
Building multi-input RTD circuits under reliability constraints

Viswanath Annampedu and Meghanad D. Wagh
Department of Electrical and Computer Engineering

Lehigh University, Bethlehem, PA 18015
Email: via2, mdw0@lehigh.edu

Abstract

Threshold functions can be implemented in nanotechnol-
ogy using the MOBILE architecture based on resonant tun-
neling diodes (RTDs). The operational reliability of the ar-
chitecture is greatly dependent upon the number of RTDs
used, due to the variance of the accumulated peak currents.
This constrains the number of inputs to the threshold circuit.
The number of inputs is also a measure of the area and in-
terconnect complexity. This paper shows that a threshold
function with n inputs can be implemented as a network
of smaller threshold functions. Our implementation uses
linear chains of identical threshold functions and is there-
fore easier to fabricate and can be easily pipelined for high
throughput. The total input complexity of all the functions
involved in our implementation is O(nR2), where R is the
difference between the sum of all the positive weights and
the threshold. This compares very favorably with the tradi-
tional decompositions of threshold functions which have a
total input complexity of O(2n).

1 Introduction

Resonant tunneling diodes (RTDs) represent the most
mature nanotechnology devices available to date for imple-
menting new innovative applications [1, 2]. They employ
quantum electron tunneling creating the effect of negative
resistance. Two RTDs connected in series as shown in Fig. 1
make up the most basic logic element with two discrete
logic states. This architecture is known as a monostable-
bistable transition logic element (MOBILE) [3].

Behavior of the MOBILE is dependent upon the peak
currents IA and IB of the two RTDs (which depend on the
area of the RTD junctions) and the voltage, Vp, where the
current peaks. As VSWP is increased from 0 to more than
2Vp, Vout settles to a low value (corresponding to a logic 0)
if IA < IB or to a high value (corresponding to a logic 1)
if IA > IB . When the output settles to either of the two
values, the current flowing through the circuit is very small.

V SWP

V out
A

B

Figure 1. Schematic representation of a MO-
BILE made up of two RTDs in series.

By connecting multiple RTDs in parallel, one can create
an effective peak current equal to the sum of the individual
peak currents. Each individual peak current may be var-
ied by using RTDs of varying areas. In addition, it may be
switched in or out of the sum by employing a heterostruc-
ture field effect transistor (HFET) switch in series 1. Pos-
itively weighed inputs may be placed in the top section in
parallel with the RTD A and negatively weighed, in the bot-
tom section in parallel with RTD B. Thus the MOBILE ar-
chitecture allows one to create a weighed sum of the inputs.
The comparison of two effective peak currents allows one
to compare the weighed sum with a preset threshold. Fig. 2
shows an architecture based on this concept. In this figure,
depending upon the corresponding HFETs, the RTDs with
areas α1, α4, α5, α7 and α8 contribute to the effective peak
current in the top section of the MOBILE. Similarly, RTDs
with areas α2, α3 and α6 contribute to the bottom peak cur-
rent. Consistent with the MOBILE behavior, the logic state
of the output is determined by

Vout =







1 if x1α1 − x2α2 − x3α3 + x4α4+
x5α5 − x6α6 + x7α7 + x8α8 ≥ T

0 otherwise.
(1)

1The monolithic integration of HFET and RTD is known as the three
terminal hybrid Resonant Tunneling Transistor [4]

45

V
 out

1 4 5 7 8

2 3 6

x x

xx

x x

V
SWP

x

4 5 7 8

T

x

32 6

1

B

Aαααα

α α

α

α

Figure 2. Implementing a threshold circuit us-
ing the MOBILE ideas. T and wi denote the
areas of the corresponding RTDs. RTDs A
and B have unit areas.

Equation (1) is the equation for a typical threshold func-
tion2. In (1), constants α1, −α2, −α3, . . ., α8 are the
weights w1, w2, w3, . . ., w8 of the corresponding inputs
and T is the threshold. The symbolic representation of the
threshold function characterized by (1) is shown in Fig. 3.

.

.

