding edges, the magnitudes of
which are γ(cos θ−cos θd,a) and γ(cos θd,r−cos θ), respec-
tively, per unit length. The net uncompensated force ex-
perienced by the drop is ∼ γR(cos θd,r−cos θd,a), R being
the base radius of the drop. If most of the resistance to the
motion of the drop arises from the contact line region, the
viscous drag force experienced by the drop is proportional
to ηRV . Balance of the above two forces leads to Cad ∼
cos θd,r − cos θd,a, where Cad is the capillary number cor-
responding to the downward motion of the drop. During
the other half of the stroke, Cau ∼ cos θu,r−cos θu,a (here
the subscript u denotes upward). Note that in the above
expressions, both θd,r and θu,r have to be smaller than
the intrinsic receding angle (θr), and both θd,a and θu,a

have to be larger than the intrinsic advancing angle (θa)
before the drop moves on the surface. The net velocity is
obtained from the difference of the above two terms, i.e.
Ca ∼ (cos θd,r − cos θd,a)− (cos θu,r − cos θu,a).

In Figure 11, the experimentally obtained capillary
numbers are compared with the driving force [(cos θd,r −
cos θd,a)−(cos θu,r−cos θu,a)]. Again, the general trends of
both sets of data are very similar and the positions of the
experimentally obtained velocity peaks corresponding to
the first and third resonance show a very good correlation
with those of the driving forces. There is, however, a dis-
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Fig. 11. The experimental velocities (solid diamond) of a 2µl
water drop moving on a vibrating vertical surface are compared
with the characteristic driving force (solid square) as a function
of vibration frequency. Here, ∆(cos θr − cos θa) = (cos θd,r −
cos θd,a)− (cos θu,r − cos θu,a) (see Fig. 10a for the definitions
of subscripts.) The velocity as well as the forcing frequency are
non-dimensionalized as Ca and ω/ω∗, Ca is defined in the text
and ω∗ is defined in Figure 4. The solid lines are used only as
a guide to the eye.

crepancy. The computational analysis predicts a small ve-
locity peak corresponding to the second resonance, which
is absent in the experimental velocity spectrum. There
could be various sources for this discrepancy. First of all,
our experiments may not have the required sensitivity to
detect small differences of velocity to properly identify the
second peak. Secondly, the computational analysis has
been carried out with pinned contact line and by ignoring
wetting hysteresis. Hysteresis, which is the key to obtain-
ing rectification [29] of periodic pulses, also suppresses or
obliterates any excitation less than the threshold force.

For reasons related to hysteresis, there are some dif-
ferences between the numerically obtained contact angles
and those found experimentally. Figure 12 summarizes the
variations of the experimentally obtained contact angles
of the two sides of the drop for oscillation frequencies of
110Hz, 230Hz, and 310Hz, respectively. The velocity of
the drop is maximum at 110Hz (ω/ω∗ = 0.56) which cor-
responds to the first resonance mode. According to the
numerical simulation, the maximum difference of the con-
tact angles, at this frequency, should fluctuate between
+25◦ and −15◦, respectively. The experimental values, on
the other hand, fluctuate between +44◦ and −26◦, respec-
tively. In the presence of hysteresis, the drop undergoes
a larger deformation as one of the edges approaches the
advancing angle, which is larger than the equilibrium an-
gle, whereas the other edge approaches the receding angle,
which is smaller than the equilibrium angle. The driving
forces along both the downward and upward directions
are, however, reduced and the corresponding capillary
numbers are described by: Cad ∼ (cos θd,r− cos θd,a)−H,
and Cau ∼ (cos θu,r − cos θu,a) − H, respectively. Here
H signifies a hysteresis threshold that needs to be over-
come for the drop to move. The net capillary number is,
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Fig. 12. (a) Periodic rectification of the advancing and reced-
ing edges of a 2µl water drop on a vertical surface subjected to
a vibration frequency of 110Hz. The tracking of both edges of
the drop was performed with a high-speed camera at a frame
rate of 2000. The positions of both the advancing and receding
edges were performed relative to a fixed reference point. In each
cycle of vibration, both the advancing and receding contact line
oscillates on the surface, but with a net drift downwards. The
differences of the contact angles between the bottom and up-
per edges of the drop were estimated from the video frames
captured with a high-speed camera (2000 fps). Typical results
obtained for the vibration frequencies of 110Hz, 230Hz, and
310Hz are shown in panel (b).

