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Abstract. When two thin soft elastomeric films are separated from each other, an elastic instability develops
at the interface. Although similar instability develops for the case of a soft film separating from a rigid
adherent, there are important differences in the two cases. For the single-film case, the wavelength of
instability is independent of any material properties of the system, and it scales only with thickness of
the film. For the two-film case, a co-operative instability mode develops, which is a non-linear function of
the thicknesses and the elastic moduli of both films. We investigate the development of such instability by
energy minimization procedures. Understanding the nature of this instability is important, as it affects the
adhesive compliance of the system and thus the energy release rate in the debonding of soft interfaces.

PACS. 68.35.-p Solid surfaces and solid-solid interfaces: Structure and energetics – 68.35.Gy Mechanical
properties; surface strains – 68.35.Np Adhesion

1 Introduction

When a thin elastic film is separated from a rigid flat
surface, its surface loses its planarity and subsequently
evolves to a fingering [1–3] or a worm-like pattern [4,5]
with a fairly regular spacing. The wavelength (λ) of this
instability varies linearly only with the thickness h [1–6],
but depends on no other property of the film. Studying the
properties of these pattern formations in elastic systems is
valuable, as it has been found recently that the cavitation
that grows as a result of elastic instability is fundamental
to understanding the nucleation and growth of crack of
soft materials in confined geometries [1–12]. Parallels to
the cavitation seen with these elastic systems have also
been discovered in some recent interesting experiments
with purely viscous liquids in confined geometries [13,14].

In the case of a single thin film bonded to a rigid sup-
port contacting or separating a rigid adherent, the elastic
instability is the direct result of the shear deformation
in the film. For an interfacial perturbation with a finite
amplitude, the energy stored in the film diverges in the
limit of infinitely long and vanishingly small wavelengths,
but has a minimum at a critical wavelength. Since the
net elastic deformation is a direct consequence of the dis-
placements of the film parallel and perpendicular to the
interface, the energy minimization does not involve the
film modulus. Only length scale of the problem is the film
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thickness, which determines the wavelength of instabil-
ity. What happens when the bonded thin film contacts
to and then separates from another thin compliant film
on a rigid support? In this case, we need to consider the
coupled deformations in both the films for a given surface
perturbation [15–17]. Since the energies in the two films
now have to be minimized for a common wavelength, the
vertical and parallel displacements of both the films are
non-linearly coupled to each other. Intuitively, there would
be a co-operative instability mode that minimizes the to-
tal elastic energies of the films simultaneously; thus one
would expect that the wavelength would be dependent on
the material properties of both the films in a non-linear
way. Thus, the exclusive dependence of the wavelength on
the film thickness as evidenced for a single film cannot
be expected for the case with two films and the problem
has to be solved more rigorously. In what is described be-
low, we tackle the problem in two ways. In the first case
(Case I ), we determine the scaling relation for the wave-
length with the modulus and the thickness of the two films
by considering the “separation” of the two films from in-
timate contact. In the second case (Case II ), we study
the “approach” of the two films towards each other. In
the latter case, the surfaces of the films undergo undula-
tions as soon as the stiffness of the adhesive (for example,
van der Waals) force acting across the films overcomes
the elastic stiffness of the films. This happens even before
the two surfaces come into intimate molecular contact, as
shown by the linear stability analysis of two approaching



2 The European Physical Journal E

(b) remote loading σ

λ

z

x

2a

Rigid substrate

Rigid

punchFilm 1 (E1)

Film 2 (E2, h2 « a)

(a)

h1 « a

L » a

(c) 1 mm

(b) remote loading σ

λ

z

x

2a

Rigid substrate

Rigid

punchFilm 1 (E1)

Film 2 (E2, h2 « a)

