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Abstract 

It is shown that the Trivalent Cayley graphs, TC,,, are near recursive. In particular, TC, is a union of four copies of 
i”Cn_2 with additional well placed nodes. This allows one to recursively build the Hamilton cycle in TC,. 
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1. Introduction 

Interconnection networks form the backbone of par- 
allel architectures and have therefore attracted wide 

attention from researchers in this area. The structural 
properties of these networks are often studied by ab- 
stracting them as graphs with nodes representing the 

processors and edges representing the physical com- 
munication channels between them. Desirable prop- 
erties of these graphs include a small node degree, a 
small diameter, large number of nodes, symmetry and 
recursiveness. 

It has been shown that networks modeled by Cay- 
ley graphs have the important property of symmetry 
and may also possess several of the other important 
characteristics [ I]. However, the node degree of these 
graphs generally increases with the size of the graph. 
This is in contrast with the physical characteristics of 
real world processors which have a limited number of 
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DMA channels and therefore a bounded set of links. 
A constant node degree graph has an advantage in that 
it can still be used to interconnect these processors 
to form an unbounded size of parallel architecture. 
Unfortunately the constant node degree graphs such 
as the de Bruijn, Shuffle Exchange and Generalized 

de Bruijn graphs, are highly asymmetrical [ 2-4,6]. 
On the other hand, symmetric graphs such as hyper- 
cubes have a node degree that increases with the graph 

size. 
Recently, Trivalent Cayley graphs have been pro- 

posed [7]. They have node symmetry, a constant 
node degree of three, logarithmic diameter and max- 
imal fault tolerance. However, the usefulness of an 
interconnection network is ultimately decided by its 
ability to support mappings of algorithm skeletons. 
We show here that the Trivalent Cayley graph X,, 
supports a Hamilton cycle. Thus algorithms whose 
skeletons are cyclic can be mapped on TC,, with 
unit dilation. We also show that even though TC, is 
not recursive, its four copies (augmented by a few 
properly placed nodes) may be merged to create 

X,+2. 
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Fig. 1. Degree 2 Trivalent Cayley graph TC2. 

Degree y1 Trivalent Cayley Graph 7’C, has N = 
IZ x 2” vertices labeled with a circular permutation of 
n symbols in lexicographic order where each symbol 
may be present in either uncomplemented or comple- 
mented form. We use the (ordered) set of tl symbols 
S= {1,2,3,. . . , a}, and denote an arbitrary node in 
TC,, as (arub . . . ax) where a; stands for either ai or 
ai with ai E S. All the permutations in TC, form a 
group. The generators of this group are: 

f(wQ * f * a,) = (#2U3...&&), 

f-NW2 , . .a,) = (ii,UlU2. * .a,-1) and 

g(a1a2. * .a,) = (41a.2.. .&). 

Two nodes u, u E TC, are connected if 

U= f.u, or ~=f-l .U or u=g.z.f. 

The edges between u and fu or f-‘u are called the f- 
edges and are drawn as directed edges marked with f 
or f-l. The edge between u and gu is called a g-edge 
and is shown as an undirected edge between the two 
nodes. Since f-’ is the inverse off and g-’ = g, and 

because f . u, f-* . u and g 1 u are all distinct, TC,, is 
a trivalent undirected graph. It is node symmetric and 

hasadiameter2n-1 [71. 
Let I denote the identity permutation and ii de- 

note the ~~utation u with all its com~nents com- 
plemented. Define the composition of generators as 
(gl.gz)(u) =gl(g2(u)).Itistheneasytoverifythat 

Y(U) = ii and f2” ( u) = u for every u E TC,. The 2n 

nodes U, f(u), s(u) ,...,f2”-‘(~) thereforeforma 

cycle of length 2n called here as the f-cycle. Note 
that in any f-cycle, there is a unique node whose label 
has symbol 1 in the first position. We will refer to this 

node as the base node of the f-cycle, Further, by con- 
verting the uncomplemented symbols in the remaining 

II - 1 positions of the base vector to 0 and comple- 
mented symbols to 1, we get an (n - 1 )-bit unique 

descriptor s of the cycle. Since 0 6 s < 2”-l, TC,, 
may be partitioned into 2”-’ distinct f-cycles. Fig. 1 
shows TC2. One can easily identify the two f-cycles 
in this structure. 

