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A complete analysis of light propagation through a hollow coupling with a uniformly varying cross section
and specularly reflecting walls is given. This enables one to relate the entrance and exit intensity distribu-
tions when the input is incoherent but collimated. Results indicate that the input aperture can be parti-
tioned into sections characterized by the total number of reflections an incoming ray has within the coupling.
Input radiation in every section is linearly spread over the entire exit aperture. Hence nonuniformities in
the input intensity profile are reduced at the output. This effect can be enhanced by proper design as dis-
cussed in the paper.

1. Introduction

Hollow structures with specularly reflecting inner
walls have been used in various applications such as
spatial filtering, information processing, optical com-
munications, and energy transmission. Investigation
of the transmission properties of such structures has,
therefore, attracted much attention. A light pipe with
a rectangular or circular uniform cross section is a rel-
atively simple structure and has been studied by many
research workers.'- Conical structures with uniformly
decreasing cross sections have also been examined by
Williamson,5 Loewenstein and Newell,6 Pluchino and
Moeller, 7 Hollands,8 Wagh, 9 1 0 and Wijeysundera. 11

These conical structures, used as couplings between
light pipes of different dimensions and as V troughs for
solar energy collection, are the subject of this investi-
gation. In particular an analysis is presented here
which relates the input and output intensity distribu-
tions of a coupling with rectangular cross section (Fig.
1). The input radiation is considered to be incoherent
and collimated but not necessarily aligned with the axis
of the coupling. The analysis is general enough not to
require any restrictions on the number of reflections
that a ray makes before exiting.
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The results obtained show that the number of re-
flections on parallel faces of the coupling by any two
rays differ at the most by one. Furthermore, the en-
trance aperture of the coupling can be partitioned into
sections, each characterized by the number of reflec-
tions on the tapering faces a ray entering within it makes
before exiting. There are at the most two aperture
sections corresponding to the same number of reflec-
tions. Moreover the intensity distribution in each of
these sections is linearly mapped over the entire exit
aperture. The total output distribution is thus ob-
tained by summing those due to all these sections.

This characteristic of the coupling implies that any
nonuniformities that may exist in the input intensity
profile will be reduced at the output. A design proce-
dure is also outlined which allows one, for example, to
build a coupling (Table II, n1 = 4) which can transform
a displaced Gaussian intensity profile with a maxi-
mum-to-minimum intensity ratio of -850 into an in-
tensity profile whose maximum variation is -4.3%.
Moreover, even with as much as a 2° misalignment of
the coupling, this figure changes by <2%.

II. Statement of the Problem

In this paper a coupling of length L with specularly
reflecting walls and rectangular entrance and exit ap-
ertures of dimensions 2a X 2c and 2b X 2c, respectively,
is considered. It is assumed that both apertures are
perpendicular to the axis of the coupling, and the en-
trance aperture is illuminated by a collimated inco-
herent beam of known intensity distribution. The ge-
ometry of the coupling, the direction of a ray, and the
coordinate system used are illustrated in Fig. 1.

The aim here is to relate analytically the intensity
distribution in the exit aperture with that in the en-
trance aperture.
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Next consider the projection on the y-z plane shown
in Fig. 3. Let a ray which has undergone i reflections
in the coupling make an angle i with the z axis. 00 =
0 > 0 is the value of p when the radiation enters the
coupling. Now, however, unlike above, reflections occur
on lines inclined to the z axis, and, therefore, the anal-
ysis is somewhat more involved.

Assume for the time being that the first reflection of
a ray is on the surface S1. Then it follows9 from the law
of reflection that oi = (-1)i(o + 2ih). Clearly

yi = (-1)i'(a - zi tang),

a I Zi
Zi=tanik 1-F Ti 

(2)

(' • 0), (3)

Fig. 1. Geometry of the coupling under investigation.
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where yi,zi are the coordinates of the ith reflection, and
Ti is defined by

sin(k + 2i - 14')
sin( + A)

(c. L)

RAY (-c.L)
Fig. 2. Projection of the path of a ray in the coupling on an x-z

plane.