(a)

h1 « a

L » a

(c) 1 mm(c) 1 mm

Fig. 1. Schematic illustration of a confinement-induced instability between two elastic films in an axisymmetric probe tack
configuration. (a) The initial state where a rigid cylindrical punch having a thin elastic film (denoted by film 1) below it is
adhered onto another film (denoted by film 2) fixed at a rigid substrate. The lateral length scale a significantly exceeds the
thicknesses of the films. The physical properties of both films may widely differ from each other. (b) The wrinkled state: when
subjected to a normal load, the confined films deform with undulating patterns which have a characteristic wavelength λ.
(c) A typical image of the worm-like patterns observed in an optical microscope (bright regions indicate areas detached from
the substrate) and the corresponding two-dimensional FFT spectrum (inset to figure). The symmetric ring on the FFT image
corresponds to the dominant wavelength of the patterns, and the symmetry of the spectrum reflects the fact that the patterns
are distributed isotropically. Experimental parameters are h1 = 190µm, E1 = 2.7MPa, h2 = 130µm, and E2 = 1.3MPa, and
the resulting wavelength λ = 610µm.

surfaces [1,7]. We then compare this prediction with the
instability wavelengths obtained from two different exper-
iments. The analysis obtained from the Case I version of
the theory allows us to obtain a scaled thickness of the two
films in terms of their physical properties, with respect to
which both the experimental data and theoretical predic-
tions were compared. Finally, we show how the informa-
tion about these instabilities can be used to account for the
forces needed to pull off two such films from close contact.

2 Co-operative instability in two soft films

For Case I, we consider a model system, where a circu-
lar, thin elastomeric film bonded to a flat-ended cylindri-
cal probe is separated from another thin film bonded to
another rigid substrate (Fig. 1a). These films are made
of crosslinked poly(dimethylsiloxane) (PDMS) of vari-
ous elastic moduli. Because of their elastomeric proper-
ties, these films are effectively incompressible materials
(i.e., Poisson ratio ≈ 0.5), exhibiting linear elastic be-
havior at low enough strains. We consider that the speci-
mens are loaded in plain strain. Furthermore, we consider
that the pull-off of a circular thin film from a rigid sub-
strate and that of a cylindrical rigid punch from a thin
film are symmetric. This is a good approximation when
a/h1 � 1 and a/h2 � 1. Under an applied stress, we

consider that the two surfaces of the films (at z = 0)
undergo sinusoidal perturbations u1,z(x) = δ1 cos(2πx/λ)
and u2,z(x) = δ2 cos(2πx/λ), where u1,z and u2,z are the
displacements of the films in the z-direction and δ1 and δ2
are the amplitudes of the perturbations in the films. Here
and elsewhere 1 and 2 in the subscripts denote the upper
film and lower film, respectively. When subjected to an ap-
plied load or attractive inter-surface interactions of a criti-
cal strength [1,7], both films become unstable and form an
isotropic undulating pattern of wavelength λ � a, which
spans the entire surface of the films (Figs. 1b-c). These
patterns arise as the films cannot stretch in the normal di-
rection with the concomitant lateral Poisson contraction.
Thus, shear deformations must develop in the x and z di-
rections (Fig. 1b) of the interface causing the roughening
of the interface. During debonding, the wavelength of the
instability remains virtually unchanged, with its ampli-
tude growing gradually until separation occurs. Previous
theoretical works also show that although a small vertical
amplitude pattern first forms during a close (∼ 10 nm) ap-
proach of the surfaces due to the surface instability [1,7,
16,17], the pattern length scale remains largely unchanged
during a closer approach of the surfaces, as well as during
debonding [18,19].