.

x

x

x

x

w

w

T

1

2

3

 1

 w 2 w

8

 8

x , x , ..., x 1
 3

2 8f)(

Figure 3. Representation of the thresh-
old function f(x1, x2, . . . , x8) with weights
w1, w2, . . . , w8 and threshold T .

It is known that there are 2n2/2 distinct threshold func-
tions of n variables including AND, OR and NOT gates [5].
Thus any Boolean function can be expressed through one or
more threshold functions and implemented by RTD/HFET
circuits. In addition, some applications inherently have
threshold solutions. For example, one can match two ar-
bitrary n bit patterns within any given error tolerance with
a single 2n input threshold function [6]. Such circuits are
natural candidates for RTD/HFET implementations.

The operation of the threshold circuit implemented
through the RTDs is based upon the comparison of the com-
posite peak currents in the top and the bottom sections of the
architecture. The value of each individual RTD peak cur-

2A function f(x1, x2, . . . , xn) is called a threshold function if one
can determine weights w1, w2, . . . , wn and threshold T (all real numbers)
such that

P

n

i=1
wixi ≥ T if and only if f(x1, x2, . . . , xn) = 1.

rent - being determined by the nano-range dimensions of
the device - may have a large variance. The variance of the
composite peak current is determined by all the conducting
RTDs and, if sufficiently large, can create a wrong output
logic value. Naturally, the reliability of an implementation
is closely related to the number of RTDs contributing to the
aggregate current [7]. Limiting the number of inputs also
serves to limit the number of contributing RTDs and thereby
ensuring a more reliable implementation. Further, it also
bounds the maximum instantaneous peak current and hence
the power, for a more robust operation.

This paper discusses partitioning threshold circuits with
a large number of inputs into smaller threshold circuits so as
to improve the overall reliability of the RTD/ HFET imple-
mentations. The size of the threshold circuits in the final im-
plementation is governed by the trade-off between reliabil-
ity and circuit complexity. We show that if small sets of in-
puts are processed in independent threshold circuits (called
fragments), it is still possible to combine their outputs to re-
alize the original threshold function. The architecture used
for this recombination can be built using small threshold
circuits (called recombiners) arranged as a binary tree. (See
Fig. 5.) Further,each of these recombiners is shown to con-
sist of one or more linear chains of small identical threshold
circuits.

In Section 2 we propose a novel concept of error. This
error is based on the inputs and can be used to define the
output of a threshold function. We also provide an overview
of our decomposition method and discuss the complexity
of the fragments. In Section 3 we prove that the recom-
biners can be built out of threshold circuits. Section 4 is
devoted to the design of recombiners, and in particular, to
the decomposition of the recombiners into chains of iden-
tical threshold modules. Section 5 shows that the total in-
put complexity of our architecture implementing an n input
threshold function is O(nR2), where R is the difference
between the sum of all positive weights and the threshold.
This compares favorably with the complexity O(2n) of the
classical decomposition [8]. Section 6 explores other nan-
otechnology implementation issues. Finally we provide our
conclusions in Section 7.

2 Partitioning a large threshold circuit

As explained in Section 1, the reliability of a threshold
function implemented as a RTD/HFET circuit can be im-
proved by realizing it through multiple threshold functions,
each with a small number of inputs. The classical method
to achieve this is to decompose the threshold function into
multiple threshold functions [8] as

f(x1, x2, . . . , xn) = f1(x2, x3, . . . , xn)

+ x1f2(x2, x3, . . . , xn). (2)

46

In (2), both n − 1 variable functions f1 and f2 are thresh-
old and variable x1 is assumed to be positive. For negative
variables, similar decomposition is possible. Since AND
and OR gates are threshold functions, one can implement f
as in Fig. 4. Equation (2) can be employed repeatedly to re-

x , x , ..., x

f

.

.

.

x

x

x

x

w

w

T

2

3

4

 2

 w 3 w

n

 n

.

.

