
Bit-Sequential Array for Pattern Matching

NEERAJ TEWARI AND MEGHANAD D. WAGH

This letter presents the design and analysis of a bit-sequential
array for pattern matching applications. The architecture makes
multiple use of each data sample, has built-in concurrency and
pipelining, and is based on a highly modular design with only
nearest neighbor connections between array modules. The array
computes all occurrences of a pattern of length m, in the string of
length n, in O(m + n) time and O(m) hardware. The pattern and
the string are fed in sequentially and the match indicators come
out in the same fashion, leading to a significant reduction in sili-
con area.

I. INTRODUCTION

Text-editing, visual processing, and signal reconstruction often
require searching through a string of characters or bits, looking
forinstancesofagiven"pattern"string.Theobviouswaytosearch
for a matching pattern is to begin searching from the first position
in the text and proceeding till a mismatch is found, in which case
the starting position is advanced by one. This approach is very in-
efficient and if all possible matches in the string are to be deter-
mined, the worst case time needed is O(mn), where m i s the length
of the pattern and n is the length of the string.

Researchers have proposed various algorithmswhich can match
the string in O(m + n) time with a m) hardware (or software) [1]-
[4]. Inparticular,thealgorithm byKnuthandPratt[l]createsajump
table and uses this to implement asynchronous jumps of various
stepsoverthestring. Suchirregularities indataflow makethe hard-
ware implementation of the algorithm inefficient. Other algo-
rithms suffer from similar limitations.

In this letter, a bit-sequential systolic pattern matching archi-
tecture is described. Based on a linear array, this structurecan find
all occurrences of a pattern of length m in a string of length n, in
a m + n) time and O(m) hardware complexity. The characters in
both the pattern and the string are assumed to be bits here but the
hardware can be easily replicated for parallel matching in case the
characters are words and the same time efficiency is desired.

Let the pattern P, the string S, and the output flag vector R be,
respectively, represented as

P = [aoal . . . a,,, -

s = [xox, . . * X f l - 1]

and

R = [rorl . . . rm+,,-J. (1)

As explained earlier, each component of P and S i s either 0 or 1.
The architecture sets the output bit r j to 1 if the substring
X ~ - , , , + ~ X ~ - ~ + ~ . * . xi matches the pattern Pand Ootherwise. Thus
letting A denote the AND operation

rj = = &) A (x ~ - , + ~ = a,) . . A (xj = a,,,-l)]. (2)

rj values for j = 0,1, . , m - 2 are ignored and other rj's are re-
named as rj = F (j - m + l), (m - 1) s j s (m + n - 2). Without
loss of generality we can assume m = 2M and express (2) as

W-1

F (j) = ,U 1 {a(i) o x (j + i))
I = O

W-1

= II f[a(i), x(/ + i)] (say)
i = O

where o stands for exclusive-or, 1 i s the logical not, and ll i s a

by AT&T Information Systems.

Department, Lehigh University, Bethlehem, PA 18015-3084, USA.

Manuscript received March 31, 1986. This work was partially supported

The authors are with the Computer Science and Electrical Engineering

multioperand AND. Architecture to evaluate (3) i s presented in the
next section.

II. BIT-SEQUENTIAL LINEAR ARRAY ARCHITECTURE

Let the input bit-string { x j } be fed into the architecture bit-se-
rially, with x, first and the output bit-string {rj} be extracted bit-
serially, with ro first. At this point we assume tht the pattern string
{aj) is already loaded in the architecture and does not move as do
the { x j) and {rj} strings. Later we will show that even { a j } could
beloaded bit-seriallywithoutcompromisingonthetimeefficien~.
The advantages of such "Bit-Sequential" architectures are that they
can be pipelined to the bit level permitting a very high clocking
rate, they use repeated modules with nearest neighbor intermo-
dular communication paths of width 1, and they have the fewest
possible input and output pins. These characteristics make these
architectures ideal for Very Large Scale Integration NLSI) imple-
mentation [SI, [6].

Let Z denote the delay operator associated with data input rate.
Then (3) may be transformed into

M - 1

F (j) = ,n { f[a(2i), x (j + 2i)]}
1 5 0

A II { f[a(2i + I), x (j + 2i + I)]}.
M - 1

i = O

Since the pattern string {aj} is time-invariant, i.e., it does not flow
in the array with time, the delay operator can be distributed as

M - 1

= II { z - ~ (f[a(2i), Z - ' x (j)]) }
, = 0

A z - ~ II { ~ - ' (f [a (~ + I), Z - i x (j) l) } .
M-1

, = 0

This expression shows that each flag F(j) i s computed by Awing
outputs of two multioperand ANDS. The i t h operand for each mul-
tioperand AND is obtained, in turn, by delaying by i time units the
result of the comparison of a(2i) (or a(2i + 1)) and x(j) delayed by
i time units. This immediately suggests the architecture shown in
Fig. 1. We now show that the output of this architecture provides
us the desired flag vector.

A OUTPU?

I I - -

Module 0 Module 1 Module M-I

Fig. 1. The proposed bit-sequential architecture for pattern match-

tionality of each module at time j .
ing, showing the constants stored in various modules and the func-

PROCEEDINGS OF THE IEEE, VOL. 74, NO. 10, OCTOBER 1986 1465

Theorem: The output of this architecture O (j) at t imej is related
to the flags as

q j + 2M) = f (j) .

