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ON CONSTRUCTION OF MATRICES WITH DISTINCT SUBMATRICES*

SHARAD V. KANETKAR" AND MEGHANAD D. WAGH:

Abstract. Given N, M, and s, a method of generating an N xM binary matrix such that every nonzero
x s binary pattern occurs exactly once as its submatrix is presented. This construction is based upon a

systematic filling of the matrix with a maximal length recurrent sequence and gives several new solutions yet
unreported.

1. Introduction. In this paper we consider the problem of construction of an
N xM binary matrixA such that any s nonzero binary pattern occurs exactly once as
its submatrix. Similar problems have been attempted earlier by various authors.

Reed and Stewart [5] considered the existence of A given only and s. Gordon [2]
later extended their result and showed that given any and s, one can always find N and
M, N> t, M> s such that all s submatrices (in the toroidal sense) in A are distinct. A
is then called a perfect map. All the s nonzero binary patterns are not necessarily the
submatrices of a perfect map. However, a perfect map with parameters M 2 1 and
N (2s’- 1)/M and containing all the x s nonzero binary patterns was exhibited in
12]. WhenN andM are relatively prime, a pseudorandom array also gives a perfect map
with the same parameters [3].

The toroidal perfect maps of [2], [3] and [5] can be easily converted into
nontoroidal ones by repeating the first t- 1 rows after the last row and the first s- 1
columns after the last column. In this paper, we will be concerned only with N xM
nontoroidal perfect map A in which every nonzero binary s pattern occurs exactly
once as a submatrix. Obviously, the four parameters are then related as

(1.1) (M-s + 1)(N- + 1)= 2st- 1.

Banerji [1] has recently described a procedure of designing A when (i) M s and (ii)
M 2 + s 2. Note that the required matrix A whenM 2 + s 2 was also obtained
earlier by Gordon [2].

In this paper, we give a criterion for filling up the matrix A with a maximal length
recurrent sequence (MLRS) such that A will have the required property. Four schemes
have been described which satisfy the criterion and hence generate A for all the earlier
known cases and for several new ones. This criterion also enables one to construct A for
any M, N, s and satisfying (1.1). We have included here the solution to the problem
(for all the possible parameter combinations with st <-15) obtained by a computer
search made easy with the help of the criterion.

2. Preliminaries. A linear recurrent sequence {Xi} of the elements of GF(q), (q" a
prime power) of period q"-1 may be obtained from the recurrence relation

(2.1) Xi alxi-1% a2xi-2 -1- --l.- anXi--n

over GF(q) with arbitrary nonzero initial condition if the constants a l, a2,’’’, an
GF(q) are chosen such that the polynomial

(2.2) x -alxn-l-aEx n-2 an
is primitive over GF(q). We will use the following property of this maximal length
recurrent sequence (MLRS).
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LEMMA 1. Let be the root of the polynomial (2.2) and il, i2, i,, any n integers
such that i1,i2,... ,fli. are linearly independent over GF(q). Then the n-tuple
(xi+il, xi+i," xi+i.) assumes all the nonzero values exactly once in the range 0 <-i <-
qn -2.

Proof. Solution of (2.1) can be expressed as [6]

xi=Tr(bi),
where Tr denotes the trace function

Tr (a)=a +a q +aq+ .+a

from GF(qn) onto GF(q) and b GF(q) is determined by the initial conditions. Then

xiti I [i,+
LXi+in]

The matrix on the right-hand side is nonsingular over GF(q) as the elements in the
first column are linearly independent by assumption. Thus there is a one-one cor-
respondence between the n-tuple (xi+i, xi+i, , x/.) and the quantity b i. But as fl
is the primitive element of GF(q"), bfl and hence (xi+i, x+i,"’, xi+i.) takes all the
possible q" 1 nonzero values as runs over 0 <_- <_- q" 2.

Since we are interested in binary matrices we will restrict ourselves to q 2.
However it should be mentioned that the methods developed in this paper can be
generalized to the case of matrices with q symbols.