.

x

x

x

x

w

w

2

3

4

 2

 w 3 w

n

 n

T−w
f
 2

x

1 2 nf)(

1 4

 4
1

1

1

 1

 1

2

1

1

Figure 4. Classical decomposition of a thresh-
old function.

duce the number of threshold inputs to any small value dic-
tated by the technology. However, as is evident from Fig. 4,
each time decomposition is used, the number of threshold
functions double (not counting the AND and OR gates). If
the reliability consideration limits the number of inputs to
a threshold circuit to L (< n), then the final decomposi-
tion would have 2n−L threshold circuits each with L in-
puts. Thus the total input complexity (i.e., the total number
of inputs to all the threshold gates) of the classical decom-
position is given by

(L + 2)2n−L. (3)

The total input complexity is a measure of the circuit com-
plexity [9]. In addition to the large O(2n) total input com-
plexity, the classical decomposition also suffers from the
fact that the L inputs xn−L+1 to xn that are not used in the
decomposition have a fanout3 of 2n−L. Fanout of other in-
put variables xi, 1 ≤ i ≤ n − L, is equal to 2i. This large
fanout implies excessive load on the circuits or sensors pro-
viding these inputs.

In this paper we propose an alternate decomposition of
the threshold function in which each input xi is applied to
a small number of threshold functions, i.e., each input vari-
able has a small fanout. We call the threshold circuits to
which inputs are applied as Fragments and the threshold
circuits which combine the outputs of the fragments into

3Fanout of xi is the number of threshold circuits it is applied to.

the final output of the function as the Recombiners. This
scheme is shown in Fig. 5.

We assume that the weights and threshold are integers.
One may scale the weights and threshold to achieve this.
This is also consistent with nanotechnology since all RTD
areas are multiples of some unit area. We also assume that
the weights and threshold have been minimized.

Note that a threshold function output is determined by
the comparison of a weighed sum of its inputs

∑

wixi with
the threshold, T . Unfortunately, the weighed sum of the
inputs to each fragment lies between the sum of the negative
weights of these inputs to the sum of the positive weights.
Thus each fragment may produce the sums within different
bounds. As a result, the task of combining these sums and
then comparing it with the threshold would be very difficult.

In this paper, we demonstrate a different approach.
Rather than computing and passing on the weighed sums
by each fragment, we compute and pass on the error. Error
E for the function f is defined as

E = K −

n
∑

i=1

wixi, where K =

n
∑

i=1
wi>0

wi (4)

Let R denote the constant K − T , where T is the thresh-
old. Clearly, R ≥ 0; otherwise the function would always
be 0. Further, E ≥ 0 because K is the largest value of
∑

wixi. The non-negative character of E is ideal for in-
formation transfer between the fragments and recombiners.
Recall that the function f(x1, x2, . . . , xn) = 1 if and only if
∑n

i=1
wixi ≥ T . But from (4), this condition is equivalent

to

f(x1, x2, . . . , xn) =

{

1 if E ≤ R
0 otherwise.

(5)

In the proposed decomposition, we compute the error of
each fragment j based on the set of indices Sj that deter-
mines its inputs as

Ej = Kj −
∑

i∈Sj

wixi, where Kj =
∑

i∈Sj

wi>0

wi. (6)

As before, each Ej ≥ 0 and

∑

j

Ej =
∑

j

Kj −
∑

j

∑

i∈Sj

wixi

= K −

n
∑

i=1

wixi = E. (7)

Thus the errors within individual fragments give the total er-
ror E which is needed to establish the value of the function
by (5). We use the recombiners to add Ejs together. Since
one is only interested in comparing E to R, a fragment only

47

. . .

.

.

Recombiner G

Recombiner F

Fragment DFragment CFragment B

Recombiner E

Fragment A

.