3. The near recursive property of TC, 

Let the (ordered) symbol set of TCn+2 be S = 

(1,2,..., n - 1, x,y, n}. Assume that n 2 3. We now 
show how four copies of TC,: Te, TCA, TC: and 
TC: (with some additional well placed nodes) may be 
merged to form TCn+2. Define mapping #o : T($ --+ 

TG+2 as follows: 

(a) Map the base nodes of Tcff to the base nodes 

of T&+2: 

&(12* . . . (n - 2)* (n - 1) n*) 

=(12* . . . (n-2)*(n-l)xyn*), 

&(12* .._ - (n - 2)* (n - 1) n*) 

=(12* . . . (n-2)*(n-1)jij7zn*). 

(b) Map any other node fi( u) where u is base 
node as: 

The mapping &, maps a cycle in TC, into a cycle in 
TC,,+2 as illustrated in Fig. 2. In this figure, u is a base 
node of TC, and u, a base node of T&+2, is its image 
under mapping Cpo. 

One may note that the cycle in TC,,+2 has four ad- 
ditional nodes fnv, f”+‘v, fZnf’v and f2n+2v, that are 
not images of the nodes of TC,,. Because there are 
2n-’ cycles of length 2n in TC,,, the mapping &J along 
with these four additions nodes per cycle account for 
2”-‘(2n + 4) = 2”(n + 2), or exactly one fourth of 
the nodes of TCn+.2. We will call this set of nodes 
(comprising of 2”-’ cycles, each of length 2n + 4) 
as partition 0 of T&,.2. We obtain the other partitions 
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Fig. 2. The mapping 4 of an f-cycle of TC, (top) into 8” f-cycle of TCn+2 (bottom). 

of TC,,+z by using mappings 4i : Td, -+ TC,,+2, for 
i = 1,2,3 which are similarly defined except for the 
images of the base nodes which are specified as: 

+1(12* . . . (n-2)*(n-l)n*) 

=(12* . . . (n-2)* (n- l)xYn”), 

4,(12’... - (n - 2)* (n - 1) n*> 

=(12* . . . (n-2)* (n- l)Ryn’), 

&(12* . . . (n - 2)* (n - 1) n’) 

=(12’... (n-2)* (n- l)Ryn’), 

___ f&(12* . . . (n - 2)* (n - 1) n*> 

=(12* ,.. (n-2)* (n- l)xjjn’), 

+3(12* . . . (n - 2)* (n - 1) n*> 

=(12* . . . (n-2)* (n- l)Xjjn”), 

+3(12* . . . (n - 2)* (n - 1) n*) 

=(12* . . . (n-2)* (n- 1)xyn’). 

Clearly, the images of these TCk’s are disjoint as 

the base nodes in the mappings are distinct. Thus, 
together, these four copies enumerate all the elements 
of TC,,+2. Because these mappings are similar, we will 
henceforth use symbol q5 : TC, + T&2 to denote 
any of them. The following properties of 4 are easy 
to verify using Fig. 2. 

Theorem 1. (a) 4 maps exactly two f-edges of 

each f-cycle of TC, (namely, f”-‘u -+ f”u, and 
f 2n-‘~ -+ u) to f-edges of TCn+2 in the same parti- 
tion with dilation 3. 

(b) 4 maps the rest of the f-edges of TC,, to the f - 

edges of TCn+2 in the same partition with unit dilation. 

(c) q4 maps two g-edges per f-cycle, (namely 
fn-‘U -+ gf”-‘u and f2”-‘u + gf2”-‘u, where 

u is a base node) into g-edges of TC,,+2, but these 
g-edges span across complementary partitions, i.e., 

edges from the nodes in the image of TC$ go to the 

nodes in the image of TCZ, those from the image of 

TCA go to the image of TC:, and vice versa. 

(d) 4 maps the rest of the g-edges of TC,, to the g- 
edges of TCnf:! in the same partition with unit dilation. 

It should be noted that TC,,+2 has other g-edges that 
are not images of any edges of TC,,. These edges from 

the four additional nodes in each f-cycle of TCn+2 
link cycles in different partitions. 

