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This letter presents the design and analysis of a bit-sequential 
array for pattern matching applications. The architecture makes 
multiple use of each  data  sample, has built-in concurrency and 
pipelining, and is based on a  highly modular design with  only 
nearest neighbor connections between array  modules. The  array 
computes all occurrences of a  pattern of length m, in the string of 
length n, in O(m + n) time and O(m) hardware.  The pattern and 
the string are fed in sequentially and the match indicators come 
out in the same  fashion, leading to a significant reduction in sili- 
con area. 

I. INTRODUCTION 

Text-editing, visual processing, and signal reconstruction often 
require searching through  a  string  of characters or bits, looking 
forinstancesofagiven"pattern"string.Theobviouswaytosearch 
for  a matching pattern is  to begin searching from  the first  position 
in the text and proceeding till a mismatch is  found, in  which case 
the starting position is  advanced by one.  This approach is  very in- 
efficient and if all possible matches in the  string are to be deter- 
mined, the worst case time needed is  O(mn), where m i s  the  length 
of  the pattern and n is  the  length of the string. 

Researchers  have proposed various algorithmswhich can match 
the  string in O(m + n) time  with a m )  hardware (or software) [1]- 
[4]. Inparticular,thealgorithm byKnuthandPratt[l]createsajump 
table and uses this to implement asynchronous jumps of various 
stepsoverthestring. Suchirregularities indataflow makethe hard- 
ware implementation of the  algorithm inefficient. Other algo- 
rithms suffer from similar limitations. 

In this letter, a bit-sequential systolic pattern matching archi- 
tecture is  described. Based on a linear array, this structurecan find 
all occurrences of  a pattern of length m in a  string  of  length n, in 
a m  + n) time and O(m) hardware complexity. The  characters in 
both the  pattern and the string are  assumed to be bits here but the 
hardware can be easily replicated for parallel matching in case the 
characters  are words and the same time efficiency is desired. 

Let the pattern P, the string S, and the  output flag vector R be, 
respectively, represented as 

P = [aoal . . . a,,, - 

s = [xox, . . * X f l - 1 ]  

and 

R = [rorl . . . rm+,,-J. (1 ) 

As explained earlier, each component of P and S i s  either 0 or 1. 
The architecture sets the  output  bit r j  to 1 if  the substring 
X ~ - , , , + ~ X ~ - ~ + ~  . * . xi matches the pattern Pand Ootherwise. Thus 
letting A denote the AND operation 

rj = = &) A ( x ~ - , + ~  = a,) . . A (xj  = a,,,-l)]. (2) 

rj values for j = 0,1, . , m - 2 are ignored and other rj's are  re- 
named as rj = F ( j  - m + l), (m - 1) s j s (m + n - 2). Without 
loss of generality we  can assume m = 2M and express  (2) as 

W-1 

F ( j )  = ,U 1 {a(i) o x ( j  + i))  
I = O  

W-1 

= II f[a(i), x(/ + i ) ]  (say) 
i = O  

where o stands for exclusive-or, 1 i s  the logical not, and ll i s  a 
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multioperand AND. Architecture to evaluate (3) i s  presented in  the 
next section. 

II. BIT-SEQUENTIAL LINEAR ARRAY ARCHITECTURE 

Let the  input bit-string { x j }  be fed into the architecture bit-se- 
rially, with x, first and the  output bit-string {rj} be extracted bit- 
serially, with ro first. At this point we assume tht  the pattern string 
{aj) is  already loaded in  the architecture and does not move as do 
the { x j )  and {rj} strings.  Later  we will show that even { a j }  could 
beloaded bit-seriallywithoutcompromisingonthetimeefficien~. 
The  advantages of such  "Bit-Sequential" architectures are that they 
can be  pipelined to  the  bit level permitting a very high clocking 
rate, they use repeated modules with nearest neighbor intermo- 
dular communication paths of width 1, and they have the fewest 
possible input and output pins. These characteristics make  these 
architectures ideal for Very Large  Scale Integration NLSI) imple- 
mentation [SI, [6]. 

Let Z denote the delay operator associated with data input rate. 
Then (3) may be transformed into 

M - 1  

F ( j )  = ,n { f[a(2i), x ( j  + 2i)]} 
1 5 0  

A II { f[a(2i + I), x ( j  + 2i + I)]}. 
M - 1  

i = O  

Since the pattern string {aj} is  time-invariant, i.e., it does not flow 
in the array with time, the delay operator can be distributed as 

M - 1  

= II { z - ~ (  f[a(2i), Z - ' x ( j ) ] ) }  
, = 0  

A z - ~  II { ~ - ' ( f [ a ( ~  + I), Z - i x ( j ) l ) } .  
M-1 

, = 0  

This expression shows that each flag F( j )  i s  computed by Awing 
outputs  of two multioperand ANDS. The i t h  operand for each mul- 
tioperand AND is obtained, in turn, by delaying by i time  units  the 
result of  the comparison of a(2i) (or a(2i + 1)) and x( j )  delayed by 
i time units. This immediately suggests the architecture shown in 
Fig. 1. We now show that the  output of  this architecture provides 
us the desired flag vector. 

