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Abstract. A rigid-glass prism (square or rectangular base, rectangular cross-section) is sheared off a thin
film of silicone elastomer bonded to a glass plate by applying a tangential force at various distances above
the prism/elastomer interface. At a given tangential force, the prism starts to slide on the elastomeric film.
As the sliding velocity, thus the frictional force, is progressively increased, an elastic instability develops
at the interface that results in the formation of numerous bubbles. These bubbles, the lateral dimension of
which is comparable to the thickness of the film, move across the interface with speeds 1000 times faster
than the overall sliding speed of the glass prism against the PDMS film. It is found that the glass prism
continues to slide on the elastomeric film as long as the applied shear stress is less than a critical value.
During sliding, however, a normal stress is developed at the interface that decays from the front (i.e. where
the force is applied) to the rear end of the prism. When the normal stress reaches a critical value, the prism
comes off the film. The critical shear stress of fracture increases with the modulus of the film, but decreases
with the thickness following a square root relationship, as is the case with the removal of rigid punches
from thin elastomeric films by normal pull-off forces.

PACS. 68.35.-p Solid surfaces and solid-solid interfaces: Structure and energetics – 46.50.+a Fracture
mechanics, fatigue and cracks – 68.35.Np Adhesion

1 Introduction

We face many situations in which a solid object is removed
from another by applying normal, shear or the combina-
tion of the two forces. If both the adherents are ideally

rigid, and the interface is free of defects, they cannot be
separated (rather fractured) from each other with any rea-
sonable force. However, if one of the solids is deformable
or coated with a thin layer of a low modulus material,
then they can be separated with a finite force. An exam-
ple of the above principle is the release of some biological
organisms from marine vessels. Most marine organisms se-
crete adhesive films that interact either strongly or weakly
with organic coatings. However, even when weak interac-
tion prevails, it is not an easy task to remove the organ-
isms from surfaces, as they maximize their resistance to
release by optimizing the mechanical and geometric prop-
erties of the adhesives. Ubiquitous marine organisms, such
as barnacles [1], use high-modulus adhesives, removal of
which is difficult from ship hulls as they are not amenable
to storing sufficient elastic energy by deformation under
moderate external force. However, the encouraging find-
ing has been that the polymeric films of low modulus and
low surface energy do promote easy release. The general
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mechanism underlying the release of rigid objects from
soft films can be understood on the basis of the energy bal-
ance approach of Griffith [2], which was elaborated further
by Rivlin [3], Gent [4] and Kendall [5]. We [6–9], as well
as others [5,10–14], examined the adhesion and separation
of a rigid stud from an elastomeric film bonded to a rigid
support using peeling [6,7] and pull-off [8,9] tests. The
general observation in the pull-off test is that the critical
force (f) of adhesive fracture decreases with the film thick-
ness (h), and increases with the shear modulus (µ) as well
as the work of adhesion (Wa) following a square-root rela-
tionship, i.e. f ∼ (Waµ/h)0.5. The above result, in which
the typical crack length of Griffith’s fracture equation is
replaced by the thickness of the film is not obvious and
requires some discussion. If the crack initiates from the
edge of contact of a flat-ended rigid stud and a thin elas-
tomeric film, Yang and Li [10] noted that the pull-off stress
depends not only on the thickness of the film but also on
the size of the stud itself. These authors presented various
scenarios for pull-off stresses corresponding to various fric-
tional boundary conditions. Only when friction vanishes
at both the film-support and film-stud interface [10], the
pull-off stress is independent of the size of the stud and one
finds: σpull−off ∼ (Waµ/h)0.5. However, in most practical
situations, the elastomeric film is bonded to the support.
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In that case, application [15] of lubrication approximation
to the Stokes equation of elasticity leads to an average hy-
drostatic stress in the thin film as P ∼ µυ0a

2/h3, where
a is the size of the rigid stud, µ is the shear modulus and
υ0 is the vertical displacement of the film. With the above
definition of the pull-off stress, the elastic energy stored in

the unit area of the film is ∼
µυ2

o
a2

h3 . At the scaling level,
the fracture criterion is that this elastic energy is on the
order of the work of adhesion Wa. Thus, we have the nor-

mal displacement of the film as υo ∼ (Wah3

µa2 )0.5. This gives

us the stress at failure as given in equation (1):

Ppull−off ∼
(a

h

)

(

Waµ

h

)0.5

. (1)

Equation (1) with the appropriate pre-factors was derived
previously [10] by Yang and Li using a rigorous approach
of fracture mechanics. According to equation (1), the pull-
off stress is strongly dependent on the size of the stud.
Why, then in practice, the size of the stud does not mat-
ter? The reason behind the pull-off stress being indepen-
dent of the size of the stud is a consequence of low cohe-
sive stress and the resulting elastic instability at the inter-
face [6,8,9,14–19]. To illustrate the point, let us consider
a stud of diameter 1 cm being pulled off an elastomeric
film of 100µm thickness and 1MPa elastic modulus with
a work of adhesion about 40mJ/m2. In this case, the re-
quired pull-off stress would be about 2MPa according to
equation (1), which is considerably larger than the stress
(∼ 100KPa) at which the interface cavitates [6,18] (per-
haps caused by stress-activated growth of density fluctu-
ation or due to pre-existing defects). Interfacial cavita-
tion, and the subsequent minimization of the shear and
longitudinal deformation energies in the film, lead to a
wavy undulation of the interface [8,9,18,19] (see also the
appendix). The only length scale in the problem is the
thickness of the film that determines the wavelength of
instability. The wavy segments can be looked upon as in-
dividual cracks so that the critical pull-off stress is

