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ABSTRACT

Adder is an important functional unit of a computer.
This paper provides design of a low delay threshold
adder (LDTA) using fan-in bounded gates in nanotech-
nology. An n-bit LDTA with a fan-in bound of M + 1
has delay of O(log(N/M)) and hardware complexity of
O(N log(N/M)). This design strategy allows a trade-off
between the fan-in bound, delay and the complexity.
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1 INTRODUCTION

According to the International Technology Road-map

for Semiconductors [1], [2], within another two decades,
digital circuits based on nanoelectronic technologies of
resonant tunneling diodes/transistors (RTD/RTT) [3],
single electron transistor(SET) [4], [5] and quantum dot
cellular automata (QCA) [6] will start replacing those
based on the complementary metal oxide semiconductor
(CMOS) technology. The nanoelectronic circuits will
have higher speed, smaller size and lower power dissipa-
tion. While the elementary logic blocks in these tech-
nologies have already been fabricated and evaluated, the
design techniques to create larger systems with these de-
vices have not yet been fully developed.

The basic logic block implemented by all the three
nanoelectronic technologies mentioned here is a thresh-
old gate, which is much more powerful than the logic
gates built in the CMOS technology [3]–[6]. Boolean
gates AND/OR/NOT/NAND/NOR are threshold func-
tions. Thus one can always express the conventional de-
signs using threshold gates thereby providing their nano-
electronic implementation. However, this design trans-
lation fails to harness the true power of the threshold
gate which allows one to realize very complex Boolean
expressions, often through single gates.

Previous researchers have provided adder designs us-
ing RTD [7], SET [8] and QCA [9], [10] devices. But
these and other prior works merely convert the designs
developed for the CMOS technology into threshold logic
suitable for the newer technologies. This paper devel-
ops strategies to design adder architectures directly with
threshold gates. This allows one to exploit the full po-
tential of threshold gates and improve certain required

characteristics of the designs. Further, it is known that
the reliability of gates based on nanotechnologies de-
creases as their fan-in (number of inputs to a gate) in-
creases [11]–[13]. This work therefore assumes that the
fan-in of the threshold gates is bounded. We compare
the delay and complexity of our adder to those of the
conventional adders (also implemented with threshold
gates) and argue that only our adder allows a trade-off
between these properties and reliability.

2 PRELIMINARIES

A Boolean function f(x1, . . . , xn), is called a thresh-

old function if there exist real numbers w1, w2, . . ., wn

and T such that

f(x1, x2, . . . , xn) =

{

1 if
∑n

i=1 wixi ≥ T

0 otherwise.
(1)

The constants w1, . . ., wn and T are called the weights

of the inputs and the threshold respectively. This func-
tion is denoted by TH(x1, . . . , xn;w1, . . . , wn;T ). Since
scaling of weights and threshold by the same amount has
no effect of the inequality in (1), we use integer values
for weights and the threshold. A Majority function is a
threshold function with each wi = 1 and T = ⌊n/2⌋+1.
A majority function is denoted by MAJ(x1, x2, · · · , xn).

Two properties of the threshold functions used here
are stated in the following theorem without proof.

Theorem 1 P1. x1x2+x3(x1+x2) = MAJ(x1, x2, x3).
P2. Let f = TH(x1, x2, . . . , xn;w1, w2, . . . , wn;T ) with

each wi ≥ 0. Then a function g of n + 2 variables

including two new variables xn+1 and xn+2 defined as

g = xn+1xn+2+(xn+1+xn+2)f is also a threshold func-

tion. In particular,

g = TH(x1, . . . , xn, xn+1, xn+2;w1, . . . , wn, w, w;T ′),
where the threshold T ′ of g is chosen to satisfy T ′ ≥ 2T

and T ′ >
∑n

i=1 wi and w = T ′ − T .

3 CARRY COMPUTATION WITH
THRESHOLD FUNCTIONS

Let gi and pi denote the carry generation and propa-
gation properties of the i-th bit position as in the Group
Carry Lookahead Adders (GCLA). One has gi = aibi
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and pi = ai ⊕ bi, where ai and bi are the i-th bits of the
two operands. In order to avoid the ExOr which is not
a threshold function, define ti = gi + pi = ai + bi. Then
giti = gi and gi + ti = ti. Theorem 1(P1) now gives

ci = gi + pici−1 = gi + tici−1

= giti + (gi + ti)ci−1 = MAJ(gi, ti, ci−1). (2)

To relate carry ci to some other previous cj , we gen-
eralize gi and ti to multiple bits.Let Gi:j , i ≥ j denote
the proposition that carry ci is generated in the bit po-
sitions j through i. Similarly, let Pi:j denote the propo-
sition that this group of bits propagates a carry. As
before, define Ti:j = Gi:j +Pi:j . Note that Gi:i = gi and
Ti:i = ti. Clearly, Gi:j = Gi:jTi:j and Ti:j = Gi:j + Ti:j .
We then have

ci = Gi:j + Pi:jcj−1 = MAJ(Gi:j , Ti:j , cj−1). (3)

Gi:j and Ti:j can be expressed with Gs and T s of
smaller groups of bits. For any k, i ≥ k > j,