The total energy of the system is given by the sum
of three contributions: the elastic strain energy UE of the
films, the work of adhesionWa, and the surface energy US
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of the undulated films. However, the adhesion energy effect
is neglected here, as it is relatively unimportant in the fact
that the interaction energy is conceptually independent of
the wavelength of the instability. Thus, the total energy
UT (energy/area) consists of the elastic strain energy and
the surface energy [1,7]:

UT ∼
∑

i=1,2

Eihi

[(
∂ui,z

∂x

)
+

(
∂ui,x

∂z

)]2

+
∑

i=1,2

γi

(
∂ui,z

∂x

)2

, (1)

where Ei, hi, and γi are the modulus, thickness, and sur-
face tension of films 1 and 2 (i = 1, 2), and ui,x and ui,z

are the components of the displacement field of the corre-
sponding films in the x and z directions (a local Cartesian
coordinate is denoted in Fig. 1b). The contribution of the
surface energy in equation (1) is very small for elastomers
of thickness in the range of micrometers as compared to
that of the elastic energy (i.e., γi/Eihi < 1), specifically in
physical systems where such instabilities are engendered.
Thus, we neglect the second term of equation (1) in com-
parison to the strain energy terms. Taking the character-
istic length scales as λ and hi along the x and z axes, the
amplitude of the perturbation in each film as δi, and con-
sidering longitudinal and transverse shear strains in both
the films, equation (1) in conjunction with the displace-
ment continuity equation (∂ui,x/∂x + ∂ui,z/∂z = 0) can
be written as

UT ∼ E1h1δ
2
1

(
1
λ
+
λ

h21

)2

+ E2h2δ
2
2

(
1
λ
+
λ

h22

)2

. (2)

To find the length scale of the problem, the main task
lies in minimizing UT with respect to λ. However, before
such minimization is attempted, we need a relationship
between δ1 and δ2, which can be accomplished by balanc-
ing the stresses in the modulated films. These stresses can
be obtained by taking the partial derivatives of UT with
respect to δ1 and δ2 and setting them to equal, i.e.,

E1h1δ1

(
1
λ
+
λ

h21

)2

= E2h2δ2

(
1
λ
+
λ

h22

)2

. (3)

Within the long-scale approximation, i.e., λ > h1, h2,
equation (3) reduces to

E1δ1
h31

∼ E2δ2
h32
. (4)

Substitution of equation (4) in equation (2) leads to the
following expression for the total elastic energy at a given
composite amplitude δ (= δ1 + δ2) of the films:

UT ∼ E1E2δ
2(

E1h32 + E2h31
)2

[
E2h

7
1

(
1
λ
+
λ

h21

)2

+E1h
7
2

(
1
λ
+
λ

h22

)2
]
. (5)
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Fig. 2. Contact mode of two elastic films of thicknesses h1 and
h2 and shear moduli µ1 and µ2 bonded to contactor and rigid
substrate, respectively. Surface roughening at the interface of
both the films is engendered as the initial separation distance
d0 is below a critical value.

Minimization of UT with respect to λ at a constant δ
yields

λ ∼
(
E1h

7
2 + E2h

7
1

E1h32 + E2h31

)1/4

. (6)

We have checked the validity of equation (6), and thus
the long-scale approximation, by numerically evaluating
the minimum energy UT after combining equations (2, 3).
Within the range of the thicknesses of the films and their
elastic moduli used in our experiments, numerical analysis
shows that, for a given δ, there exist one positive and one
negative real root of λ, all the other roots being pairs of
complex conjugates. The positive real value of λ, thus ob-
tained, differs by only about 1% from the solution of equa-
tion (6). Thus, we will, henceforth, treat the right-hand
side of equation (6) as the scaled thickness for two films.

It can be noted that equation (6) reduces to λ ∼ h1
(or h2) when one of the films is infinitely rigid compared
to the other or one of the substrates does not have a thin
film on it (i.e., E1 (or E2) → ∞ or h1 (or h2) → 0),
consistent with the case of an elastic film interacting with
a rigid body. Previous studies establish the proportionality
factor between λ and h to be ∼ 4 [1,3].

