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When a liquid drop (1-2 µL) is placed on a surface possessing a continuous gradient of wettability, it
moves toward the more wettable part of the gradient with typical speeds of 1-2 mm/s. This low speed arises
because the driving force due to surface tension is reduced by contact angle hysteresis. The hysteresis force
acting on a drop on a gradient surface is, however, spatially asymmetricsits magnitude against the gradient
being larger than that along the gradient. If a periodic force is applied to a drop resting on such a gradient
surface, the force against the gradient is rectified whereas it is enhanced along the gradient. This half-wave
rectification of periodic force causes 1-2 µL size drops to move with enhanced speeds of 5-10 mm/s.

It was first predicted by Greenspan,1 and later by
Brochard2 as well as by Raphael,3 that a liquid drop placed
on a chemically anisotropic substrate would move toward
the region of higher wettability. These predictions have
subsequently been confirmed by several investigators4-10

by utilizing surfaces having various types of wettability
gradients. The driving force (FY) for the drop movement
on a heterogeneous surface comes from the gradient of
the free energy of adhesion (∆G ) - πR2γ(1 + cos θ)) of
the drop with the solid11

where γ is the surface tension of the liquid, R is the base
radius of the drop, and θ is the position-dependent contact
angle of the liquid drop on the solid surface (asx increases,
θ decreases).

At steady state, the above force is supported by the
viscous drag generated within the liquid, which, under
the lubrication approximation, is2,12

where η is the viscosity of the liquid, V is the drop velocity,
ê(x) is the thickness of the drop, and xmin and xmax are two
cutoff lengths, the first being of the molecular dimension
and the second on the order of the drop radius. In the
simplest situation, eq 2 can be integrated by assuming
that the drop profile is circular.2 Equating FY to FV yields
an expression for the steady-state velocity of the drop as

follows:

According to the Greenspan model,1 which explicitly
considers slippage of the liquid near the contact line, V
is expressed as

where ηs is a viscosity parameter representing the friction
at the solid-liquid interface. The above treatment,
however, does not take into account the effect of contact
angle hysteresis. In real situations, the force originating
from the free energy gradient must overcome a threshold
force due to hysteresis before the drop can move.5

The effect of hysteresis on the drop motion can be
estimated by calculating the force acting on a thin strip
of liquid of thickness dy and integrating the force over the
entire periphery of the drop, i.e.

where θaB and θrA are the advancing and receding contact
angles on the opposite ends of the thin strip (Figure 1).

Following Brochard,2 we expand cos θa and cos θr about
their values (cos θa0 and cos θr0) at the central line of the
drop as follows:

Within the first-order approximation that the base of the
drop is circular, eq 5, with the help of eqs 6 and 7, reduces
to

where θd is the dynamic contact angle, i.e., the macro-
scopically observed contact angle while the drop is in
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FY ) - d∆G
dx

= πR2γ (d cos θ
dx ) (1)

FV ) 3ηπRV ∫xmin

xmax dx
ê(x)

(2)

V = γR sin θ
3η ln(xmax/xmin)(d cos θ

dx ) (3)

V = γR
ηs

(d cos θ
dx ) (4)

F1 ) γ ∫ (cos θaB - cos θrA) dy (5)

cos θaB ) cos θa0 + (d cos θa

dx )r (6)

cos θrA ) cos θr0 - (d cos θr

dx )r (7)

F1 ) πR2γ
d cos θd

dx
- 2γR(cos θr0 - cos θa0) (8)
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motion, which is defined as follows:

Equation 8 in conjunction with eq 2 yields the velocity of
drop motion on a surface in the presence of contact angle
hysteresis.

The predictions of eq 3 or 4 that the velocity (V) scales
linearly with droplet radius (R) are confirmed here by
studying the movements of drops on a surface possessing
a gradual variation of wettability. The gradient surface
was prepared by exposing a clean glass microscope cover
slip to the diffusing front of the vapor of a decyltrichlo-
rosilane as described earlier by Daniel et al.7 Once the
gradient was formed, the cover slip was heated to 75 °C
for 15 min to improve the bonding between the silane
molecules and the substrate. The resulting surface had
low wettability on its one end and high wettability on the
other with a continuous variation of wettability in between
(Figure 2). By carrying out several experiments, we noted
that while the overall gradient property of the surface
could be reproduced from one preparation to the next, it
was difficult to control the hysteresis of these surfaces
beyond a reproducibility of (3°. These small differences
in hysteresis were found to have significant effects on the
liquid drop velocities as discussed below.