σc ∼

√

Waµ

λ
, (2)

where λ is the wavelength of instability. Since λ scales
linearly with thickness (h), we have [9,15–19]:

σc ∼

√

Waµ

h
. (3)

Recent experimental studies [8,9] confirmed the validity of
equation (3). While, based on both theoretical and experi-
mental results, the pull-off behavior of a rigid punch from
a thin confined film is now well understood, no system-
atic study has been performed so far to determine what
would cause a rigid punch to come off a thin film when
a shear force is applied. In practical settings, the shear
force is applied by pushing the rigid stud with a force
applied parallel to the interface. It is expected that the
prism would only slide if the force is applied in the plane
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Fig. 1. (a) A rectangular glass prism (10 mm×10 mm×6 mm)
is sheared off a thin film of PDMS (polydimethyl siloxane)
rubber bonded to a glass plate. The rectangular glass prism
was prepared by cutting a borosilicate glass plate (ACE Glass,
USA) using a fine glass grinder. The root mean square rough-
ness of the glass prism was found to be 9 nm over an area of
20 µm2 using an atomic force microscope (AFM, Digital In-
struments, USA). The force F is applied at a distance of 1 mm
(ℓ) above the glass-film the interface. A torque generated by
the force tries to open a crack near the edge where the force is
applied. (b) This figure shows that hydrostatic tension is gen-
erated on one edge of contact accompanied with a hydrostatic
compression on the other. (c) This figure presents a (somewhat
exaggerated) scenario in which an elastic instability leads to
the development of bubbles at the interface. These bubbles in-
crease the compliance of the film, because it allows localized
deformations.

of the prism-substrate interface. However, if the force is
applied at a plane higher than the interface, the prism
would come off at a critical stress. This is the situation
that we investigate in this paper.

2 Model system

The particular situation that we are interested in is shown
in Figure 1a, where a force is applied to a prismatic stud
at a distance ℓ above the interface. We expect the stud to
slide on the elastomeric film as long as the applied force F
is larger than the static shear force. However, as the exter-
nal force is not applied right at the interface but slightly
above it, an external torque is generated, which must be
balanced by an internal torque at the interface. This bal-
ance of torque can be written as

F · ℓ = w

∫

σnxdx, (4)

where w is the width (≈ a) of the stud, σn is the nor-
mal stress and x is the distance from the rear edge of the
film-prism interface. In what follows next, we consider two
different scenarios. The first scenario involves treating the
film as fully confined, whereas the second one relaxes the
confinement of the film by means of an elastic instability.

If we consider that the PDMS film is fully confined,
i.e. the stress state in the film is hydrostatic, the vertical
displacement (υ) of the film is given by the lubrication
solution [15] of the elastic Stokes equation (see also the
appendix) as follows:

υ = −
h3

12µ

d2P

dx2
. (5)
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The vertical displacement of the film is related to the in-
clination of the prism and is given by

υ = υo

(x

a

)

+ C1. (6)

Here, υ0 and C1 are constants to be determined.
Equation (5) is integrated in conjunction with equa-

tion (6) with the following boundary conditions. The pres-
sure is maximally tensile at x = a and maximally compres-
sive at x = 0. Furthermore, the net force in the vertical
direction, i.e. the integral of the pressure over the whole
surface of contact, is zero. Under these assumptions, the
pressure profile at the interface is given by

P = −
µυ0

2h3

(

4x3

a
− 6x2 + a2

)

, (7)

with the maximum tensile pressure at x = a as

Pmax =
µυoa

2

2h3
. (8)

Integration of equation (4), where the normal stress σn is
replaced by P , leads to the following equation:

σs =
( a

5ℓ

)

Pmax. (9)

The maximum stress can be obtained using the usual en-
ergy balance principle of fracture mechanics, in which we
first find the total energy of the system by summing up
the elastic and surface energy and setting the derivative
of this energy with respect to the crack length equal to
zero. The total energy of the system per unit width can
be expressed as

U =

∫ a

0

dx

∫ υ0

0

Pdυ − Waa, (10)

where the first term is the elastic energy and the second
term is the adhesion energy. Using equations (6–8), equa-
tion (10) can be written as

U ∼
µυ2

oa3

h3
− Waa. (11)

Setting ∂U
∂a |υo

= 0, and making use of equation (8), we
obtain

Pmax ∼
(a

h

)

√

Waµ

h
. (12)

Equation (12) is of the same form as that obtained for
the pull out of the stud with an uniform normal force
as discussed above (Eq. (1)). However, there is a problem
with the above analysis. It has been found that during the
separation of the prism from PDMS film, a fingering in-
stability [20] always develops at the line of contact, which
suggests that the film is more compliant near the contact
line region than would be expected for a fully confined
film. In this case, the loss of the interfacial contact is first
controlled by the increase of the amplitude of the fingers,

and then a catastrophic crack growth ensues at a later
stage.