A OUTPU? 

I I  - -  

Module 0 Module 1 Module M-I 

Fig.  1. The proposed bit-sequential architecture for pattern match- 

tionality of each module at time j .  
ing, showing the constants  stored in various modules and the func- 
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Theorem:  The output of this architecture O ( j )  at t imej is related 
to the flags as 

q j  + 2M) = f ( j ) .  

Proof: Let the i th  module of  the upper bank of Fig. 1 hold 
a(2(M - i) - 2) and the lower one,  a(2(M - 11 - 1). Further, let 

VAR (i, j ,  &), o s i I M - 1, j 2 0, k = upper or lower 

be the value of  the variable VAR for the i t h  module at thejth clock. 
Index & associates the variable with  the upper or  the lower array. 
The geometry of  the architecture then yields 

Xin(i, j ,  upper) = &(i, j ,  lower) = x ( j  - i )  

Rwt(i, j + 1, upper) = Rwt(i  + 1, j ,  upper) 

A { f[a(2(M - i) - 2), &,(it i ,  upper)l) 

= Rwt(i  + 1, j ,  upper) 

A { f[aQ(M - i) - 2), x( /  - i)]} 

and  similarly, 

Rwt(i, j + 1, lower) = Rwt(i + 1, j ,  lower) 

A { f[a(Z(M - i) - l), x ( j  - i)]}. 

We now have 

O ( j  + 2M) = R,,(O,j + 2M - 1, upper) 

A R,,(O, j + 2M, lower). 

Using recursion on (4) 

R,,(O, j + 2M - 1, upper) = Ri,(M - 1, j + M - 2, upper) 
M - 1  

A II { f[a(2i), x(& + 2i)]} 
i = O  

M-1 

= II { f [ a~ i ) ,  x(& + Z)]} 
i - 0  

and 

R,,(O, j + 2M, lower) = Ri,(M - 1, j + M - 1, lower) 
M-- l  

Finally (5)-(7) together yield 
M - 1  

O(j + 2 ~ )  = II { f[a(2i), x ( j  + 2i)]} 
, =0  

= f ( j ) .  

Q.E.D. 

111. DISCUSSION AND CONCLUSIONS 

The pattern matching architecture proposed here can be very 
easily implemented. The function f[a, b] is  built as - (a  e b), where 
1 represents ahrorand an  Exclusive OR. Each modulewill contain 
this logic to compute f besides three flip-flops (delays) to hold a 
componentofa(stationary),acomponentofx(movingtotheright), 
and a component of  the flag (moving to the left). The architecture 
can thus be clocked at  speeds determined by the delay in  the com- 
putation  of fand the  flip-flop hold and set up times.  Thus the clock- 
ing speed is  independent of  the size of  the array. 

The concept of “wildcards” (pattern characters that match with 

everything) can be incorporated in this architecture by using a 2- 
bit representation for each pattern component and modifying 
function f as 

f[a, b] = 1, if a = b or if a i s  a wildcard 

= 0, otherwise. 

It was  assumed earlier that the a-sequence is  stationary and is 
already resident in the architecture when x(0) comes in. But this 
is  not necessary. If one provides an additional path between mod- 
ules, the  acoefficients may be fed serially (even acomponents to 
the upper bank and odd to  the lower) along with the  first M com- 
ponents.of x. This is  an ideal situation because it does not affect 
the output delay (the first M clock periods cannot, even otherwise, 
be used to compute any useful flag component) but gets rid of  any 
loading time for the array.  Thus all the matches between an m- 
length pattern and an n-length string can be obtained in this q m )  
hardware in O(m + n) time. Control of this architecture is  very  sim- 
ple since no flip-flops need to be cleared or preset.The modularity, 
nearest neighbor connections, data buses of width 1, and the sim- 
ple control makes this architecture suitable for VLSl implemen- 
tation. 
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Near-Optimal Controllers  for Synchronous 
Machines with Prescribed Degree of Stability 
Via Iterative Separation of Time Scales 
N. P. SINGH, Y. P. SINGH, AND S. I .  AHSON 

Near-optimal controller for  synchronous  machines with pre- 
scribed degree of stability using  the slow subsystem derived through 
iterative approach is proposed. The closedloop system poles are 
constrained to the left of Re (s) < - a where a > 0 and a E (0, a,,). 
The  results  are  compared with those obtained via  the classical quasi- 
steady-state  Iqss)  technique. 

I. IINTRODUCTION 

The design of optimal control system i s  often confronted with 
high dimensionality and sti f f  numerical  problems  due to the pres- 
ence of parasitic parameters. To alleviate these difficulties, gener- 
ally, suboptimal/near-optimal controllers are designed  using  the 
reduced-order  models  of  such systems. In this  letter we  present a 
procedure for the design  of  near-optimal  controllers  for  synchro- 
nous  machines with prescribed  degree  of stability based on the 
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