0

x x x x x x xx L1 L 2L L2 3 3L+1 n+1+1

0

g
R

0 f fReRe

a0 aR 0b 0c dbR cR dR

L

Figure 5. A threshold function of n variables and threshold T partitioned into four fragments and
recreated by a tree of recombiners. R equals sum of all positive weights minus T .

needs to transfer the value of Ej if it is less than or equal
to R. We use R + 1 outputs from each fragment to carry
Ej . The tth output from a fragment, say pt, 0 ≤ t ≤ R is
defined as

pt =

{

1 if error in that fragment ≤ t
0 if error in that fragment > t

(8)

Clearly each output pt of fragment j is a threshold function.
It uses inputs xi with weights wi, i ∈ Sj and a threshold of
Kj−t. Note that pts of different ts are related. In particular,
one has

pipj = pi if i < j. (9)

3 Recombiner as a threshold function

We combine the outputs of the fragments by using a bi-
nary tree of recombiners. Each recombiner outputs the com-
bined error in all the fragments feeding into it. As before,
we are only interested in the error values between 0 and
R and can output these through R + 1 lines defined in the
same manner as in (8). Let pi, 0 ≤ R and qi, 0 ≤ R be
the 2R+2 inputs to a recombiner from its two descendants.
The tth output of the recombiner, st, is based on the 2t + 2
inputs pi, 0 ≤ i ≤ t and qi, 0 ≤ i ≤ t and is given by the
Boolean expression

st(p0 : pt; q0 : qt) =

t
∑

i=0

piqt−i, 0 ≤ t ≤ R. (10)

Relation (10) may be justified by noting that the product
piqt−i is 1 only if the left descendant of the recombiner has
at most i errors and the right, at most t − i errors. Thus
each term of the summation (10) accounts for a case when

the total number of errors are t or less. Each term is 0 if
combined error from the two descendants is greater than t.
We now state the most important property of the function
st.

Theorem 1 Function st defined by (10) is a threshold func-
tion.

Proof. We prove this theorem by induction on t. Note first
that s0(p0; q0) = p0q0 is clearly threshold. Similarly, using
(9), function s1 can be simplified as

s1(p0 : p1; q0 : q1) = p0q1 + p1q0

= p0p1q1 + p1q0q1

= p1q1(p0 + q0). (11)

Equation (11) shows that s1 is a threshold function because
it is built by multiplying a threshold function p0 +q0 by two
new variables p1 and q1.

Now assume that st−2 is a threshold function. We will
then prove that st is threshold. Using (9) we can write (10)
as

st(p0 : pt; q0 : qt) =

t−1
∑

i=1

piptqt−iqt + p0ptqt + ptq0qt

= ptqt(

t−1
∑

i=1

piqt−i + p0 + q0)

= ptqt(

t−2
∑

i=0

pi+1qt−1−i + p0 + q0)

48

1

1
1

3
 7

3

1

1
1

3
 7

3

1

1
1

3

q
t

p
t

3

1

ts

0
q0

p
m-2p

q
m-2m-1

q
m-1
p

 7

3

1

1

3

 7

q
m+2

m+2
pm+1q

m+1p
q
m

m
p

0
0

1 . . .

Figure 6. Recursive implementation of st with 5 input threshold modules for even t. m = t/2.

p
q

m-2m-1
q

m-1
p

 7

3

1

1

3

 7

3

1

1
1

3
 7

3

1

m-2

m+3
pm+2q

m+2p

q
m

m
p

m+1q
m+1p

1

ts

0
q0

p

1
1

3
 7

3

1

1
1

3

q
t

p
t

q
m+3

0 . . .

Figure 7. Recursive implementation of st with 5 input threshold modules for odd t. m = bt/2c.

The summation term in the above equation is the expression
for st−2 with some change of variables. In particular,

st(p0 : pt; q0 : qt)

= ptqt(st−2(p1 : pt−1; q1 : qt−1) + p0 + q0) (12)

Equation (12) shows that function st can be built from a
threshold function st−2 by adding two new variables p0 and
q0 and multiplying the result by two new variables pt and

qt. Function st is therefore threshold.

4 Recombiner implementation

Theorem 1 shows that each st is a threshold function of
2t + 2 variables. But since t may be as large as R, imple-
mentation of st as a single threshold function might not be
reliable in nanotechnology. This section focuses on imple-
mentations of st with multiple (and if possible, identical)
threshold functions, each with a small number of inputs.