Ethylene glycol was used as a model liquid, which
provided low capillary (Ca < 10-3) and Reynolds (<0.3)
numbers. Low capillary number ensures that the moving
drop has nearly a circular profile,13 whereas the low
Reynolds number as well as the low aspect ratio (0.6) of
the drop justifies the neglect of the momentum convection
terms, which forms the basis for eq 3. Drops of ethylene
glycol of various radii were deposited on the less wettable
part of the gradient surface and their movements toward

the more wettable end were analyzed using a video
microscopic technique. The results obtained with one of
the gradient surfaces are summarized in Figure 3, which
shows that the drop velocity increases linearly with the
base radius as expected from eqs 3 and 4. However, below
R ) 0.055 cm, the drops do not move, where the driving
force due to free energy gradient is balanced by contact
angle hysteresis. According to eq 8, this threshold point
is reached when F1 ) 0, i.e.

In our experiment (d cos θd/dx) is about 0.6 cm-1; using
R ) 0.055 cm we obtain a value for the dynamic hysteresis
(cos θr0 - cos θa0) as ∼0.07, which is well within that
measured experimentally in the quasistatic situation
(Figure 2).

The above results show that hysteresis is clearly
detrimental to the movements of liquid drops on a gradient
surface. If it is possible to bypass the hysteresis, drops

(13) Within the lubrication approximation, the gradient of the
curvature (C) of the liquid surface can be represented as follows (1):
(dC/dx) ) (3Ca)/ê2(x), where Ca is the capillary number (ηU/γ) and ê(x)
is the thickness of the liquid drop at any value of x. For low Ca, curvature
is nearly constant for most parts of the drop.

Figure1. Schematics of advancing (θa) and receding (θr) contact
angles of a liquid on a gradient surface. When a drop moves on
this surface toward the region of higher wettability, its
advancing edge experiences the angle θaB whereas its receding
edge experiences the angle θrA. The top view of the drop, which
is nearly circular on a surface of weak gradient, is shown on
the right-hand corner of the figure.

cos θd ) 1
2

(cos θa + cos θr) (9)

Figure 2. Advancing and receding contact angles of ethylene
glycol on a gradient surface prepared by exposing a glass cover
slip to the diffusion front of decyltrichlorosilane. (O) and (b)
denote advancing and receding contact angles, respectively.

Figure 3. Velocities (O) of the drops of ethylene glycol on a
gradient surface (Figure 2) as a function of drop radius (R). The
dashed line, which is obtained by shifting the experimental
line to pass through the origin, represents the velocities to be
expected in the absence of hysteresis. Variation of dynamic
contact angles (θd), which were measured directly from video
images of the moving drops, are shown in the inset. (Note that
the x ) 0 position in the inset is shifted by about 0.3 mm from
the zero position of Figure 2.)

cos θr0 - cos θa0 ) πR
2 (d cos θd

dx ) (10)
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should move on such surfaces with speeds that are
significantly higher than those reported in Figure 3. It
has recently been reported that contact angle hysteresis
of a liquid drop on a homogeneous surface can be mitigated
by supplying additional energy to a drop by means of
mechanical vibration.14-16 We attempted the above ap-
proach to bypass hysteresis on a gradient surface with
considerable success. In our studies, the surface was
vibrated after connecting it to the transducing element of
an audio speaker in such a way that an in-plane vibration
could be set up on the substrate (Figure 4). The vibration
was controlled by a frequency generator that produced
waves of different shapes and frequency. For most parts
of the current studies, square waves of 100 Hz frequency
and in-plane amplitude of 40 µm were used. The velocities
of the drops during the vibration of the surface not only
are an order of magnitude higher than those measured in
the absence of vibration but also exceed the expected
velocities when hysteresis is totally eliminated (Figure 5,
dashed line).17 Presumably, what we observe here is a
half-wave rectification of mechanical pulses, mediated by
contact angle hysteresis. The principle is illustrated with

the help of Figure 1. A drop resting on a gradient surface
has two ends: one coinciding with A and the other with
B. Because of hysteresis, the driving force (per unit length)
for the drop motion toward the more wettable part of the
gradient is reduced to that given in eq 8. However, if the
drop is forced to move against the gradient, a much higher
force (F2) must be overcome