For Case II, we now consider the “approach” and the
instability of two films bonded to two rigid substrates
(Fig. 2). When the separation distance declines below a
critical value dc, the adhesive interactions become strong
enough to trigger an elastic instability at the interfaces.
The surface becomes rough as depicted schematically in
Figure 2. To obtain the length scale of instability, the total
energy is minimized [16,17] with respect to the displace-
ments in the films. The total energy of the deformed films
is composed of the elastic and the adhesive energy:

UT =
∫

V

W (ε)dV +
∫

S

UA(d)dS, (7)

where W (ε) is the strain energy density and ε is the
strain tensor in the films. For incompressible elastic films,
W (ε) = µ1

2 ε : ε in film 1 and similarly µ2
2 ε : ε in film 2. UA

is the inter-surface interaction potential per unit area. Its
value is dependent on the inter-surface separation distance
d and can have any general form, including the short-range
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van der Waals interactions and the long-range electrostatic
force. For a linear stability analysis, the interaction poten-
tial is linearized and expanded in a power series keeping
terms up to quadratic order in (u1 − u2) · n,

UA(d) = U0 +F
(
(u1 −u2) ·n

)
+
Y

2
(
(u1 −u2) ·n

)2
, (8)

where d = d0 − ((u1 −u2) ·n) is the inter-surface gap dis-
tance, u1, u2 being the displacement fields in films 1 and 2.
The Taylor series expansion coefficients can be expressed
in terms of the various derivatives of the interaction en-
ergy,

U0 = UA

(
d0

)
, F = U ′

A

(
d0

)
, Y = U ′′

A

(
d0

)
. (9)

The equilibrium displacement fields of the films which
minimize the total energy must satisfy the rigid bound-
ary conditions at the respective film-substrate interfaces
(u1(x,−h1) = 0; u2(x, d0 + h2) = 0), and the traction
boundary conditions at the common interface

σ1,xz(x, 0) = 0,

σ1,zz(x, 0) = −{
F + Y

[
u1,z(x, 0)− u2,z(x, d0)

]}
,

σ2,xz(x, 0) = 0,

σ2,zz(x, 0) = −{
F + Y

[
u1,z(x, 0)− u2,z(x, d0)

]}
. (10)

Since both films are incompressible, the homogeneous so-
lution has displacements vanishing everywhere in both
films, and the stress state in both films is one of constant
pressure (equal to −F ). To consider inhomogeneous dis-
placements, the homogeneous solution is perturbed with
bifurcation fields of the form u∗1,z(x, 0) = α cos(kx) and
u∗2,z(x, d0) = β cos(kx) such that the normal stresses at
the interface have the form σ∗1,zz(x, 0) = −Y [u∗1,z(x, 0) −
u∗2,z(x, d0)] and σ

∗
2,zz(x, d0) = −Y [u∗1,z(x, 0)−u∗2,z(x, d0)],

where ∗ in the superscripts denotes inhomogeneous defor-
mation. A film with sinusoidal displacement field satisfy-
ing the stress equilibrium condition ∇ ·σ = 0 at the bulk
and the rigid and stress-free boundary conditions at the
surface gives

σ1,zz(x, 0) = 2µ1S
(
kh1

)
cos(kx),

σ2,zz(x, d0) = 2µ2S
(
kh2

)
cos(kx), (11)

where S(ξ) = [1 + cosh(2ξ) + 2ξ2]/[sinh(2ξ)− 2ξ].
Equations (10, 11) give the relation between the in-

teraction stiffness Y as defined in equation (9) and other
physical parameters of the system:

−Y =
2kµ1µ2S

(
h1k

)
S

(
h2k

)
µ1S

(
h1k

)
+ µ2S

(
h2k

) . (12)

Any non-trivial solution of the above equation for the wave
number k (= 2π/λ) gives the periodic inhomogeneous de-
formation field for the interfaces. The lowest value of –Y
for which bifurcation is possible is the critical interaction
stiffness denoted by −Yc. The corresponding wave number
is the critical mode denoted by kc. This is the wavelength

that is observed in experiments at the onset of instability
as the films are made to approach each other very closely
(∼ 10 nm). At this time, the vertical amplitude of the
resulting structures is also very small. However, the lin-
ear bifurcation approach is not valid during the pull-off or
debonding phase when the vertical amplitude increases. In
this phase, non-linear simulations [18,19] based on energy
minimization of patterns showed the following features.
1) A complete debonding occurs at distances far greater
than the distance at the onset of instability, which is due to
the metastability or pinning of instability in a local mini-
mum of the energy; 2) the wavelength of patterns remains
largely robust during debonding because the number of
structures per area remains unaltered, only the contact
areas shrink with increasing inter-surface distance.