One may implement st directly from its definition (10)
using t + 1 two input ANDs and a t + 1 input OR, all im-
plemented as threshold circuits. However, as will be shown
later, the total input complexity of this solution is worse than
the solution presented here. Further, such an implementa-
tion has poor layout efficiency.

The implementations we provide here are recursive and
are a direct consequence of (12). They consist of chains

of identical threshold modules. The length of the chain is
dependent upon t but the modules themselves are identi-
cal for all ts. To obtain these chains, we repeatedly apply
(12) to decrease the index of st. In particular, after i ap-
plications of (12), function st can be expressed in terms
of function st−2i(pi : pt−i; qi : qt−i). Let m = bt/2c.
Since the function index goes down by 2, each time (12)
is applied, st reduces to s0(pm; qm) for an even t and to
s1(pm : pm+1; qm : qm+1) for an odd t. Thus st can
be implemented by first building s0 (or s1 for odd t) and
then building successively higher indexed si from that us-
ing (12). Note that to get si+2 from si, one needs to add to
it two new variables and multiply the result with two other
new variables. Thus si+2 may be created from si by using
a threshold function. Also because the same equation (12)
is repeatedly used, the resultant threshold modules are all
identical. This discussion is summarized by the following
procedure to compute st. Let m = bt/2c.

Set fm =

{

pmqm if t is even
pm+1qm+1(pm + qm) if t is odd

Let fi = (fi+1+pi+qi)pe−iqe−i i = m−1, m−2, . . . , 0.
Finally set st = f0.

This procedure directly yields the implementation of st

shown in Figs. 6 and 7. Note that each implementation has
bt/2c+ 1 identical blocks connected in series for any t.

If each threshold circuit is limited to only 3 inputs, then
one may further decompose each threshold circuit with five

49

qq
m

p
m

 1 31
1

1
 31

1

1

. . .

m-1

ts

p
t

q
t

q
0

p
0

m+1
p

m+1q

m-1
p

111
1

1
 1

1

1
 3

1

1
 1

Figure 8. Recursive implementation of st with 3 input threshold modules for even t. m = t/2.

1
1

1

1

1

ts

q
0

p
0

m-1
p

m-1q

 31
1

 3

q
m

p
m

m+1q m+2q

m+2
p

m+1
p

0 11

p
t

q
t

1

. . . 111
1

1
 1

1

1
 3

1

1
 1

Figure 9. Recursive implementation of st with 3 input threshold modules for odd t. m = bt/2c.

inputs into two circuits with 3 inputs each. The resultant
implementations are shown in Figs. 8 and 9. Note that these
implementations consist of t+1 blocks in series, alternating
between only two types of threshold circuits for any t.

5 Total input complexity

We now compute the total input complexity (i.e., the to-
tal number of inputs to all the threshold gates) of the archi-
tecture proposed here.

Let I(t) denote the total input complexity of computing
output st of a recombiner using threshold modules with 5
inputs. From Figs. 6 and 7, one gets

I(t) =

{

5(t/2) + 2 if t is even
5bt/2c+ 4 if t is odd

(13)

Besides allowing for efficient layout, the decomposition
of st obtained here also lowers the total input complexity.
For example, implementation of s10 as proposed in Fig. 6
has a total input complexity of 27. With a direct implemen-
tation (based on (10)) using AND/OR gates (limited to 5
inputs each), this complexity rises to 35, about 30% higher.
Further, our implementation uses identical modules for ev-
ery st which is an advantage for manufacturing.

To obtain the complexity of a recombiner, recall that it
needs to compute functions si, 0 ≤ i ≤ R (see Fig. 5).
Thus the total input complexity, IC , of a recombiner for

generating all the outputs is given by

IC =



















(5R/2 + 2) + (5b(R − 1)/2c+ 4)+
(5(R − 2)/2 + 2) + . . . + 2 for even R

(5bR/2c+ 4) + (5(R − 1)/2 + 2)+
(5b(R − 2)/2c+ 4) + . . . + 2 for odd R.