We now show that the number of reflections that a
ray undergoes before exiting can be determined from
its entrance y coordinate yo. Consider a ray which
emerges after n reflections. For this ray,

Zn L < Zn+l.

Using Eq. (3) to express zn and z,+ 1 in terms of z1 and
Eq. (2) to express z in terms of yl, one gets the equiv-
alent condition

Since the input is collimated, the direction of any
incoming ray is completely specified by angles 0 and 0.
0 is the angle between the z axis and the projection of
the ray on the y-z plane, and 0 is the angle the ray makes
with this projection. Angle 6 can also be described as
the angle between the z axis and the projection of the
ray on the x-z plane.

The angle X, being in the y-z plane, is unaffected by
reflections on the untapered faces of the coupling as
these are parallel to the y-z plane. Similarly the angle
O is unchanged by reflections on the tapered faces since
normals to these, when projected on the x -z plane, are
parallel to the z axis. It is, therefore, sufficient to
consider the projection of the path of a ray on the y-z
plane to compute the output y coordinate, whereas a
projection on the x-z plane would yield the output x
coordinate.

T < Y1 < T+,*
a - L tanq/

However, Yi is related to yo through

y = (o tanip + a tanO)/(tan4 + tan+), (5)

and a - L tan = b. Using these it can be shown that
the entrance y coordinate yo of a ray undergoing n re-
flections in the coupling must satisfy

Yn < YO < Yn+l, (6)

where

bT(tan + tan2 ) - a tano
tanq/

I = 1,2,.... (7)

Thus the various Y play an important part in this
analysis by defining the regions of input aperture so that

Ill. Analysis

Consider first the projection of the path of a ray on
the x-z plane as shown in Fig. 2. The only reflections
which change the ray direction in this projection occur
at the lines x = c. It can be seen that in the absence
of any reflections the ray entering at x = x0 would
emerge at x = x + L tan6. Each reflection on x = c
lines decreases the exit x -coordinate magnitude by 2c
and changes its sign. Consequently, the output x
coordinate is given by

xf = (x + L tanO - 2kc)(-1)k, (1)

where integer k is chosen so that -c xf < c and rep-
resents the total number of reflections on the parallel
faces of the coupling.

Fig. 3. Projection of the path of a ray in the coupling on an y-z
plane.
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all rays with yO in the region between Yn and Y,+1 will
undergo exactly n reflections in the coupling. It has
already been shown9 that the rays which undergo more
than nmax = L Or- 20)/44'J (where Lx] denotes the in-
teger part of x) reflections in the coupling are turned
back and never reach the exit aperture. Thus radiation
entering the coupling between Ynmax+l and a does not
contribute to the output intensity distribution. Thus
to ensure that the entire input radiation with its first
reflection on S1 is transmitted through the coupling, a
should be smaller than or equal to Ynmax+1.

It may be noted that

Tk+, - Tk = 2 cos(o + 2k4,) sin(j')/sin(o + 4').

For k nma = [(7r - 2)/44'], 0 + 2k4, < r/2, and,
therefore, Tk+, > Th. Using this in Eq. (7) one can see
that for k < nmax, Yk+1 > Yk, which is consistent with
inequality (6).

We now find a relation between the entrance and exit
y coordinates for rays originating in the region defined
by (6).