4. The Hamilton cycle 

We enumerate the Hamilton cycles in TC2, TC, and 
TC4 and then use recursion to find Hamilton cycle in 
larger trivalent graphs. 

Hamilton cycle in TC2. 

(12) f(2i) I--(iTI f(U)& 

(Zi) f(i2) f,c2 1) ---L(I~) ‘(12) 

Hamilton cycle in TC3. 

(23i) f(3i2) f(iZ3) f(251) --L(512) .f 

(123++(12?;)c(312) f_I.(Z3 1) f_l.(iT3) c 

(ET) f-1.(2X) P-(2? 1) .‘(5 12) f( i 23) --L 

(Z3i) L(3i2) f(i25) L(i23) f_1.(5i2) L+ 

--- 
(231)+?~)~(31?) c(231) g-(23i) 
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Hamilton cycle in Z’C4. that includes two more additional nodes f& f2"-'u) 
and f2& fz”-‘u) of T&z. 

-..-.." _-__ --- 
(1234)=(4123)~(3412) f-' ----+(23Ti)-L 

(23;ik)C(i23Z)C(4i23jL(T4i2j-C 

(Z74ij.&lT54jC(Z1Z5j '-' 
-- 

---+(3412)L 

(3&2)-&12J) f(12?4)-+234ifL 
- -- 

Now since the Hamilton cycle in TC,, uses both f- 
edges at f’+*u, it cannot pass through the g-edge at 
f n-lu. Similarly, it does not use the g-edge at fznml. 
From Theorem 1, all the other f-edges and g-edges of 
TC,, map into the same partition of TC,,+2. Counting 
the extra 4 nodes per cycle, the image of the Hamilton 
cycle in TG is a cycle of length jTC,l + 4 - 2”-t. It 
covers all the nodes of the 0th partition of TC,,+2. 

(3412)&4iT3)J-$TZ3Z) -L(T3Zi,8. 
- -- 

Repeating the procedure with mappings q5t ~$2 and 
43, one finally obtains four disjoint cycles in T&+2 
(one per partition) that together cover all the nodes 
of T&2. 

On account of this construction, given any base node 
u E T&+2, both the f-edges of each of the nodes f”u, 

f n+lu, f2n+2u and f2n+3 u, are present in these cycles. 
Next, we design a length 8 cycle that would link the 

m-w 
(3412)f(Zi23)-L(i234) Lf2341)z 

(234i) 

four cycles in TC,,.+z. Let u be a base node in partition 
0 with uncomplemented (n - 1). We begin this 8- 
cycle at fnv = (y n* i2* 3* . . . (n - 1) X) and let it 
go through the following nodes: 

We now state and prove the central result of this 
paper. 

Theorem 2. It is possible tofind a Hamilton cycle in 
TC,, , n & 3, such that for any base node u E: TC,,, it 
passes through both the f-edges at f”-‘u as well as 
at fzn-‘. 

(yn’i2*3* . . . (n-l) -f-‘, 

(xyn*i2*3* . . . (n-l))--% 

(xyn*i2*3* . . . (n-l))L 

(y n* i2* 3* . . . (n - 1) Y) A 

Proof. It is simple to verify that the Hamilton cycles 
of TC3 and TC4 enumerated above satisfy the specified 
property. We now demonstrate the construction of a 
Hamilton cycle in Ten+2 from a Hamilton cycle in 
TC,, which has the stated properties. 

(y n* i 2* 3* . . . (n- I)x)L 

(zyn*i2*3* . . . (n-l))--% 

(zyn*i2*3* . . . (n-l))A 

(yn*i2*3* . . . (n-1)x)--% 

(yn*i2*3* . . . (n-1)X) 

Note that none of the g-edges in this 8-cycle are in- 
First, using function #JO, map the Hamilton cycle in cluded in the cycles in the four partitions. The first pair 

TC” into T&2. However, from the assumption, the of nodes in this &cycle are in partition 0. In fact, the 
Hamilton cycle in TC,, uses the edge between fn-t~ edge between them, being an f-edge from f”u, is in 
and fnu, and there is no single f-edge in TC,,+z corre- the cycle spanning this partition. We replace this edge 
sponding to this (see Fig. 2). This edge in the Hamil- by the alternate path between these two nodes that’is 
ton cycle of TC,, may be mapped to a path that includes suggested by the cycle spanning all the nodes of the 
twoadditional nodes f#(f"-'u) and f2&f”-‘u) of partition. This is shown in Fig. 3. Similarly, the edge 