Consider an MLRS {xi} of period 2st- 1 generated by (2.1) with n st. We now
state the central result of this paper.

THEOREM 1. IfA is filled as

A(u, v) x(+,+>, 0<=u <_-N-l, O_<_v <-M-l,

such that

(C1)
(C2)

(C3)

f is linear in u and v;
when u and v are restricted to O <-_ u <=N-t, O <- v <=M- s, f(u, v)arealldistinct
modulo 2st- 1;
flr(u.v), 0 < u < t- 1, 0 < v < s 1 are all linearly independent over GF(2) where
fl is the root of (2.2) with n st;

then each binary x s pattern occurs as a submatrix ofA exactly once.

Proof. Denoting f(u,v), O<-u<-t-1, O<-v<-s-1 by il, i2,’" ,is,, it is obvious
from (C1) that any s submatrix in A with its left-hand top corner at (u, v) has
elements

Xi+il, Xi+i2, ", Xi+ist where f(u, v).

Further, as u, v run over 0 <= u _-< N and 0 _-< v _-<M s, (i.e., all possible coordinate
values taken by the left hand top corners of s submatrices), runs over 0 to 2st 2
because of (C2) and (1.1). Finally, from (C3),/3 q, fli2,..., flis, are linearly independent
over GF(2) and hence an application of Lemma 1 gives the required result.
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3. Generation of A matrix. Several schemes to fill up A to satisfy the conditions
(C1)-(C3) may be given.

Scheme 1.
f(u,v)=u+tv, O<-u<-2st+t-3, O<=v<=s-1

generates a matrix A with N 2st + t- 2 and M s. Here, (C1) is obvious. To check
(C2), note that for O<-u<-N-t, O<-v<-_M-s=O, f(u,v)=u and therefore in this
range all f(u, v) are distinct modulo 2st 1. Finally, the set {flr(u’o)[0 u _-< 1, 0 _-< v -<_
s 1} is {1, fl,/2,...,/,-1} elements of which are necessarily linearly independent
over GF(2) giving (C3). The generated matrix A will then have the desired properties
by Theorem 1. This leads to Banerji’s case (i).

The mappings
f(u, v) (M s + 1)u + v (H mapping)

f(u, v)= u +(N-t+ 1)v (V mapping)

0_<u_<_N-1, O__<v_<M-1,

obviously satisfy (C1). In the case of H mapping, when u and v are restricted to
O<=u<-_N-t, O<_v <-M-s, one gets 0-f(u, v)_-<2-2 by using (1.1). Thus, if in this
range f(ul, Vl)=-f(uz, v2) (mod 2t- 1), then (M-s + 1)(Ul-U2)=(v2-Vl). But, M-
s + 1 cannot divide v2-vl (as 0_-<Vl, v2<-M-s) unless v2= vl and in that case Ux also
equals u2. Thus f(u, v) are distinct modulo 2’- 1 in this range showing that (C2) is
satisfied. Similarly, V mapping also can be shown to satisfy (C2).

We now present three more schemes based on H and V mappings which satisfy
(C3).

Scheme 2. When 1, choosing H mapping, the set {/3r(u’v)10_<-u _-<t-1 =0,
0_-< v _-<s 1} is {1, fl, flz,..., fls-1}. Its elements are linearly independent over GF(2)
as/3 is the primitive element of GF(2S’). Thus (C3) is satisfied and the matrix generated
will have the required properties.

Scheme 3. When M 2s- 1, using H mapping, f(u, v)= su + v. Then the set
{/r("’v)[0-<_ u -<_ t- 1, 0-<_ v <- s 1} {1,/,/2,..., [3st--l} has elements which are
linearly independent over GF(2) as fl is the primitive element of GF(2’). Thus (C3) is
satisfied and one gets the matrix with the required properties.