It has been further observed experimentally that as
the fingers that develop at the contact line elongate, they
break down in the form of bubbles that travel the inter-
face from one end towards the other. Thus the compliance
of the film is expected to increase not only near the con-
tact line, but throughout the entire area of contact. The
situation is now similar to that of a rigid plate that is
connected to a horizontal base via a series of springs and
is being lifted from end one with a force. All the springs
elongate, with the elongation increasing linearly from its
rear end to where the force is applied. The net result is
that a concentrated compressive force generates on the
rear end of the plate. Using the above scenario (see also
Fig. 1b), we assume that the tension is maximum (σ∗

n) at
x = a, but it varies linearly across the interface (see the
appendix), i.e.

σn = σ∗

n

(x

a

)

. (13)

In order to satisfy the condition that there is no net normal
force on the slab, a localized compressive force (σ∗

na/2)
needs to act at x = 0 per unit width of contact. Substi-
tution of the expression (Eq. (13)) of normal stress in the
torque balance equation, we have the shear stress as

σs = σ∗

n

( a

3ℓ

)

. (14)

Following the energy minimization procedure as before,
and using an expression [15] for the relationship between
normal force σn and normal displacement υ as σn ∼ µυ/h
(see the appendix), we expect the maximum normal stress
to adhesive fracture to be

σ∗

n ∼

√

Waµ

h
, (15)

which is of the same form as equation (3) obtained for pull-
off experiments. Thus, we have two possible situations.
If the film is in a confined state, equations (9) and (12)
suggest that the critical shear stress at fracture is

σ∗

s ∼

(

a2

hℓ

)

√

Waµ

h
. (16)

On the other hand, if an elastic instability ensues at the
interface, equations (14) and (15) suggest that the critical
shear stress at fracture is

σ∗

s ∼
(a

ℓ

)

√

Waµ

h
. (17)

While the critical shear stress at fracture goes as µ1/2 in
both the models, it depends on thickness more strongly
(i.e. h−1.5) in a fully confined film (Eq. (16)) than that
(h−0.5) for a film that relieves the confinement via elastic
instability (Eq. (17)). One goal of this work is to ver-
ify which mechanism underlies the shear induced adhesive
failure in thin elastic film.
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Fig. 2. Schematic of the experimental apparatus. A silanized
glass prism (10 mm×10mm×6 mm) is placed on a thin PDMS
film bonded to a glass slide. The glass slide is itself placed on
a moving stage, the movement of which is controlled by a mo-
torized stage controlled by a motion controller and computer.
The motorized stage is the Nanostep Motorized System (model
17NST103, Melles Griot, USA), velocity variation of which is
controlled from 0.5 µm/s to 5mm/s. A firmly held beam load
cell (model LBB300, Futek Advanced Sensor Tech., USA) is
used to measure the shear force. DAQ (model NI USB-9215A,
National Instruments, USA) is used to collect data. Interfacial
fracture was observed with a microscope (model CFM-2 Mi-
croscope Video Lenses, Infinity Photo-Optical com., USA) us-
ing either a CCD camera (model KP-D20BU, Hitachi, Japan)
with a video recorder or a high speed camera (model Motion-
Pro, Redlake, USA). A sharp edge made of steel protrudes
from the load cell, which makes contact with the glass prism
at an adjustable distance from the interface of contact. For
most measurements, this distance was set to be about 1mm.
As the glass slide starts moving, the prism exerts a force on
the sharp edge, which is recorded by the load cell and the com-
puter. The interface of the contact is viewed and video-taped
with a high-speed camera.

3 Experiment

We performed the following experiments. A glass prism is
sheared on thin films of crosslinked polydimethylsiloxanes
of various elastic moduli by applying a force at a pre-set
distance on the prism above the prism/elastomer inter-
face (Fig. 2). The specific dimensions of the prisms and the
point of application of the stress are given in the legends of
various figures (Figs. 2, 3, 6 and 8) summarizing the results
of the specific experiments. However, in most experiments
the dimension of the prism was 10mm×10mm×6mm and
the shear force was applied at a distance of 1mm about
the prism-PDMS interface. In order to reduce specific in-
teractions at the interface, the glass prism was silanized
with hexadecyl siloxanes. After placing the glass prism on
a PDMS-coated glass slide, it was translated laterally at
various speeds using a motorized stage. The glass prism
was rested against a sharp blade connected to a beam load
cell, which measured the shear force as the PDMS-coated
glass slide moved relative to the glass plate.