TG+2. Note that these nodes were not images of any between the next pair of nodes in the g-cycle is in the 
nodes of TC,. Similarly, the Hamilton cycle edge in cycle spanning partition 3, We can therefore replace 
TC,, between f2'-' u and u may be replaced by a path this edge by the path which would span all the nodes 
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u u 
Fig. 3. Merging of the four cycles into the Hamilton cycle shown 
by dark lines. 

in the partition. Similar replacements of the edges be- 

tween the third and fourth pairs of nodes in the 8- 
cycle allow us to modify the g-cycle to pass through 
all the nodes of the first and the second partition re- 
spectively. The resultant cycle therefore goes through 
all the nodes of TC,,+2. Further, since both the f-edges 

of each of f”+*u and fn+3~ are present in this cycle, 
this is the required Hamilton cycle in TC,,+2. 0 

Note that the property of near recursion can be gen- 

eralized to merge 2k copies of TC, (with additional 2k 

nodes in each f-cycle) to produce TC,,+k. This process 
of merging is exactly identical to the one described 
here and the mappings &, i = 0, 1, . . . ,2k - 1 exhibit 
properties similar to those given in Theorem 1. For 
example, any & maps all the f-edges of TC, to the 
f-edges of the same partition of TC,,+k with dilation 
1 except for two which are mapped with a dilation of 
k+ 1. Similarly, all but two g-edges of TC,, are mapped 
within the same partition of TCn+k and the other two 
are mapped across the partitions. The applicable level 
of recursion, k, is determined by the application. Thus 
while building the Hamilton cycle in TC,, one cannot 
partition TC, into two copies of TC,,-1 because one 

would need a length 4 cycle f*gf*g (where f* stands 
for either f or f-t), to merge the cycles in the two 
partitions. But such a length 4 cycle does not exist. 

5. Conclusions 

Recursion is a very desirable property of intercon- 
nection networks. It allows one to recursively extend 
mappings of parallel algorithms to larger architectures. 

Unfortunately, the Trivalent Cayley graphs are not re- 
cursive. But their near recursiveness property may 

help one to build larger mappings as has been demon- 
strated here to build a Hamilton cycle. Other popular 
network geometries such as Hypercubes support all 

even length cycles [ 5 I and de Bruijn and generalized 
de Bruijn networks support cycles of all lengths [ 81. 
The methods given here may be used to map cycles 
of other lengths and for developing mappings under 
faults on Trivalent Cayley graphs. 

References 

[II 

121 

[31 

[41 

r51 

[61 

171 

[81 

S.B. Akers and B. Krishnamurthy, A group theoretic model 
for symmetric interconnection networks, IEEE Trans. Compur. 
38 ( 1989) 55.5-566. 
M. Baumslag, An algebraic analysis of the connectivity of de 
Bruijn and shuffle exchange digraphs, Discrete Appl. Math. 
61 (1995) 213-227. 
D.Z. Du and F.K. Hwang, Generalized de Bruijn digraphs, 
Networks 18 (1988) 27-38. 
D.Z. Du, D.F. Hsu, F.K. Hwang and X.M. Zhang, The 
Hamiltonian property of generalized de Bruijn digraphs, J. 
Combin. Theory, Ser. B 52 (1991) 1-8. 
ET. Leighton, Introduction to Parallel Algorithms and 
Architecrures: Arrays, Trees, Hypercubes (Morgan Kaufmann, 
San Mateo, CA, 1992). 
M.R. Samantham and D.K. Pradhan, The de Bruijn 
multiprocessor network: A versatile parallel processing and 
sorting network for VLSI, IEEE Trans. Comput. 38 ( 1989) 
567-581. 
P. Vadapalli and P.K. Srimani, Trivalent Cayley graphs for 
interconnection network, Inform. Process. Left. 54 ( 1995) 
329-335. 
M.D. Wagh and J. MO, Applications of finite fields to map 
parallel algorithms to dense graphs, Manuscript. 