In the above linear stability analysis, the films can also
be viewed as a two-spring model in series, and the total
stiffness of the films Keff is thus given by

1
Keff

=
h1
µ1

+
h2
µ2

=
h

µ∗
, (13)

where h (= h1 + h2) and µ∗ represent the total thick-
ness and the effective shear modulus, respectively. Non-
dimensionalization introduces three parameters M1, M2,
and H such that M1 = µ1/µ

∗, M2 = µ2/µ
∗, H = h1/h,

and 1−H = h2/h. Then, equation (12) in non-dimensional
form is

−Y
Keff

=
2qM1M2S(Hq)S

[
(1−H)q]{

M1S(Hq) +M2S
[
(1−H)q]} , (14)

where the non-dimensional wave number q = hk. For par-
ticular values of H, M1, and M2 as obtained from the
individual values of h1, h2, µ1, and µ2, the value of qc is
sought for which −Yc is a minimum. This is the length
scale observed at the interface as will be discussed in the
context of Figure 5.

3 Experimental studies of instability

In order to test the above predictions of the elastic
instability at the interface of two films, we performed the
punch pull-off experiment [5] (which is the basis of all the
above theoretical derivations), as well as an asymmetric
double cantilever beam (ADCB) test [1,3] (see Fig. 3). Al-
though the detailed mechanics of the ADCB experiment
is different from that of the punch test, we reason that as
the wavelength of the instability is primarily due to the
minimization of the elastic energies of the two thin soft
films, the two systems would exhibit similar behavior. The
punch pull-off experiment was carried out by contacting
a thin PDMS film supported on a rigid circular glass
disc (radius 5mm) to another PDMS film supported on a
rigid glass slide. As the disc was separated from the glass
plate in a pull-off mode using a nanomotion controller,
small cavitation bubbles developed at the interface, which
finally evolved into a fully developed instability pattern
just before the disc separated from the flat plate. The
pull-off forces were measured, and the instability patterns
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Fig. 3. (a) Schematic of an asymmetric double cantilever beam
(ADCB) experiment in which a thin elastic film (denoted by
film 1) bonded to a flexible glass cover plate (flexural rigidity
D ≈ 0.02Nm) is brought into contact with another thin elastic
film (denoted by film 2) fixed at a rigid glass substrate (flexural
rigidity D ≈ 6Nm). A spacer of height 100µm is inserted in-
between the films to open the crack. In a critically confined
geometry of films, the straight contact line becomes undulatory
and forms a fingering pattern with a well-defined characteristic
wavelength λ. (b) A typical video micrograph of instabilities
observed in an optical microscope (the bright region on the left
side of the image represents the area where the two surfaces
are not in contact). In this image, the measured wavelength
λ = 340µm. The upper film and lower film had h1 = 95µm,
E1 = 1.3MPa and h2 = 60µm, E2 = 1.3MPa, respectively.

were video-recorded for the analysis of wavelengths using
fast Fourier-transform technique. In the ADCB test
(Fig. 3), a PDMS film supported on a thin glass cover
slip was brought into contact with another PDMS film
supported on a rigid glass plate by inserting a spacer
(100µm) in the open mouth of the crack. The crack front,
in this case, led to spontaneous undulation in the form of
fingering patterns, the wavelength of which was measured
from its video-microscopic image. While the investiga-
tions of the instability patterns, i.e., the dependence of
the wavelength on the modulus and the thickness of the
films, were carried out using both the punch pull-off and
the ADCB tests, pull-off force measurements were carried
out only with the punch geometry. These measured forces
were then compared with the theoretical predictions as
discussed in the latter part of the paper. It will be shown
that the wavelength of instability is a crucial factor in
predicting these punch pull-off forces.