however, given by the following equation:

Ca ∼
1

τ

∮

[(cos θr − cos θa)−H]dt, (9)

where τ is the period of oscillation. In equation (9), only
positive values of (cos θr − cos θa) − H are considered,
as the drop cannot move during the duration for which
(cos θr − cos θa) < H. We thus have stop-go events: the
drop moves when (cos θr − cos θa) > H, but it stops when
(cos θr−cos θa) < H. This jump discontinuity is important

in order to achieve a net drift motion of the drop as has
been discussed in reference [29]. It is possible that during
half of a cycle (cos θr−cos θa) > H, in which case the drop
would move downward. However, during the other half of
the cycle cos θr−cos θa < H, in which case there is no driv-
ing force on the drop, thus it remains stuck on the surface.
The evaluation of the cyclic integration needs to reflect the
above facts. However, if the drop moves relative to the sub-
strate in both the downward and upward directions, as is
the case at the first and third resonance frequencies, its net
drift velocity (expressed in terms of Ca) is approximately
given by the difference of Cad and Cau. In this case, the
hysteresis term H nearly cancels out and one obtains the
same expression as that on the non-hysteretic surface as
discussed in references [2] and [3]. Based on the advanc-
ing and receding contact angles (θd,r = 68

◦, θd,a = 113
◦;

θu,r = 73
◦, θu,a = 100

◦) on the right and left sides of the
drop, the term [(cos θd,r − cos θd,a)− (cos θu,r − cos θu,a)]
is estimated to be about 0.3 at the first resonance peak.
This leads to an estimate of the constant of proportion-
ality between the capillary number (Ca ∼ 0.00035) and
[(cos θd,r − cos θd,a) − (cos θu,r − cos θu,a)] as 0.0012. Us-
ing a similar approach, the above proportionality factor
at the third resonance is about 0.002. These proportion-
ality constants are indicative of the frictional resistance
experienced by the drop, a part of which originates at
the contact line. Recently, Daniel et al. [2] studied the
motion of liquid drops of various viscosities driven by a
gradient of the surface energy. From these studies, the
constant of proportionality between the capillary number
and the driving force (cos θa − cos θr) can be estimated
to be about 0.005. Using a correction factor that comes
from the fact that an oscillating drop on the average ex-
periences a driving force that is π times [39] lower than
[(cos θd,r−cos θd,a)−(cos θu,r−cos θu,a)], we expect a pro-
portionality factor between capillary number and driving
force to be 0.0016, which roughly corresponds to the num-
bers reported above. This should, nevertheless, be consid-
ered as a crude analysis at present as we have not con-
sidered the energy dissipation occurring within the thin
Stokes layer adjacent to the substrate.

Overall, the intense velocity peak at the first reso-
nance, as predicted by the numerical simulation, is consis-
tent with the experimental observation. However, as men-
tioned above, there are some disagreements between the
simulations and experiments, which are due to various rea-
sons. Most significantly, the base of the drop is pinned in
our simulation. With the simulated results obtained with
pinned drops, we assumed that the drop would move as
long as the maximum difference of the contact angles on
both sides of the drop is larger than hysteresis. Secondly,
the role of contact angle hysteresis has not been explic-
itly taken into account in our simulation. As mentioned
above, hysteresis should allow a much larger deformation
of the drop as one of its edge tries to attain the advancing
angle while the other edge tries to achieve the receding
angle, all of which resulting in a larger asymmetric vi-
bration. This larger asymmetry could excite the first res-
onance (i.e. the rocking mode) even more strongly, and
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Fig. 13. (a) The difference between the contact angles of the right and the left sides of a drop subjected to an asymmetric
vibration (see inset). These simulations were carried out with a small drop of 2mm diameter. The equilibrium contact angle is
110◦. Here, three resonant frequencies are observed at 60Hz, 130Hz, and 290Hz, respectively. Based on these contact angles,
it is expected that the drop would move forward when ω/ω∗ is about 0.40, but move backward when it is about 0.85. Another
reversal of drop motion is expected to occur at ω/ω∗ and 1.90. Panel (b) (adapted from Ref. [29] with a slight modification)
provides the experimental data of drop motion that is in qualitative agreement with the prediction of panel (a). Panel (c) shows
that two dissimilar-size drops indeed move in the opposite directions when excited by an asymmetric waveform (100Hz) of the
type shown in panel (a). ω/ω∗ of the smaller drop (∼ 0.68) corresponds to its second resonance mode, whereas that (∼ 1.35) of
the larger drop corresponds to the pre-resonance of the third mode.

suppress the second mode, as is found experimentally. Es-
timation of the intrinsic hysteresis is, however, a major
limitation of the problem, as the release of the contact line
from metastable energy barriers that gives rise to hystere-
sis may depend on vibration frequency as well.