Scheme 4. Let z (2s’- 1)/(2 1) and ] any integer satisfying/’[(2 1) and

(3.1) (2a- 1), 0<d<s.
I

When A has dimensions N z] + t- 1 and M (2 1)/] + s 1, one may use V
mapping. Then f(u, v)= u + z]v. To check (C3) one should prove the linear indepen-
dence over GF(2) of the elements of {flu+zJ[0-< u <_-t-1, 0_-< v _-<s-1}. Note that
flz GF(2s) and (3.1) implies that flzJ does not belong to any subfield of GF(2). In
other words, 1, fli, fl-i, ,/(+)i are linearly independent over GF(2) because
otherwise /3 i will satisfy a polynomial of degree-<_s-1 over GF(2) implying

2belongs to a proper sub,field of GF(2 ). Further, 1,/3,/3 ,..-,/3 are also linearly
independent over GF(2 because/3 cannot satisfy a polynomial of degree less than
over GF(2). Now if a linear combination of/3 "+zi is equal to zero, then

t--1 s-1

0=2 Eau,fl
u=0

tl ( s--1 "v)Bu E au,fl ’
u=0 v=0

au s GF(2).
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The result of the inner summation belongs to GF(2S). But as {13ulo<-_u <-_t-1} are
linearly independent over GF(2S), one has from this

s-1

0= Y’. auoiv

u=0

which, from the linear independence of {Bz10 <_- v <-s-1} over GF(2) gives auv
0, 0_-< u-<t--1, 0_<- v_-<s-1. Thus (C3) is satisfied and A will have the required
property.

/" 1 trivially satisfies (3.1) and gives dimensions identical to Banerji’s case (ii).
Table 1 lists the possible values of/" for 1 -<s -<_ 18 satisfying (3.1). Each gives a matrix
with distinct parameters.

Example. To illustrate Scheme 4, consider 2 and s 4. One then has z 17
and by choosing/" 3, N 52 andM 8. The required 52 x 8 binary matrix A may be
obtained by

A(u,v)=x+slv, 0_-<u-<51, 0-<_v_-<7,

where {xi} is obtained from the recurrence relation over GF(2):

Xi Xi-1 + Xi-2 + Xi-7 "+" Xi-8

(For a list of primitive polynomials over GF(2), refer to [4]). With the initial conditions
x0 xl x6 0, x7 1, one gets the MLRS as

0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0

TABLE 1
Allowed values of] for s <= 18

allowed

1 1
2
3 1
4 1,3
5 1
6 1,3,7
7 1
8 1, 3, 5, 15
9 1,7
10 1, 3, 11, 31, 93
11 1
12 1, 3, 5, 7, 9, 13, 15, 21, 35, 39, 45, 63, 91, 105, 117, 315
13 1
14 1, 3, 43, 127, 381
15 1, 7, 31,151,217
16 1, 3, 5, 15, 17, 51, 85, 255
17 1
18 1, 3, 7, 9, 19, 21, 27, 57, 63, 73, 133, 171,189, 219, 399, 511,657, 1197, 1387, 1533, 1971,

4599, 9709, 13797
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We give below the transpose of the required matrix whose rows, for convenience, have
been coded in right justified octal representation.

0 0 0 6 6 5 0 4 5 7 1 3 0 4 3 1 4 3

1 4 1 4 0 7 3 0 2 5 4 4 7 1 6 5 3 7
1 7 3 3 1 7 0 6 5 6 2 0 7 5 6 7 5 0

0 1 0 0 5 5 7 4 6 7 0 5 6 4 6 2 5 2
0 2 2 1 2 0 4 6 4 3 7 2 6 4 5 1 7 6
0 0 0 6 6 5 0 4 5 7 1 3 0 4 3 1 4 3

1 4 1 4 0 7 3 0 2 5 4 4 7 1 6 5 3 7
1 7 3 3 1 7 0 6 5 6 2 0 7 5 6 7 5 0

4. Solutions for ts <_- 15. The schemes described in the last section do not provide
matrix A for all possible combinations of the four parameters satisfying (1.1). However
in the cases not covered under the schemes, it may still be possible to obtain the required
A matrix by utilizing the V orH mappings described earlier (which already satisfy (C1)
and (C2) and finding a primitive polynomial of degree st such that (C3) is also satisfied.
This calls for only a checking of linear independence over GF(2) of st different powers
of ft. With the tables of primitive polynomials already available [4], this task can be
performed very rapidly with the help of a computer.