Thin films deposited on rigid substrates were prepared
by following the procedure described elsewhere [3,5,20],
whereas thin circular PDMS films were prepared using
molds with a circular hole (radius 5mm) through them.
Optically smooth, glass disks (radius 4mm) and glass mi-
croscope slides were coated with a self-assembled mono-
layer (SAM) of hexadecyltrichloro silane (HC). The con-
tact angle of water on the SAM-covered glass surface was
110o.

Figure 4 depicts the wavelengths obtained from the
pull-off force experiments and the theoretical results.
First, we verify our assumption that the difference be-
tween the film/substrate and punch/film configurations is
not important in the limit of a/h1 � 1 and a/h2 � 1. We
measured the wavelengths in two different configurations
(see inset to Fig. 4a). In Figure 4a, we show that the wave-
lengths of the instability patterns in both cases of a single
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Fig. 4. (a) Experimental measurements of wavelengths of
the instability patterns and theoretical predictions in two dif-
ferent configurations. Solid triangles and circles correspond
to the measured wavelengths in the film/substrate and the
punch/film configuration, respectively. The open circles repre-
sent the theoretical predictions obtained by multiplying Case II
results by the proportionality constant 1.3. Although the wave-
length of the instability λ is proportional to the corresponding
film thickness h, it is insensitive to the elastic modulus of the
film E; the solid line is given by λ = 3.8h with a correlation
coefficient of 0.97. Note that all measurements were made in
the condition where a/h1 � 1 and a/h2 � 1. (b) Plot of the
measured wavelengths (•) of the instability λ and those (◦) pre-
dicted by minimization of equation (7) vs. the scaled thickness
(Eq. (6)). Note that the theoretical predictions were obtained
by multiplying the results from Case II by 1.3. All the data
obey the predicted scaling law and collapse on a single straight
line, whose slope is 3.7. The error bars in (a) and (b) represent
the standard deviation from the mean values.

film depend linearly on the corresponding film thicknesses.
From these results, we conclude that the geometry of the
films considered is of minimal significance if a/h � 1, as
expected. Results in Figure 4b on the two-film system
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Fig. 5. Measured wavelengths of the instability for a variety of
film thicknesses (h1 and h2 = 40 to 600µm) and elastic moduli
(E1 and E2 = 1.3 to 4.8MPa) vs. theoretical predictions. Note
that the data obtained from the ADCB and the pull-off tests
fall under one master line. The experimental wavelength varies
linearly with the scaled thickness (Eq. (6)) of the films with
a correlation coefficient of 0.95 and slope of 3.7. The wave-
length (gray triangles) obtained from the Case II method also
varies linearly with the scaled thickness with a correlation coef-
ficient of 0.98 and slope of 2.9. This indicates that the prefactor
of the wavelength predicted by Case II is off by a factor of 1.3.
Error bars represent the standard deviation of the mean.

show that the experimental values of λ over a range of
various thicknesses (h1 and h2 = 100 to 600µm) and elas-
tic moduli (E1 and E2 = 1.3 to 4.8MPa) concur with the
scaling relation as shown in equation (6), with a constant
of proportionality 3.7 which is essentially the same as
that (4) obtained with a single film in contact with a rigid
indenter [1,3] in various geometries. The wavelengths
obtained in Case II are found to be a constant factor
smaller than the experimental values. This constant factor
was found to be ∼ 1.3 (see Fig. 5). The open circles of Fig-
ures 4a, b represent the theoretical predictions which were
obtained by multiplying Case II results by the propor-
tionality constant 1.3. It can be observed that both for a
single-film configuration (punch/film and film/substrate)
and the more general two-film case, the theoretical predic-
tions are in good agreement with the experimental results.