3.3 Drop motion using asymmetric vibration: polarized
ratchet

The enhancement of the first resonance compared to the
second in the presence of an external force, such as grav-
ity, could lead to several interesting possibilities. If, for
example, a Maxwell stress or an inertial stress is set up
in the drop and if this stress is switched on and off with
a time-varying asymmetry, it may be possible to induce a
strong first resonance in one instance, but a stronger sec-
ond resonance in another instance. Thus, depending upon
the strengths of these external excitations, the drop may
be induced to go forward or backward. A situation some-
what like that speculated above was recently observed by
Daniel et al. [29,33]. These authors examined the fate of

a drop vibrated on a hydrophobic surface with an asym-
metric waveform. The particular waveform used by these
authors is either a sawtooth or an exponential fall/rise
wave that accelerates the plate fast in one stroke, but de-
celerates it slowly in the other. The resulting asymmetric
inertial force was rectified by hysteresis thus inducing a
motion of the drop on the surface. Daniel et al. [29,33]
observed that the direction of the motion of the drop de-
pends on the frequency of vibration and the size of the
drop. One of the most interesting observations was that
two drops of dissimilar sizes travel in the opposite direc-
tions at a given frequency. This is what we denote here as
a polarized ratchet. A plausible explanation of this effect
could be due to the asymmetric amplification of modes, as
is the case with a drop moving down by gravity. In order
to test this hypothesis, we carried out a numerical solution
of a drop on a surface undergoing asymmetric vibration
(fast linear rise and exponential fall of acceleration) using
the methodologies described in the above sections. The
motion of the vibrating plate resulting from such a wave-
form is shown in the inset of Figure 13a, which was input
in the simulation as a Fourier series. The contact angles of
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a small drop (2mm diameter) exhibited three resonance
modes at 60, 130 and 290Hz, respectively, which are the
same as those of symmetric periodic vibrations (Fig. 4).
Interestingly, however, the intensities of these modes dur-
ing the forward and the backward strokes exhibit an oscil-
latory behavior. For example, while the first rocking mode
is stronger during the forward stroke, the second mode is
stronger in the reverse stroke. Another reversal of order
occurs near the third resonance. The consequence of all of
these is that a drop of a given size should move in one di-
rection at its first resonance frequency, but in the opposite
direction at the second resonance. If the frequency is kept
constant, two different-size drops, the resonance frequen-
cies of which correspond to first and second modes, respec-
tively, move in opposite directions as shown in Figure 13c.

4 Conclusions

Numerical analysis of the 3d Navier-Stokes equation has
been useful in identifying the resonance modes of vibration
of a sessile drop on a hydrophobic surface. The vibration
mode can be identified in various ways, i.e. calculating the
velocity gradient, the net hydrostatic force across the drop
or just by finding the extreme values of the contact angles
on both sides of the drop. The resonant frequencies iden-
tified from these simulations are in good agreement with
the experimental results reported previously [2,29,33].
A remarkable finding of the simulations with a drop

on a vibrating vertical surface is that gravity enhances
the first resonant mode and weakens the second mode,
even though the positions of the resonance peaks do not
differ substantially from those observed with the horizon-
tal vibrations. These results are in qualitative agreement
with the experimental observations of drops moving down-
ward on a vibrating surface. When a drop is vibrated on a
horizontal surface with an asymmetric vibration, different
modes are asymmetrically amplified during the forward
and reverse strokes of a vibration cycle. These asymme-
tries lead to what we term as “polarized ratchet”, in which
drops of different sizes move in opposite directions.
The current analysis is however limited by the fact

that the contact line is pinned. In reality, the contact line
would slip on the surface whenever the dynamic angle is
larger than the advancing, or lower than the receding an-
gle. A detailed analysis of the problem by taking care of
the contact line slippage and contact angle hysteresis is a
natural extension of this study; however, all these param-
eters are non-linearly coupled to each other. If successfully
carried out, such an analysis would shed considerable light
on the vibrated motion [29] of liquid drops on surfaces due
to asymmetric hysteresis or inertial force on quantitative
terms.
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