Clearly the exit y coordinate yf is related to the y
coordinate of the nth reflection Yn by

Y = Yn + (L - Zn) tankn, (8)

where n is the angle that the ray makes after the last
(nth) reflection. Using Eqs. (2), (3), and (5) yf can be
expressed as

yf = An + BnyO, Yn YO < Yn+1,

where

tanon + (-1)n+l tan4
Tn(tano + tan)

An =-b nn +a taBn. (9)
tan' tan'

Now the definitions of On and Tn give

Tn tan(O + 2nO) - tan4'

Tn+ - Tn 2 tan4

Tn+ + Tn =(l)n tanpn
Tn+-Tn tan4'

The expressions for An and B may,
simplified to

therefore, be

2b(-l)n
Yn+1 - Yn

A B Y + Yn (10)
2

to yield

. = ( _nyl) (Yn+l + Yn -2yo)
ynl- YJ)

Yn -yO < Yn+i (11)

This equation is of central importance as it explicitly
relates the entrance and the exit coordinates of a ray
traveling through the coupling. It was shown above
that all the rays entering the coupling between Yn and
Yn+l undergo exactly n reflections in the coupling.
Equation (11) now shows that the exit coordinates yf of
these rays are linearly related to their entrance coordi.

nates o. Moreover a ray entering at Y exits at
(-1)n+1 b, and the one entering at Yn+ exits at (-1) nb.
Thus as the entrance coordinate is varied between Yn
and Yn+1, the entire exit aperture is linearly scanned.

A similar treatment of rays whose first reflection is
on S 2 results in a relation between the entrance and exit
y coordinates. This relation after some manipulation
can still be expressed by Eq. (11) provided the definition
of Yk is extended to nonpositive integers k as

Y = bT_-+l(tan' - tanO) + a tanO
tan4'

k = 0,-1,-2,... (12)

Note now that for the first reflection to be on S2, 0 <
A/, and Tk is a monotonically increasing function of k for
o < k < nmax + 1. Therefore, Yk defined by Eq. (12) is
a monotonically increasing function for -nmax < k < 0.
This is consistent with the monotonically increasing
nature of Yk when 0 < k < nmax + 1 following Eq.
(7).

Thus rays entering between Yn and Yn+ undergo n
reflections on tapered faces, the first being on S1,
whereas rays entering between Y-n and Y-n+l also
experience n reflections, but the first now being on S2.
Rays entering between Yo and Y1 exit without reflec-
tions on the tapered faces.

The condition for all the input radiation with the first
reflection on S2 to be transmitted is Y-nmax < -a, which
reduces to a < bTnmax+l (if it is recalled that 0 < in this
case). Similarly the condition for all the input radiation
with first reflection on S1 to be transmitted is a <
Ynmax+i, which also reduces to a < bTnmax+l. Thus the
only design criterion that needs to be satisfied to ensure
that all the input radiation is transmitted is a <
bTnmax+l. This is consistent with (14) of Ref. 9.

IV. Discussion and Conclusions

Results of the analysis of Sec. III can be summarized
as follows:

(1) The entrance and exit x coordinates of any ray
propagating through the coupling are in one-one linear
correspondence with each other. Furthermore, the exit
x coordinate depends solely upon the entrance x coor-
dinate, length L of the coupling, and inclination 0 of the
ray [Eq. (1)].

(2) Along the y direction, the entrance aperture can
be partitioned into sections so that all the rays starting
in the same section undergo an equal number of re-
flections on the tapered faces of the coupling [Eqs. (6)
and (7)].

(3) The y coordinates of the rays entering any of
these input aperture sections are in one-one linear
correspondence with the y coordinates of the entire exit
aperture. Furthermore, this correspondence depends
only upon the entrance y coordinate, the input aperture
section to which it belongs, length L, and angle of the
coupling and inclination 0 of the ray [Eq. (11)].

Using the above results calculation of the intensity
distribution at the exit aperture is relatively simple.
Since every input aperture section is being linearly
projected on the complete exit aperture, the intensity

1924 APPLIED OPTICS / Vol. 21, No. 11 / 1 June 1982



at the output due to a section between, say, Yn and Yn+1
is attenuated by the factor 2b/(Yn+l - Yn). Further-
more, the assumption of incoherence allows the total
output distribution to be obtained by a summation of
all such distributions due to different sections. The
intensities in the output and input planes If and Io, re-
spectively, can now be related as

If(xfyf) = n, (Yn+-Yn ) (13)
n=n-, 2b

where x0 is obtained from xf using Eq. (1), yo is com-
puted for each n from yf using Eq. (11), and Io is as-
sumed to be zero outside the entrance aperture.