This equation can be simplified to

IC =

{

1.25R2 + 3R + 2 for even R
1.25R2 + 3R + 1.75 for odd R

(14)

We can do similar analysis for the recombiners using
threshold modules with 3 inputs. Let the total input com-
plexity of computing st in this case be denoted by I ′(t). An
inspection of Figs. 8 and 9 gives

I ′(t) = 3t + 2 (15)

As before, even in this case, one needs to compute all the
functions si, 0 ≤ i ≤ R in each recombiner (see Fig. 5).
Thus the input complexity, I ′

C , of a recombiner generating
all the required outputs using 3 input modules is given by

I ′C = 1.5R2 + 3.5R + 2. (16)

We now compute the total input complexity of our com-
plete architecture shown in Fig. 5. Note that each fragment
has R + 1 independent threshold circuits. Thus the total
input complexity of all the fragment threshold circuits is

IF = n(R + 1). (17)

50

2 2

1

3 3

2

1 1
q

3

4
p

4
q

4

0
p

0
q

1

5 5
q

2

pp q p q p

1 1 1

clk

11 1 1 11 1 1

clk

11 1 1

clk

11 1 1

clk

11 1 1

clk

0.5 2.5 0.5 2.5 0.5 2.5

clk

s5

Figure 10. A nanotechnology implementation of output s5 of a recombiner.

Further, if each fragment has at most L inputs, there will be
dn/Le fragments and dn/Le − 1 recombiners in the archi-
tecture. Of these, the final recombiner has only one output
sR. Thus using the 5 input modules in recombiners , the
input complexity of the entire architecture is given by (13),
(14) and (17) as:

IF + (dn/Le − 2)IC + I(R). (18)

Equation (18) evaluates to

(1.25dn/Le− 2.5)R2 + (3dn/Le+ n − 3.5)R+
(2dn/Le+ n − 2) for even R

(1.25dn/Le− 2.5)R2 + (3dn/Le+ n − 3.5)R+
(1.75dn/Le+ n − 2) for odd R.

(19)

On the other hand, if only 3 input threshold modules are
used in the recombiner, then the total input complexity of
the architecture is

(1.5dn/Le − 3)R2 + (3.5dn/Le+ n − 4)R+

(2dn/Le+ n − 2) (20)

From (19) and (20) one can see that the total input com-
plexity of our architecture is O(nR2) which compares very
favorably with the complexity O(2n) of the classical de-
composition given in (2).

6 Nanotechnology implementation

The architectures developed in the earlier sections are
well suited for reliable nanotechnology implementations.
They use networks of threshold circuits which can be eas-
ily realized using MOBILE based architectures discussed
in Section 1. The small number of inputs to each individual
threshold circuit implies that the variance of the accumu-
lated peak currents within a MOBILE is small and therefore
the operation of the MOBILE is less prone to errors.

Fig. 10 shows implementation of a typical output s5 of
the recombiner using RTD/HFET nanotechnology devices.

One may note that this figure shows the implementation of
the threshold network in Fig. 9 for t = 5.

To make the comparison between the weighed sum of
the inputs to an individual circuit and its threshold more ro-
bust, the threshold should be set exactly in the middle of
the maximum weighed sum of inputs when the output is 0
and the minimum weighed sum when the output is 1. Let
TL denote the largest value of the weighed sum when the
output is 0 and TH , the smallest value of the weighed sum
when the output is 1. In all the modules used in the de-
composition of a recombiner one can see that TH = T and
TL = T − 1, where T is the threshold of the module. Thus
in case of these modules, the optimal threshold to be used
for robustness is T = (TL + TH)/2 = T − 0.5. This is
illustrated in Fig. 10.