The experiment could be carried out in one of two
ways. In the first method, the prism could undergo a
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Fig. 3. (a) Video micrograph of interfacial bubbles observed
during shear experiments. The dimension of the prism was
10 mm×10 mm×6 mm and the shear force was applied at a dis-
tance of 0.5 mm above the interface. Interfacial bubbles moving
along the direction of the arrow. Film thickness, h = 400 µm
and shear modulus of the film, µ = 1.6 MPa. (b) Velocity of
bubbles is nearly 1000 times faster than the relative sliding
speed between the rectangular prism and the PDMS-coated
glass slides.

steady sliding against the PDMS film. Here, we observe
that the prism continues to slide on the PDMS film with-
out ever coming off (unless a defect is encountered) at
low sliding speeds. After performing the experiment at in-
creasing sliding speeds, a critical speed is reached, when
the prism readily comes off the film. We are interested
in finding out the critical speed at which the prism just
comes off the thin film. Identification of this critical con-
dition is rather cumbersome using the above method of
steady-state sliding as numerous experiments need to be
conducted. We thus used a different approach, in which
the movement of the stage is programmed to slide for a
small duration of time (2 seconds) and then the sliding ve-
locity is increased incrementally (0.002mm/s). This pro-
cess is repeated till the sliding speed reaches the critical
value at which fracture occurs at the interface.

4 Results and discussion

4.1 Elastic instability and movements of bubbles at
the interface

The typical behavior of the shear stress/sliding velocity
profile as obtained from the sliding experiments is dis-
cussed below (see Fig. 6). However, before that discussion,
we first describe some details of the elastic instability that
develops at the punch/film interface. At very low sliding
speeds the cube seems to slide against PDMS smoothly;
however as the sliding speed increases, the torque gen-
erated in the cube tends to lift it slightly at the frontal
edge causing an elastic fingering instability (not shown in
Fig. 3). As these fingers penetrate the prism/film inter-
face, they break up as small bubbles.
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Fig. 4. The lateral size of the interfacial bubble is of the same
size as the thickness of the PDMS film. Here the error bar
corresponds to the distribution of the size of the bubbles.
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Fig. 5. (a) The bubble velocity Vb is plotted against the shear
stress σs for a PDMS elastomer of elastic modulus 1.6 MPa.
The relationship between bubble velocity and shear stress is
found to be: Vb = 2× 10−13 σ2.28

s with a correlation coefficient
of 0.92. (b) The bubble velocity is plotted against σs/µ on
a logarithmic scale. Here data from PDMS of various moduli
(0.3, 0.4, 0.9, 1.6 and 3.2 MPa) are combined in one plot. The
equation describing this plot is: ln(Vb) = 1.97 ln(σs/µ) + 2.25
with a correlation coefficient of 0.87.

These bubbles then move from the frontal towards the
rear edge with speeds that are nearly 1000 times faster
than the actual sliding speeds of the prism.

In the case of the sliding of a rigid object over soft
elastomer it is well known that a detachment wave, i.e.
Schallamach wave [21], propagates from the rear end to
the frontal end of the slider. These Schallamach waves are
due to surface buckling instability that occurs in thick
films. The bubbles, on the other hand, move along the
direction of sliding and they occur only in thin confined
films. It appears that formation of these bubbles is unique
to confined systems, although they share the features of
Schallamach waves [21,22] and slip pulses [23] in that the
propagations of all of these are driven by the gradient of
shear strain energy.

One interesting observation is that the size of the bub-
bles is of the similar magnitude as the thickness of the film
as shown in Figure 4, a fact that we will use later in deriv-

ing the speeds of the moving bubbles. In a recent elegant
review, Baumberger and Caroli [24] discussed the propa-
gation of slip pulses for a thick gel sliding against a rigid
substrate. These authors proposed that the velocity of the
slip pulse is the ratio of a collective diffusion coefficient D
and the mesh size of the gel network. D is expressed as
µξ2/ηs, where µ is the shear modulus of the network, ξ
is its mesh size, and ηs is the viscosity of the solvent in
the gel. Recently Brochard-Wyart and de Gennes [25] pro-
vided a theoretical justification of the above Baumberger-
Caroli equation, by equating the driving force for the prop-
agation of slip pulse and the frictional force it experiences.
It should be noted that the Baumberger-Caroli’s expres-
sion for the slip velocity, which also manifests in other
stick slip experiments [26–28] as a ratio of the mesh size
to mesh relaxation time, is a material velocity. In our ex-
periment, the bubble velocity being strongly dependent
on the slip velocity (Fig. 4), and thus the applied shear
stress (Fig. 5), is not strictly a material velocity. Here we
present an approximate analysis that accounts for the en-
ergetics of bubble propagation in a confined geometry. The
movement of the bubbles is related to the motion of shear
stress dislocations, the driving force of which is provided
by the shear strain energy in the film. The mechanics of
the situation may be understood as follows. Let us con-
sider an unstrained elastomeric film/solid interface where
insertion of a bubble creates a symmetric strain field in
the elastomeric film around the bubble. If a shear strain
is now imposed, the combination of this new and the previ-
ously present strain fields creates a net asymmetric strain
field, the effect of which is to open a crack in the front of
the bubble but to close the crack behind it. As the bubble
moves, the shear strain in the film around the bubble is
relaxed. In the absence of interfacial adhesion hysteresis,
the associated elastic energy is dissipated in the cyclic vis-
coelastic deformation in the rubber. As the bubble moves
laterally, the region ahead of it is deformed, but the region
behind is relaxed. In a static situation, the elastic energy
stored around a bubble is ∼ µb3, where b is the size of the
bubble. The movement of a bubble is conceptually equiv-
alent to periodic processes of the growth of the bubble
from zero radius to its final dimension and then back to
zero radius. At the scaling level the rate of work done in
this process is µ(db3/dt), which is also same as the modu-
lus times the rate of volume excursion by a single bubble
per unit time ∼ µb2Vb. When a perfectly elastic rubber
undergoes a cyclic deformation, no energy is lost in the
whole process. However, in a real rubber, a fraction of
this energy is dissipated, which is estimated following a
method of Shanahan and Carré [29] as (Vb/Vb0)