An immediate consequence of the fact that the flux
from each input aperture section is distributed linearly
over the entire exit aperture is that any nonuniformities
in the input distribution are reduced at the output.
This is further brought out by the following relation
between (djn/dyf) and (dIo/dyo).

Let Yn < yo < Yn+ 1 and If denote the intensity at the
exit aperture due to the rays entering between Yn and
Yn+1 . Obviously

nn
n-nmax

Then from Eq. (11)

dyf = * dyo, Yn < yO < Yn+l.
Yn+1 - Yn

(14)

Also, from the energy conservation principle, which led
to Eq. (13),

dj(xf,yf) = n+2 n dIo(xoyo)
f ~2b

Yn F< yo < Yn+4 (15)

From Eqs. (14) and (15),

dI(x-,yf) = + Y.2 )n dIo(xo,yo)
dyf ~ 2b (-) dy.

Yn < o < Yn+1 (16)

Equation (16) shows that decreasing input aperture
section Yn+1 - Yn reduces the output nonuniformities
(rate of output intensity variation w.r.t. y coordinate)
in a quadratic manner. From Eqs. (7) and (12)

Yn+- Yn cos( + 21 n 4) R (17)
2b cos(

where R = 1 for n > 0 and R = sin(4' - 0)/sin( + ) for
n <0.

Therefore, the input intensity nonlinearities in sec-
tions corresponding to larger number of reflections I n I
are suppressed much more effectively than those for
smaller In 1.

Another important design criterion is the finite extent
of input aperture which introduces discontinuities in
Io by forcing Io(yo) = 0 whenever y > a or yo < -a. So
that these discontinuities are not transferred to the exit
aperture, one should ensure that points a coincide
exactly with Yn1 and Yn2, respectively.

When < , n2 is negative. In this case the equali-
ties can be simultaneously satisfied by choosing the
coupling parameters so that

a
b- = Th - 2+1.

(18)

This is easily verified from Eqs. (7) and (12). Equation
(18) also shows that in this case n2 = -n 1 + 1. Thus
there are as many input aperture sections with first
reflection on S2 as there are with first reflection on S1.
Obviously, since Tn, depends on k a coupling designed
for a particular o using Eq. (18) will not perform opti-
mally if the input radiation orientation 0 is changed.
Tables I and II show the effect on the output unifor-

Table I. Dependence of the Uniformity of Output Intensity Profile on the Coupling Design (a/b Ratio) and the
Alignment Error (4) when the Input Profile is Gaussian (max/min Intensity Ratio at the Input = 20.079) and

Max no.
of reflections a/b Max/min intensity ratio at the output

n 1 for = 0 Ratio 0 = 0.5° = 1.0° = 1.5° k=2.0°

2 1 2.956 1.040 1.301 1.626 1.952 2.225
3 2 4.783 1.019 1.077 1.331 1.169 1.189
4 3 6.401 1.014 1.029 1.056 1.064 1.074
5 4 7.740 1.012 1.026 1.031 - -
6 5 8.740 1.011 1.017 - - -
7 6 9.358 1.010 - - - -
8 7 9.567 1.010 - - - -

Table II. Dependence of the Uniformity of Output Intensity Profile on the Coupling Design (a/b Ratio) and the
Alignment Error 4 when the Input Profile is Displaced Gaussian (max/min Intensity Ratio at the Input =