Gi:j = Gi:k + Gk−1:jPi:k (4)

= MAJ(Gi:k, Ti:k, Gk−1:j). (5)

Ti:j = Gi:j + Pi:j = MAJ(Gi:k, Ti:k, Tk−1:j). (6)

Quantities Gi:j and Ti:j for smaller sets of bits can
be determined directly from the input bits as follows.
Carry is generated in bit positions j through i only if
it is generated in one of these bits and is propagated
through the higher bits. Thus,

Gi:j = gi + pi(gi−1 + pi−1(gi−2 + · · · pj+1(gj) · · ·)). (7)

Using the fact that gk + pkX = gk + tkX for any k and
X, one can also write (7) as:

Gi:j = gi + ti(gi−1 + ti−1(· · · tj+1(gj) · · ·))

= aibi + (ai + bi)(ai−1bi−1 + (ai−1 + bi−1)(· · ·

aj+1bj+1 + (aj+1 + bj+1)(ajbj) · · ·))

= TH(aj , bj , aj+1, bj+1, . . . , ai, bi;

1, 1, 2, 2, . . . , 2i−j , 2i−j ; 2i−j+1). (8)

The last step in (8) is obtained from Theorem 1(P2).
The expression for Ti:j can be obtained similarly as

Ti:j = TH(aj , bj , aj+1, bj+1, . . . , ai, bi;

1, 1, 2, 2, . . . , 2i−j , 2i−j ; 2i−j+1 − 1).(9)

To obtain the carries directly from the input bits and
c−1, use (3) and Theorem 1(P2) to get

ci = Gi:0 + c−1Ti:0

= aibi + (ai + bi)(ai−1bi−1 + (ai−1 + bi−1)(· · ·

a1b1 + (a1 + b1)(a0b0 + c−1(a0 + b0)) · · ·))

= TH(c−1, a0, b0, a1, b1, . . . , ai, bi;

1, 1, 1, 2, 2, . . . , 2i, 2i; 2i+1). (10)

Similarly, ci and cj , j < i are related by

ci = TH(cj , aj+1, bj+1, aj+2, bj+2, . . . , ai, bi;

1, 1, 1, 2, 2, . . . , 2i, 2i; 2i+1). (11)

We will often refer to Gi:j and Ti:j as the G and T

functions over the (bit index) range [i : j].

4 A LOW DELAY THRESHOLD
ADDER (LDTA)

The strategy to design the N -bit adder with a small
delay using threshold functions with fan-in bound of
M + 1 can be described as follows. For convenience,
assume M = 2m and N = 2n.
Low Delay Threshold Adder (LDTA) Design.

1. Obtain ci, 0 ≤ i < M/2 using (10).

2. Obtain G and T over the range [jM/2+k : jM/2],
0 ≤ k < M/2, 1 ≤ j < 2N/M using (8) and (9).

3. For each i, 0 ≤ i < n − m, for 1 ≤ j < N/(2iM)
and 2iM/2 ≤ k < 2i+1M/2, obtain G and T over
the range [j2i+m + k : j2i+m] from G and T over
ranges [j2i+m +k : j2i+m +2i+m−1] and [j2i+m +
2i+m−1 − 1 : j2i+m], 2i+m−1 ≤ k < 2i+m, 1 ≤ j <

2n−m−i using majority gates as in (5) and (6).

4. Obtain carries c(M/2)2i+k, 0 ≤ k < (M/2)2i using
carry c(M/2)2i

−1 and the appropriate G and T as
in (3), 0 ≤ i ≤ n − m.

5. Obtain the sum bits from the carries using si =
TH(ai, bi, ci−1, ci; 1, 1, 1,−2; 1).

Fig. 1 shows the carry computation (steps 1 through
4 of the algorithm) in an 8-bit LDTA using threshold
gates with a fan-in bound of 5. The threshold gates in
this architecture are defined (for i = 1, 2, 3) as:
A0 : TH(a2i, b2i; 1, 1; 2),
A1 : TH(a2i, b2i, a2i+1, b2i+1; 1, 1, 2, 2; 4),
B0 : TH(a2i, b2i; 1, 1; 1),
B1 : TH(a2i, b2i, a2i+1, b2i+1; 1, 1, 2, 2; 3),
C0 : TH(a0, b0, c−1; 1, 1, 1; 2) and
C1 : TH(a0, b0, a1, b1, c−1; 1, 1, 2, 2, 1; 4).

Note that functions C0 and C1 in Fig. 1 correspond
to step 1 of the procedure explained above. Functions
A0 and A1 compute the G over the ranges [2i : 2i]
and [2i + 1 : 2i] respectively as in step 2 of the pro-
cedure. Functions B0 and B1 compute the T over the
same ranges. The four majority gates on the left in the
second row of Fig. 1 compute the G and T functions
over larger ranges by combining G and T functions over
smaller ranges as described in step 3 of the procedure.
Finally, the remaining majority gates in the figure are
used to compute the carries as in step 4 of the procedure.
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Figure 1: Computing all the carries of an 8-bit LDTA with a fan-in bound of 5.