α, where
Vb is the bubble velocity; Vb0 and α are constants. The
rate of energy dissipation is then,

dE

dt
∼ µb2Vb

(

Vb

Vb0

)α

. (18)

Suppose that during the propagation of a bubble, a length
χ of the rubber relieves the shear strain energy. The elas-
tic energy stored along the length ℓ − χ of the rubber of



180 The European Physical Journal E

width b (i.e. that of a bubble), is

U =
σ2

sbh(ℓ − χ)

µ
. (19)

The rate of change of this energy per unit extension of χ is

−
∂U

∂χ
=

σ2
sbh

µ
(20)

−∂U
∂χ is the driving force for bubble motion. Since the rate

of work done (dE
dt ) in the movement of the bubble is equal

to energy dissipation, we have

σ2
sbhVb

µ
∼ µb2

(

V 1+α
b

V α
b0

)

. (21)

We observe experimentally (Fig. 4) that the dimension of
the bubble is on the order of the thickness of the PDMS
film. This is a consequence of elastic instability in the film
and may be understood according to a simple scaling ar-
gument given in references [8,9,18], in which we minimize
the elastic and surface strain energy of the film (see the
appendix for details) to obtain λ ∼ h. That is to say that
there is one characteristic wavelength for which the sum
of the longitudinal and transverse strain energy is mini-
mum. This wavelength describes the width of the finger,
which, in reality, is about four times the film thickness as
has been described in references [7,9,16,19]. In our exper-
iments, as such a finger elongates, it breaks down in the
form of smaller bubbles that move across the interface.
Why these fingers produce bubbles that are four times
smaller than its own width is not clear to us. However,
we expect that the bubble size would be proportional to
the thickness of the film since it is related to the width of
the fingering instability, as found experimentally (Fig. 4).
Since the bubble size is on the order of the film thickness,
equation (21) can be simplified to

Vb ∼ Vb0

(

σs

µ

)
2

α

. (22)

For a linear viscoelastic rubber, we may take α = 1. Hence
the bubble velocity is

Vb ∼ Vb0

(

σs

µ

)2

. (23)

The bubble velocities obtained with PDMS films of vari-
ous thicknesses but with a given shear modulus (1.6MPa)
do indeed increase nearly quadratically (Fig. 5a) with σs.
Figure 5b summarizes the bubble velocities obtained with
PDMS films of various elastic moduli, where Vb is plot-
ted against σs/µ on a log-log plot. Although there is
some scatter in this plot, it shows that Vb varies with
σs/µ with a power law exponent close to 2 in confor-
mity with equation (23). From the intercept of this plot,
the pre-exponential velocity Vb0 is estimated to be about
∼ 10m/s, which is in the vicinity of the shear wave speed
(∼ 30m/s) of a rubber. Considerable amount of scatter
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Fig. 6. (a) Shear stress of a silanized glass prism sliding against
thin (100 µm) PDMS films of various shear moduli. (b) Shear
stress of a glass prism sliding on PDMS films of various thick-
nesses, but with constant shear modulus (µ = 3.2 MPa). Ar-
rows represent the critical shear stress at which the prism
comes off the film. In these experiments a 10mm × 10mm ×

6 mm prism was used whereas the force was applied at a dis-
tance of 1 mm above the prism-PDMS interface.

seen in Figure 5b is partly due to the fact that a distri-
bution of bubble velocities at a given shear stress results
from a distribution of bubble sizes. Furthermore, Vb0 may
itself depend weakly on the shear modulus µ. Understand-
ing the precise nature of Vb0, its possible dependence on
µ, and why the energy dissipation per deformation cycle
scales as Vb/Vb0 require a more detailed model than that
invoked here. Furthermore, another important detail has
been ignored here. As the bubble moves from the region
of higher hydrostatic tensile pressure to a regions of lower
one, the size of the bubble is reduced somewhat, which
also increases the interfacial adhesion. Postponing a de-
tailed analysis that should take into account the factors
outlined above to the future, here we concentrate on what
roles do the bubbles play in the shear fracture of the rigid
stud from the thin PDMS films.