Proof: Let the i th module of the upper bank of Fig. 1 hold
a(2(M - i) - 2) and the lower one, a(2(M - 11 - 1). Further, let

VAR (i, j , &), o s i I M - 1, j 2 0, k = upper or lower

be the value of the variable VAR for the i t h module at thejth clock.
Index & associates the variable with the upper or the lower array.
The geometry of the architecture then yields

Xin(i, j , upper) = &(i, j , lower) = x (j - i)

Rwt(i, j + 1, upper) = Rwt(i + 1, j , upper)

A { f[a(2(M - i) - 2), &,(it i , upper)l)

= Rwt(i + 1, j , upper)

A { f[aQ(M - i) - 2), x(/ - i)]}

and similarly,

Rwt(i, j + 1, lower) = Rwt(i + 1, j , lower)

A { f[a(Z(M - i) - l), x (j - i)]}.

We now have

O (j + 2M) = R,,(O,j + 2M - 1, upper)

A R,,(O, j + 2M, lower).

Using recursion on (4)

R,,(O, j + 2M - 1, upper) = Ri,(M - 1, j + M - 2, upper)
M - 1

A II { f[a(2i), x(& + 2i)]}
i = O

M-1

= II { f [a~ i) , x(& + Z)]}
i - 0

and

R,,(O, j + 2M, lower) = Ri,(M - 1, j + M - 1, lower)
M-- l

Finally (5)-(7) together yield
M - 1

O(j + 2 ~) = II { f[a(2i), x (j + 2i)]}
, =0

= f (j) .

Q.E.D.

111. DISCUSSION AND CONCLUSIONS

The pattern matching architecture proposed here can be very
easily implemented. The function f[a, b] is built as - (a e b), where
1 represents ahrorand an Exclusive OR. Each modulewill contain
this logic to compute f besides three flip-flops (delays) to hold a
componentofa(stationary),acomponentofx(movingtotheright),
and a component of the flag (moving to the left). The architecture
can thus be clocked at speeds determined by the delay in the com-
putation of fand the flip-flop hold and set up times. Thus the clock-
ing speed is independent of the size of the array.

The concept of “wildcards” (pattern characters that match with

everything) can be incorporated in this architecture by using a 2-
bit representation for each pattern component and modifying
function f as

f[a, b] = 1, if a = b or if a i s a wildcard

= 0, otherwise.

It was assumed earlier that the a-sequence is stationary and is
already resident in the architecture when x(0) comes in. But this
is not necessary. If one provides an additional path between mod-
ules, the acoefficients may be fed serially (even acomponents to
the upper bank and odd to the lower) along with the first M com-
ponents.of x. This is an ideal situation because it does not affect
the output delay (the first M clock periods cannot, even otherwise,
be used to compute any useful flag component) but gets rid of any
loading time for the array. Thus all the matches between an m-
length pattern and an n-length string can be obtained in this q m)
hardware in O(m + n) time. Control of this architecture is very sim-
ple since no flip-flops need to be cleared or preset.The modularity,
nearest neighbor connections, data buses of width 1, and the sim-
ple control makes this architecture suitable for VLSl implemen-
tation.

REFERENCES

D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching

1977.
in strings,” SlAM 1. Comput., vol. 6, no. 2, pp. 323-350, June

M. J. Foster and H . T. Kung, “The design of special purpose
VLSI chips,” Computer, vol. 13, no. 1, pp. 26-40, Jan. 1980.
M. J. Fischer and M. S. Paterson, “String matching and other
products,” Mass. Inst. Technol., Product MAC, Tech. Rep. 41,
1974.
R. S. Boyer and J. S. Moore, “A fast string search algorithm,”
Commun. ACM, vol. 20, no. 10, p. 762, Oct. 1977.
N. Tewari and M. D. Wagh, ”Bit-sequential signal processing
architectures for VLSI implementation,” Comput. Arch. Lab.,
Dept. Comput. Sci. Elec. Eng., Lehigh Univ., Rep. LU-CAL-85-
03, Aug. 1985.

Dept. Comput. Sci. Elec. Eng., Lehigh Univ., Rep. LU-CAL-85-
05, Dec. 1985.

- , “Bit-sequential systolic array filters,” Comput. Arch. Lab.,

Near-Optimal Controllers for Synchronous
Machines with Prescribed Degree of Stability
Via Iterative Separation of Time Scales
N. P. SINGH, Y. P. SINGH, AND S. I . AHSON

Near-optimal controller for synchronous machines with pre-
scribed degree of stability using the slow subsystem derived through
iterative approach is proposed. The closedloop system poles are
constrained to the left of Re (s) < - a where a > 0 and a E (0, a,,).
The results are compared with those obtained via the classical quasi-
steady-state Iqss) technique.

I. IINTRODUCTION

The design of optimal control system i s often confronted with
high dimensionality and sti f f numerical problems due to the pres-
ence of parasitic parameters. To alleviate these difficulties, gener-
ally, suboptimal/near-optimal controllers are designed using the
reduced-order models of such systems. In this letter we present a
procedure for the design of near-optimal controllers for synchro-
nous machines with prescribed degree of stability based on the

Manuscript received April 21, 1986; revised June 16,1986
The authors are with the Department of Electrical Engineering, Indian

Institute of Technology Delhi, New Delhi--110016, India.

00189219/86/10001466$Ll1.00 0 1986 IEEE

1466 PROCEEDINGS OF THE IEEE, VOL. 74, NO. 10, OCTOBER 1986