When the drop is vibrated mechanically, it experiences a
body force during each pulse. During the acceleration
phase, the body force adds to the wetting force (F1).
However, during its deceleration, the body force is reduced
by the wetting force (F2). No backward movement of the
drop would occur if the body force during the deceleration
phase is smaller than F2. Thus, an asymmetric hysteresis
on a gradient surface coupled with vibration could create
a situation in which the backward movements of the drops
are partially or fully rectified, whereas an attenuated bias
could be set up along the wettability gradient. This
situation is somewhat related to a recent phenomenon
discovered by Sandre et al.,18 who induced shape fluctua-
tion to a liquid drop resting on an asymmetrically rough
surface by means of an oscillatory electric field. As the
equilibrium contact angle of the drop was switched
between two extreme values on a sawtooth type rough
surface, a rectified motion of the drop (speed ∼ 0.15-1.5
mm/s) was observed. In our case, the asymmetry in the
wetting hysteresis on the gradient surface provides the
needed rectification for unidirectional drop motion. We
have observed full rectified motion also with a drop of
water on a gradient surface, where it initially does not
move due to large wetting hysteretics (∼20°). However,
as the surface is vibrated with a frequency of 100 Hz, the
drop moves with a speed of 1 cm/s. The movement of such
a drop has been closely followed by vibrating the surface
at a low frequency (0.1 Hz), where no backward movement
of the drop could be detected (Figure 6). We now estimate

(14) Smith, T.; Lindberg, G. J. Colloid Interface Sci. 1978, 66, 363.
(15) Andrieu, C.; Sykes, C.; Brochard, F. Langmuir 1994, 10, 2077.
(16) Decker, E. L.; Garoff, S. Langmuir 1996, 12, 2100.
(17) We note that these velocities obtained with a square wave pulse

were nearly same as those obtained with a harmonic pulse.

Figure 4. Schematics of the setup used to introduce in-plane
vibration to the drop. The output wave is obtained by connecting
an accelerometer to the audio speaker.

Figure 5. The velocities of the drops of ethylene glycol on a
gradient surface are considerably enhanced in the presence of
vibration. Here, the results obtained with two sets of surfaces
are presented. The hysteresis of one surface (O) is 6°, while
that of the other (4) is 9°. The drop velocities on these surfaces
in the presence of vibration are denoted by (b) and (2),
respectively. The dashed line represents the expected velocities
in the absence of hysteresis.

Figure 6. Rectified motion of a water drop is demonstrated.
Here the hysteresis of contact angle is so large (∼20°) that the
water drop of radius 1.6 mm does not move on the gradient
surface. However, when the substrate is vibrated with a square
wave of frequency 0.1 Hz, the drop moves in synchronization
with the vibration pulse. Frame A indicates the drop at rest.
Frames B and C show drop movements only toward the right
during both forward and reverse strokes of the vibration. The
arrow indicates the plane of reflection of the drop when it rests
on the glass slide. The net movement of the drop with time has
a staircase shape, as shown in the inset.

F2 ) πR2γ
d cos θd

dx
+ 2γR(cos θr0 - cos θa0) (11)
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the maximum force that acts on a drop by utilizing the
simple concept of a body force in conjunction with a wetting
force. Let the body force generated during each impulse
be F. During the acceleration phase, the net force acting
on the drop is F + F1, whereas during deceleration, the
force in the opposite direction is F - F2. The maximum
value of F that ensures no movement of the drop against
the gradient is F ) F2. Thus the net force acting on the
drop during the deceleration phase of the drop is zero, but
is F1 + F2 ) 2πR2γ(d cos θd/dx) during the acceleration
phase. In the event that the wetting hysteresis is
completely bypassed, the drop should not move with a
speed higher than that shown by the dashed line of Figure
5. The experimental results, however, present a more
complex scenario. To understand these differences, let us
compare the effects of vibration on drops moving on two
gradientsurfaces,havingslightdifferences (∼3°) incontact
angle hysteresis (Figure 5). The dependence of the velocity
on drop radius for the more hysteretic surface is shifted
toward the right side of the radius axis as expected from
eq 8. In the presence of vibration, although the drop speeds
are enhanced, their magnitudes on the more hysteretic
surface are nearly half of those observed with the surface

of lower hysteresis. This observation, coupled with the
fact that a critical radius (Rc ∼ 0.04-0.045 cm) needs to
be overcome for the drop to move, suggests that the effect
of hysteresis is not completely eliminated by vibration.
The huge enhancement of drop speed could be possible if
the body force generated during vibration is itself asym-
metric, i.e., when its magnitude along the gradient is
significantly larger than that against the gradient.
However, such a possibility could not be supported either
from an examination of the waveforms or by repeating
the experiment after reversing the position of the gradient
surfacewithrespect to theaudiospeaker.Localasymmetry
may however exist in the metastable energy barriers
arisingdueto thesuperpositionof thewettabilitygradients
with the corrugated energy landscapes. The complete
solution of this problem however demands a stochastic
description of the contact line motion requiring detailed
knowledge of the surface free energy landscapes and
metastable states. Further analyses along these lines are
currently being attempted.
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