When a fully confined film experiences a normal force
in the absence of cavitation bubbles, it cannot afford a
large scale Poisson contraction. As the bubbles are formed
as a result of an elastic instability, they allow lateral
Poisson contraction at a local level. The bubbles, thus,
increase the compliance of the PDMS film, so that the
normal stress along the interface is linearly proportional
to the vertical displacement [8,18] of the film (see ap-
pendix). With the rigid slider, this translates into the nor-
mal stress varying linearly across the film as indicated in
equation (13).

4.2 Shear stress/sliding velocity profiles

The shear stress/velocity profiles of the glass prism on
several PDMS films are shown in Figure 6. Figure 6a
shows these profiles for a 100µm thick PDMS film of var-
ious moduli, whereas Figure 6b shows these profiles for a
3.2MPa film of various thicknesses.

Note (Fig. 6a) that the prism does not always come off
a low-modulus (0.4MPa) film, irrespective of the sliding
speed. If the shear stress saturates at a low value so that
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Fig. 7. The relationship between critical shear stress and the
modulus as well as the thickness of PDMS films.

not enough normal stress is generated at the interface, the
prism does not detach from the film as is the case with the
low-modulus PDMS. However, for films of shear modulus
0.9MPa to 3.2MPa, the glass prism indeed separates at
critical sliding velocities.

Figure 6b shows that the envelope of the shear
stress/velocity profiles for PDMS films of various thick-
nesses superimpose onto each other. The critical shear
stress at which the prism comes off the film also decreases
with the film thickness as expected. In order to verify
whether this critical shear stress decreases with thickness
as h1.5 (Eq. (16)) or as h0.5 (Eq. (17)), we plotted σs/µ0.5

vs. h on a log-log scale (Fig. 7a). The slope of the resultant
regression line is 0.40, which suggests that equation (17)
is a better descriptor of the experimental data than equa-
tion (16). When we plot σs vs. µ/h on a log-log scale (not
shown here), the slope (0.44) of the resultant line is even
closer to the exponent (0.5) predicted by equation (17).

Figure 7b shows a plot of the critical shear stress as
a function of (µ/h)1/2, which has a correlation coefficient
of 0.92. Although the derivation of equation (17) ignores
the numerical pre-factors, we made a crude estimate of
the work of adhesion Wa with this equation using the
data of Figure 7b and the value of a/ℓ ∼ 10. The work
of adhesion, Wa, is thus found to be about 28mJ/m2,
which is lower than the typical values of the work of adhe-
sion (40–50mJ/m2) for PDMS against hydrocarbon sur-
faces [7]. In the absence of a precise equation for the crit-
ical shear stress of fracture, all that can be said now is
that the work of adhesion obtained from the shear frac-
ture measurement is in the vicinity of the value expected
for van der Waals (dispersion) interactions.

While this study was primarily designed to investigate
the dependence of the failure stress on the modulus and
the thickness of the polymeric coating, we also investi-
gated how the failure shear stress depends on the geomet-
ric length scales a and ℓ (Eq. (17)). The data summarized
in Figure 8 indeed show that the failure stress decreases
with ℓ and increases with a, although not strictly linearly
as anticipated from equation (17).

Thus, before carrying out further analysis of these
data, we introduce a correction to equation (17) by tak-
ing into account an energy release term due to the shear
deformation in the film. The total energy release rate is
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Fig. 8. Shear stress of a silanized glass prism sliding against
a thin (300 µm) PDMS film of modulus 1.6 MPa. In experi-
ments (a) a rectangular glass prism (10mm × 10 mm × 6 mm)
was used and the shear force was applied at various heights
(ℓ) from the prism/polymer interface. In experiment (b), var-
ious glass prisms were used where the value of a varied from
6 mm to 15mm, but the value of ℓ was kept at 1 mm. Similar
experiments were also carried out with the value of ℓ as 2mm.
Arrows represent the stress at which the prism comes off the
PDMS film.

a linear combination of σ2
nh/µ and σ2

sh/µ. Equating the
total energy release rate to the work of adhesion and mak-
ing use of equation (14), we get the critical failure shear
stress as

σs
∼=

a
√

(αa2 + βℓ2)

(

Waµ

h

)
1

2

, (24)

where, α and β are numerical constants to be evaluated
experimentally. Note that even with the above correction,
the dependence of the shear stress on the shear modulus
and the thickness of the PDMS film remains unchanged
from that shown in equation (17).

According to equation (24), the failure is shear domi-
nated when ℓ

a ∼ 0, but it is normal stress dominated when
a
ℓ ∼ 0. In order to simplify the analysis of the experimen-
tal data, we rearrange equation (24) as follows:

Waµ

σ2
sh

= α + β

(

ℓ

a

)2

. (25)