In order that the series connection of threshold modules
works as desired, one needs to ensure that when a MOBILE
is swept, its inputs are constant. This calls for a four phased
clock shown in Fig. 11. The four clocks in the figure are ap-

clk3

4

clk1

clk2

1 2 3 4 1 2 3 4

T/2 T Time

clk

Figure 11. A four phase clocking scheme to
drive a serial connection of MOBILES such
as the one in Fig. 10

plied to consecutive modules as shown in Fig. 10. During

51

the first phase of clock, clk1 rises and the first MOBILE
in the series computes its output. This output is latched
as clk1 is held high during phase two, while at the same
time, a rising clk2 allows the second MOBILE to use this
input for its computation. During the third phase of clock,
clk2 is held high resulting in the output of the second MO-
BILE to be latched. In this phase, a rising clk3 allows the
third MOBILE to create its correct output using this latched
value. Output of the third MOBILE is then similarly used
by the fourth MOBILE in the fourth phase using the rising
clk4. This process continues with all the modules. Note
that each clock rises in one phase, allowing computation, is
held steady in the next phase, allowing latching of its out-
puts, falls in the following phase to reset and remains low
for the last phase for the inputs to change. The complete
architecture thus behaves as a four stage pipeline [10] with
a throughput of one recombiner calculation per clock.

7 Conclusions

It is known that RTD/HFET nanotechnology circuits can
efficiently implement threshold logic. Implementations of
small threshold functions are generally more reliable than
large functions because they limit the worst case peak cur-
rents and current fluctuations in the circuit.

This paper presents a new strategy to decompose multi-
input threshold functions into networks of threshold func-
tions, each with a small number of inputs. The resultant
realizations are expected to have a high reliability. The de-
composition leads to a network of serially connected iden-
tical threshold modules which is easy to pipeline for high
throughput. The total input complexity of our decomposi-
tion of an n input threshold function is only O(nR2), where
R equals the difference between the sum of all the positive
weights of the threshold function and the threshold. This
compares favorably with the total input complexity O(2n)
of classical threshold function decomposition.

References

[1] K. Goser and C. Pacha, “System and circuit aspects
of nanoelectronics,” in 24th European Solid-State Cir-
cuits Conf., (The Hague, NL), pp. 18–29, Sep. 1998.

[2] K. Nikolic, D. Berzon, and M. Forshaw, “Relative per-
formance of three nanoscale devices – CMOS, RTDs
and QCAs – against a standard computing task,” Nan-
otechnology, vol. 12, pp. 38–43, March 2001.

[3] T. Akeyoshi, K. Maezawa, and T. Mizutani,
“Weighted sum threshold logic operation of MOBILE
(monostable-bistable transition logic element) using
resonant-tunneling transistors,” IEEE Elec. Dev. Lett.,
vol. 14, pp. 475–477, Oct. 1993.

[4] C. Pacha, K. Goser, A. Brennemann, and W. Prost, “A
threshold logic full adder based on resonant tunneling
transistors,” 24th European Solid-State Circuits Conf.,
pp. 428–431, 1998.

[5] J. Håstad, “On the size of weights for threshold gates,”
SIAM J. Discrete Math, vol. 7, pp. 484–492, Aug
1994.

[6] V. Annampedu and M. D. Wagh, “Approximate pat-
tern matching in nanotechnology,” in Proc. of Nan-
otech 2006, vol. 3, (Boston, MA), pp. 316–319, May
7–11 2006.

[7] W. Prost, U. Auer, F.-J. Tegude, C. Pacha, K. F. Goser,
G. Janssen, and T. van der Roer, “Manufacturabil-
ity and robust design of nanoelectronic logic circuits
based on resonant tunnelling diodes,” Int. J. Circ.
Theor. Appl., vol. 28, pp. 537–552, 2000.

[8] G. S. Glinski and C. K. Yue, “Decomposition of n-
variable threshold function into p-variable threshold
functions, where p < n,” tech. rep. 63-10, Dept. of
EE, Univ. of Ottawa, 1963.

[9] R. Zhang, P. Gupta, L. Zhong, and N. K. Jha, “Thresh-
old network synthesis and optimization and its appli-
cation to nanotechnologies,” IEEE Trans. on Comp.
Aided Design, vol. 24, pp. 107–118, Jan 2005.

[10] P. Gupta and N. K. Jha, “An algorithm for nano-
pipelining of RTD-based circuits and architectures,”
IEEE Trans. on Nanotechnology, vol. 4, pp. 159–167,
Mar 2005.

52