Fig. 2 shows the RTD implementation of the carry
computation in 8 bit LDTA with fan-in bound of 5.

Let N = 2n and M = 2m. The complexity and delay
of the LDTA is then given by the following Theorem.

Theorem 2 The N -bit Low Delay Threshold Adder us-

ing threshold gates with fan-in bound M + 1 ≥ 5 has a

delay of 3+log(N/M) and uses 3N+N log(N/M) gates.

Proof. Steps 1 and 2 of the LDTA design procedure
follow directly from (8) - (10). The threshold functions
used therein clearly satisfy the fan-in bound.

We now show that the G and T required in step 3
for any particular calculation for a given i, j and k are
available either from step 2 or from a smaller i in step 3.
For convenience, we denote the range [j2i+m+k : j2i+m]
in step 3, by R(i, j, k). Similarly the range [jM/2 + k :
jM/2] used in step 2 is denoted by R′(j, k). To compute
G and T over R(i, j, k), one needs T and G over two
smaller ranges, namely, [j2i+m + k : j2i+m + 2i+m−1]
and [j2i+m + 2i+m−1 − 1 : j2i+m]. One can verify that
the second of these ranges is R(i − 1, 2j, 2i+m+1). (For
i = 0, this range is R′(2j, 2i+m+1) in step 2.) Since Gs
and T s for i − 1 are computed before those for i, Gs
and T s over R(i − 1, 2j, 2i+m+1) are available for the
computation of Gs and T s over R(i, j, k).

To show that the Gs and T s over the other smaller
range, [j2i+m+k : j2i+m+2i+m−1], are also available for
computing Gs and T s over R(i, j, k), we consider cases
based upon the value of k. When 2iM/2 ≤ k < (2i +
1)M/2, Gs and T s over the required range are available
from step 2 when they are computed over the range
R′((2j + 1)2i, k − 2i+m−1). When i = 0, this covers the
entire k range. For other i values, when (2i +2t)M/2 ≤
k < (2i + 2t+1)M/2, 0 ≤ t < i, the required range is
R(t, (2j + 1)2i−t−1, k − 2i+m−1). Thus the required G

and T over that range are available for computing Gs
and T s over R(i, j, k).

Finally, carry computation in step 4 requires Gs and
T s over the range [(M/2)2i + k : (M/2)2i]. It is easy
to show that when i = 0, these are computed in step 2

over the range R′(1, k) and when i > 0, in step 3 over
the range R(i − 1, 1, k + 2iM/2).

The complexity of LDTA can be obtained from the
number of gates used in steps 1 through 5: M/2, 2N −

M , N log(N/M) − N + M , N − M/2 and N .

5 DISCUSSION AND CONCLUSION

This paper has developed a general strategy to de-
sign adder architectures directly in terms of threshold
functions that are compatible with nanoelectronics. To
increase the implementation reliability, we have assumed
that the threshold gates used have a bounded fan-in.
Our strategy is based on defining new logic primitives
Gs and T s of operand bits (Section 3) such that their
evaluation as well as combination requires only thresh-
old gates. These primitives may be computed over ap-
propriate ranges of operand bits, either directly (see (8
and (9)) or by combining those over smaller ranges (see
(4) - (6)). Once the appropriate Gs and T s are available,
the carries are computed from these with some previous
carry (see (3)) or directly from the input operand bits
and some previous carry (see (10) and (11)). Sum bits
may be computed from the carries in one level of thresh-
old gates. The chosen interdependence between carries
(the carry chain) determines the delay and the hard-
ware complexity of the adder. By experimenting with
the carry chains, one can choose a suitable compromise
between the complexity and the delay.

This paper has applied the strategy to obtain an
adder architecture, LDTA, with a very low delay. This
adder has 3-input majority gates on all but the first and
the last levels. Table 1 compares the new LDTA archi-
tecture with CPA, CLA and GCLA.

One can see from the Table 1 that the LDTA is
the only adder allowing a trade-off between the fan-in
bound, delay and the complexity. It can give the mini-
mum delay amongst all the adders. Through the fan-in
bound, this adder allows the control of failure rates. Fi-
nally, it uses majority gates on all levels except the first
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Figure 2: The 8 bit LDTA carry computation using Resonant Tunneling Diodes (RTD) with fan-in bound of 5.

Table 1. Comparison of N bit adders using nanotechnology devices with fan-in bound M .
Adder Delay Max fan-in Number of gates

Carry Propagation Adder (CPA) N 4 2N

Group Carry Lookahead Adder (GCLA) log N + 2 9 (4/3)(N − 1) + 3N
Carry Lookahead Adder (CLA) [4] log N (N/4) + 1 (5/2)N

new Low Delay Threshold Adder (LDTA) 2 + log(N/M) 2M + 1 O(N log(N/M))

(see Fig. 1), thus improving its manufacturability.
The strategy presented in this paper provides a new

direction in adder architecture exploration. It is appli-
cable to multiple nanotechnologies because it exploits
the identical logic primitives in all these technologies.
We believe that one can use the tools developed in this
paper to design other new adders with the right balance
of the delay and the complexity, all the while remaining
within the realistic fan-in bounds.
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