The shear fracture data shown in Figure 8 (together
with some data not shown in Fig. 8) are organized to
yield a plot of Waµ/σ2

sh vs. (ℓ/a)2 in Figure 9, where
the value of the work of adhesion (Wa) is taken to be
that (40mJ/m2) of a typical van der Waals interaction [7].
This plot shows that Waµ/σ2

sh indeed varies linearly with
(ℓ/a)2 as expected from equation (25). The values of α
and β as obtained from Figure 9 are 0.02 and 0.59, respec-
tively. A much smaller value of α compared to β indicates
that the shear strain energy release rate is significantly
smaller than that due to normal stress, which may be rea-
sonable considering the fact that a significant amount of
shear strain energy is used up in the propagation of cav-
itation bubbles. In view of the fact that β ≫ α, σs can
be expressed as in equation (26), i.e., the failure is con-
trolled by normal stress as shown in equation (17) so long
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Fig. 9. Dependence of the critical shear stress to failure (σs)
on the ratio a/ℓ. Correlation co-efficient is 0.99.

as (ℓ/a) is not too small,

σs = 1.30
(a

ℓ

)

√

Waµ

h
. (26)

5 Conclusions

This research sheds some light on the joint roles of shear
and normal stresses in the fracture of rigid studs from
soft elastomers. While the interfacial friction determines
the amount of force needed to cause shear fracture, it oc-
curs when the condition for crack opening is satisfied. The
simple model presented here captures the relationship be-
tween the shear and normal stress at the interface, pre-
dicting the relationship between the critical force of shear
fracture with the modulus and thickness of the confined
film rather well. The model also accounts for the effect of
the external length scales, i.e. the length of the prism and
the plane of the application of shear stress, on shear frac-
ture reasonably well. An interesting finding of this work
is the generation and propagation of bubbles at the inter-
face of the soft film and the rigid slab. These bubbles have
the characteristics of interfacial dislocations that originate
due to elastic instability and seem to be unique to highly
confined systems. A simple energy dissipation argument,
in which the driving force of the bubble due to shear en-
ergy gradient is balanced by the friction force originating
from the cyclic deformation and relaxation of the rubber,
gives an approximate description of the bubble motion.
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Appendix A. Elastic instability

The wavelength of elastic instability can be estimated us-
ing a simple scaling argument [8,9,18] in which we mini-
mize the elastic and surface strain energy (per unit area)
of the film:

UT ∼ µh

[(

∂u

∂z

)

+

(

∂w

∂x

)]2

+ γ

(

∂w

∂x

)2

, (A.1)

where µ, h, and γ are the modulus, thickness, and sur-
face tension of film, and u and w are the components
of the displacement field of the films in the x (parallel
to the film/prism interface) and z (perpendicular to the
film/prism interface) directions, respectively. The contri-
bution of the surface energy in equation (A.1) is very small
for elastomers of thickness in the range of micrometers as
compared to that of the elastic energy (i.e. γ/µh < 1).
Thus, we neglect the second term of equation (A.1) in
comparison to the elastic strain energy terms. Taking the
characteristic length scales as λ and h along the x and z
axes, and the amplitude of the perturbation the film as
δ, ∂u/∂z and ∂w/∂x are on the order of u/h and δ/λ,
respectively. However, application of the equation of dis-
placement continuity (∂u/∂x + ∂w/∂z = 0) suggests that
u ∼ δλ/h. Thus the strain energy in the film (Eq. (A.1))
becomes

UT ∼ µhδ2

[

λ

h2
+

1

λ

]2

. (A.2)

Minimization of UT with respect to λ yields λ ∼ h, i.e. the
wavelength of the instability depends only on the thick-
ness of the film as has been reported in references [16,17].
The linear dependence of λ on h can also be demonstrated
more rigorously using a procedure similar to Shenoy and
Sharma [30], who analyzed the problem by considering a
distance dependent attractive force between the soft film
and a rigid contactor. In our case, as the film is sepa-
rated from the rigid contactor, no long range attractive
force operates across the interface. All the interfacial in-
teraction is lumped into work of adhesion, which does not
depend on the wavelength of instability. Our problem is
thus a simple elastic energy minimization problem. This
can be achieved by first solving the biharmonic equation of
a stream function and determining the displacement fields
from the derivatives of the stream function in conjunction
with the following boundary conditions: u = w = 0 at the
lower surface where the film is bonded to a support and
that there is no friction where instability develops at the
film/contactor interface.

∇4φ(x, z) = 0, (A.3)

u =
∂φ

∂z
and w = −

∂φ

∂x
. (A.4)

The normal displacement of the film is the amplitude of
instability (δ), which is related to the external stress. To
account for elastic instability, equation (A.3) is solved by
considering its perturbed form as φ(x, z) = φ(z) sin kx.
The elastic energy of the film (Eq. (A.1)) can thus be
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expressed in dimensionless form as (UT h/µδ2) = f(kh).
When the function f(kh) is determined numerically, it is
found to have a minimum at kh = 2.12 giving λ ≈ 3h
as was also reported in references [16,17] using a distance
dependent attractive interaction in the overall energy cal-
culation. Experimentally, the wavelength of instability is
found to be close to four times the thickness. This discrep-
ancy is due to many simplifications used in our analysis.
For example, the problem has to be solved in 3-d instead
to 2-d as outlined here. Furthermore, introduction of some
friction at the film contactor interface also increases the
value of λ closer to 4h, as has also been noted in a recent
report by Adda-Bedia and Mahadevan [31].