We have made a computer search based on this and have obtained solutions in all
the cases for ts <-15. The results given in Table 2 provide ready design data in these
cases. In this table the entries in the column ’mapping’ denote either H mapping or V
mapping described in 3. N- + 1 takes all values dividing 2st- 1. M can be computed
using (1.1). The primitive polynomials used are:

P1 x6d-x -t- 1,

P2 xS+x5+x3+x+l,
10P3 x
lOP4 x
12P5 x
12P6 x
12P7 x
12P8 x
12P9 x
14PIO" x
15Pll" x
15P12" x

+ x 3 + 1,

+X4+X3 +X + 1,

+x6+xn+x+l,
-bx 11 -+-X 9 q- xS-[- x 7 q- x 5 -[- X2 q- x q- 1,

"q- X
11 "+" X 10

" X
8 "q- X

6 "q" X
4

"if" X
3 "q- X -- 1,

+X 11 "]- X
6

"l- X
4 "q- X

2 4r" X -I’- 1,

"q-X 11 +X9 q-X 7 q-X6+X5"q 1,

q-X 13 "+’X 11 -[-X 7 q-X 6 "’X 5
-1- X

4 -[-X 3 q-X2d-X "b 1,

+ X
12

d- X
9 q- X

8 - X
6

"if- X
3 q’- 1,

d-X 14 q- X 12"+" X 9 q" xS’" X6-t" X4 -[" X
3 dt" X2-[- X q- 1.

In the cases under Schemes 3 or 4, any primitive polynomial of degree st may be used.
The cases when either N + 1 1 (orM s + 1 1) or 1 (or s 1) are not included
in the table as they can be directly obtained from Schemes 1 and 2 respectively.
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TABLE 2
Design o1 A matrix when ts <-_ 15

N + Mapping Polynomial

2 2 3 H Any (Scheme 4)
5 V Any (Scheme 4)

2 3

2 4

3 3

2 5

2 6

3 H Any (Scheme 4)
7 H P1
9 V Any (Scheme 4)

21 H Any (Scheme 3)

3 H Any (Scheme 4)
5 H P2

15 H P2
17 V Any (Scheme 4)
51 V Any (Scheme 4)

7 H Any (Scheme 4)
73 V Any (Scheme 4)

3 H Any (Scheme 4)
11 V P3
31 H P3
33 V Any (Scheme 4)
93 H P4

3 H Any (Scheme 4)
5 V P6
7 H P8
9 H P7
13 H P8
15 H P9
21 H P7
35 H P8
39 H P8
45 H P6
63 H P9
85 V Any (Scheme 4)
91 H P8

105 H P8
117 H P7
195 V Any (Scheme 4)
273 H P8
315 H P9
455 V Any (Scheme 4)
585 H P8

3 V Any (Scheme 3)
5 V P5
7 H Any (Scheme 4)
9 V P5
13 V P5
15 V P6
21 V P5
35 V P6
39 H P6
45 V P7
63 H P7
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3 5

TABLE 2 (Contd.)

N + Mapping Polynomial

85 V P5
91 H P8
105 V P5
117 H P5
195 V P5
273 V Any (Scheme 4)
315 V P9
455 V P5
585 H P5
819 V Any (Scheme 4)

3 H Any (Scheme 4)
43 H P10
127 H P10
129 V Any (Scheme 4)
381 H P10

7 H Any (Scheme 4)
31 H Pll
151 V Pll
217 V Pll

1057 V Any (Scheme 4)

4081 H P12
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