Figure 5 summarizes the instability wavelengths ob-
tained from both the ADCB and the pull-off tests and
compares them with the values predicted from the two
theoretical approaches. First of all, we note that the wave-
lengths obtained from both the tests fall nicely on one
master line. Secondly, we note that the experimental λ cor-
relates quite well with the scaled thickness as predicted by
equation (6). The predicted λ as obtained from the Case II
version of the theory also varies linearly with the scaled
thickness; however the numerical prefactor is underesti-
mated by a factor of 1.3. These observations suggest that
the nature of the instability caused by the forces acting be-

tween surfaces during its approach is essentially the same
as that when the surfaces are separated, and that the pri-
mary factor underlying the instability is the minimization
of the shear strain energy in the films.

4 Adhesive force in two soft films

Next, we investigate how the pull-off forces between
PDMS films of different thicknesses and elastic moduli
can be predicted from the instability patterns. Since we
observe that the wavelength of instability is considerably
larger than the thicknesses of the films, i.e., λ/h1 > 1 and
λ/h2 > 1, equation (5) simplifies to

UT ∼ E1E2λ
2δ2

E1h32 + E2h31
, (15)

which leads to the total elastic energy in the film as UT =
UT × (πa2). The effective spring constant of the film is
then

k ∼ E1E2λ
2
(
πa2

)
E1h32 + E2h31

. (16)

Now, using the equation for the pull-off stress as in equa-
tion (17), we obtain an expression for the pull-off stress [5]
as shown in equation (18):

σc =

√√√√√− 4Wa

πa3
[
∂(1/k)
∂a

] , (17)

σc ∼

√√√√√√WaE1E2

(
E1h72 + E2h71

)1/2

(
E1h32 + E2h31

)3/2
, (18)

where Wa is the thermodynamic work of adhesion. Note
that for the case of a single film being pulled off from
a rigid substrate, equation (18) simply reduces to σc ∼
(WaE/h)1/2, which was previously observed by several au-
thors [5,12,21–25].

Using a home-built apparatus [5], designed along the
lines described by Creton et al. [9–11], the critical pull-
off stresses of several PDMS-coated rigid glass discs
from PDMS-coated rigid glass slides were measured. Fig-
ures 6a, b summarize the results of these measurements of
the critical pull-off stress σc against (E/h)1/2 and equa-
tion (18), respectively. All the data agree well with the
theoretically predicted scaling law, and are best fitted with
a slope of 0.38, consistent with that of the single-film case.

5 Conclusion

The main finding of this work is that the surfaces of
two soft films become spontaneously rough because of
geometric constraint when they come in contact and these
interfacial patterns become clearly visible during the
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Fig. 6. (a) The critical pull-off stresses σc as a function
of (E/h)1/2. Solid triangles and circles correspond to the
film/substrate and the punch/film configuration, respectively,
and the solid line is given by σc = 0.39(E/h)1/2. From the
slope and the previous result for a single-film system σc =
(3.3WaE/h)1/2 [5], the thermodynamic work of adhesion Wa

was estimated to be 45mJ m−2, which is in good agreement
with the reported values [20]. (b) Plot of the critical pull-off
stresses σc in the two-film system vs. equation (18). All the
data fall on the theoretical prediction and collapse on a single
straight line, whose slope is 0.38. The error bars in (a) and (b)
represent the standard deviation from the mean values.

separation of films. Despite their differing thicknesses and
shear moduli, the two interacting films share the same
co-operative instability mode, whose wavelength depends
not only on the thicknesses of the films but also on the
elastic moduli of the films in a non-linear way. This is in
contrast to a single film where the instability mode is inde-
pendent of the shear modulus and varies linearly with the

film thickness. The theoretical scaling laws obtained by a
simple energy minimization approach and by the full lin-
ear stability analysis of the coupled interfaces are in nice
agreement with experimental measurements. The results
of this work reveal the important role of surface instabil-
ity and interfacial cavitation in the problems of adhesion
and fracture at soft interfaces, which may also be relevant
to the adhesion and debonding of cell membranes that
are also intimately involved in cell movement and other
functions.

We thank the Office of Naval Research (ONR) and the Penn-
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useful discussions.
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