Appendix B. Normal force in the film and
justifications of equations (13) and (15)

Substitution of λ ∼ h in equation (A.2) leads to the energy
of the film as: UT ∼ µδ2/h (see also Ref. [17]). Derivative
of this energy with respect to normal displacement δ leads
to a normal stress σn ∼ µδ/h, which can also be written
as in equation (B.1) if the amplitude of instability is iden-
tified as the normal displacement (υ) of the prism/film
interface:

σn ∼ µυ/h. (B.1)

For a rigid stud with one of its end lifted up, the nor-
mal displacement υ is linearly proportional to x; thus
the normal stress varies linearly with x as σn = σ∗

n(x/a)
(Eq. (13)). The total energy (Eq. (10)) can now be written
as

U ∼
µυ2

oa

h
− Waa. (B.2)

Now, setting ∂U
∂a |υo

= 0, and making use of the fact that
σ∗

n ∼ µυo/h, we obtain equation (15).

Appendix C. Background of equation (5)

A detailed derivation of equation (5) is given in ref-
erence [7]. Briefly, the elasticity equation [∂P/∂x =
µ(∂2u/∂z2)] within the lubrication approximation is in-
tegrated to find an expression for the horizontal displace-
ment (u) in the film in terms of z and h. After substi-
tuting this expression for u in the continuity equation
[(∂u/∂x + ∂w/∂z = 0)], and integrating ∂w/∂z along the
depth of the film yields an expression for the vertical dis-
placement in the film as shown in equation (5).

References

1. A. Becka, G. Loeb, Biotechnol. Bioeng. 26, 1245 (1984).
2. A.A. Griffith, Philos. Trans. R. Soc. London, Ser. A 221,

163 (1921).

3. R.S. Rivlin, A.G. Thomas, J. Polym. Sci. 10, 291 (1953).
4. A.N. Gent, Rubber Chem. Technol. 47, 202 (1974).
5. K. Kendall, J. Phys. D: Appl. Phys. 4, 1186 (1971).
6. A. Ghatak, L. Mahadevan, J.Y. Chung, M.K. Chaudhury,

V. Shenoy, Proc. R. Soc. London, Ser. A 460, 2725 (2004).
7. A. Ghatak, L. Mahadevan, M.K. Chaudhury, Langmuir

21, 1277 (2005).
8. J.Y. Chung, M.K. Chaudhury, J. Adhes. 81, 1119 (2005).
9. J.Y. Chung, K.H. Kim, M.K. Chaudhury, J. Sarkar, A.

Sharma, Eur. Phys. J. E 20, 47 (2006).
10. F. Yang, J.C.M. Li, Langmuir 17, 6524 (2001).
11. H. Lakrout, P. Sergot, C. Creton, J. Adhes. 69, 307 (1999).
12. C. Creton, H. Lakrout, J. Polym. Sci. Part B: Polym. Phys.

38, 965 (2000).
13. A.J. Crosby, K.R. Shull, H. Lakrout, C. Creton, J. Appl.

Phys. 88, 2956 (2000).
14. R.E. Webber, K.R. Shull, A. Roos, C. Creton, Phys. Rev.

E. 68, 021805 (2003).
15. A. Ghatak, M.K. Chaudhury, Langmuir 19, 2621 (2003).
16. A. Ghatak, M.K. Chaudhury, V. Shenoy, A. Sharma, Phys.

Rev. Lett. 85, 4329 (2000).
17. W. Mönch, S. Herminghaus, Europhys. Lett. 53, 525

(2001).
18. J.Y. Chung, M.K. Chaudhury, J. R. Soc. Interface 2, 55

(2005).
19. A. Ghatak, Phys. Rev. E 73, 041601 (2006).
20. M.K. Chaudhury, M.E. Callow, J.A. Callow, J.A. Finlay,

J.Y. Chung, Biofouling 21, 41 (2005). In this paper an
experiment was described where a rigid stud was pushed
off a thin PDMS film by an air jet. Before the rigid stud
came off the film, a crack propagated at the interface in
the form of fingering instability.

21. A. Schallamach, Wear 17, 301 (1971).
22. C.J. Rand, A. Crosby, J. Appl. Phys. Lett. 89, 261907

(2006).
23. T. Baumberger, C. Caroli, O. Ronsin, Phys. Rev. Lett.

88, 075509 (2002). Slip pulse is the subject of consid-
erable discussion in the geophysical community. Unfor-
tunately, we could not review this vast field in this pa-
per. Several important papers on the subject are cited at
the following website: http://www.scec.org/research/

97research/97riceelastodynamics.html.
24. T. Baumberger, C. Caroli, Adv. Phys. 55, 279 (2006).
25. F. Brochard-Wyart, P.-G. de Gennes, to be published in

J. Adhes.
26. K.A. Grosch, Proc. R. Soc. London, Ser. A 274, 21 (1963).
27. Y.B. Chernyak, A.I. Leonov, Wear 108, 105 (1986).
28. K. Vorvolakos, M.K. Chaudhury, Langmuir 19, 6778

(2003).
29. M.E.R. Shanahan, A. Carré, Langmuir 11, 1396 (1995).
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