853.461) and 4 = 6°

Max no.
of reflections a/b Max/min intensity ratio at the output

n 1 for = 0 Ratio 0 = 0 0 = 0.5° = 1.0° = 1.5° =2.0°

2 1 2.956 2.615 2.101 1.759 1.482 1.276
3 2 4.783 1.122 1.163 1.207 1.201 1.157
4 3 6.401 1.043 1.093 1.079 1.077 1.061
5 4 7.740 1.021 1.074 1.028 - -
6 5 8.740 1.010 1.022 - - -
7 6 9.358 1.006 - - - -
8 7 9.567 1.005 - - - -
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INPUT INTENSITY PROFILE
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Fig. 4. Transformation of a Gaussian intensity profile by a coupling designed for input radiation angle of 0, a/b = 6.4, and 4 = 60. (The
intensity scales in the figure have arbitrary units.)
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Fig. 5. Transformation of a shifted Gaussian intensity profile by a coupling designed for the input radiation angle of 0, a/b = 6.4, and 4 =
60. (The intensity scales in the figure have arbitrary units.)
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mities of an error in the orientation angle s. All seven
couplings are designed from Eq. (18) using 0 = 0. The
entrance intensity profile used for calculating results
in Tables I and II are shown in the insets in Figs. 4 and
5, respectively. As expected, for both cases the non-
uniformity at the output (as measured by the maxi-
mum-to-minimum intensity ratio) increases as align-
ment error in a particular coupling increases. Also as
expected from Eq. (17), the nonuniformity at the output
can be decreased by using a coupling with a larger nj.
Such a coupling is also relatively insensitive to align-
ment errors as can be observed by comparing the per-
formances of couplings with ni = 2 and 4 in Tables I and
II. The price of this better performance is the increased
a/b ratio or equivalently an increased length L. Note
that the blanks in these tables correspond to cases for
which all the input radiation is not transferred to the
output as discussed at the end of Sec. III.

Figures 4 and 5 show the transformation of intensity
profiles by a coupling designed using Eq. (18) with n1
= 4, , = 6°, and 0 = 0. It can be seen that when the
input radiation orientation q matches the design value
(0 = 0), the output profile is smooth. However, a mis-
match between the design and actual values of 0 results
in discontinuities in output profile. This, as discussed
above, is due to the mismatch between the Yn values
and discontinuities in the input profile at ±a forced by
the finite input aperture. Consequently in general each
curve with mismatched 0 has two discontinuities as is
borne out by Fig. 4. The input profile of Fig. 5, how-
ever, has only one large discontinuity at -a, and,
therefore, the resultant output profiles (for 0 = 0) have
a single large discontinuity each.

In spite of the discontinuities discussed above, Tables
I and II and Figs. 4 and 5 show that the couplings are
able to smooth out to a large extent any discontinuities
present in the input intensity profiles even when there
are small mismatches between the design and experi-
mental conditions. This immediately suggests that
such couplings can be used in applications requiring
uniform distributions of the input energy over a given
target.

The analysis given here has assumed that the reflec-
tivity of the coupling walls p is unity. In the event that
this is not so, one can still use the results obtained by

modifying them appropriately. From Eq. (1) it is easy
to see that the number of reflections on the parallel faces
of the coupling equal

x + L tang 1

2c 2j-

Thus when x0 goes from -c to +c, the number of re-
flections on parallel faces change at most by one. De-
noting [(L tanO)/2c] by m, we find that the number of
reflections on parallel faces n equal m if

-c < xo < 2cm - L tanO + c,

and m + 1 if

2cm - L tanO + c < xo < c. (19)

Finally the relation (13) between the entrance and exit
intensity distributions will now have to be modified
to

If(x ~yf) = fnax (Yn+ -Yn) InI + nj0(x0y0),
I X'd=n=-n... 2 b

(20)

In conclusion it might be pointed out that the only
assumptions used in this analysis are those of incoher-
ence and collimation of the input beam making this
analysis widely applicable. Its generality can be illus-
trated, for example, by noting that some of the results
in Refs. 8 and 11 could be obtained from results by
choosing a coupling so that a = Y2-
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