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Abstract

This paper defines a new network called the Ex-
tended Butterfly. The extended butterfly of degree n
(XBn) has n22n nodes, diameter equal to b3n/2c and
a constant node degree of 8. XBn is symmetric and
contains n distinct copies of Bn. We also show that
XBn supports all cycle subgraphs except those of odd
lengths when n is even and of odd lengths less than n.

1 Introduction

Recent demand for high speed and high through-
put computational machines has led to the develop-
ment of new interconnection topologies with larger car-
dinalities. Many of these topologies use modifications
to an existing topology or merge two topologies so as
to benefit from the good properties of both. For exam-
ple, the cube-connected cycles proposed by Preparata
and Vuillemin [1] is a merger of a Hypercube and a
ring. It derives its low diameter from the Hypercube
and low node degree from the ring. Similarly, Hyper-
cube has also been merged with the de Bruijn network
[2] and with the butterfly network [3]. The diameter
of the network in both these cases is the sum of diam-
eters of the two factor networks. This paper presents
a new network based on the wrapped-around butterfly
Bn which has n times more nodes than Bn but has the
same diameter as Bn.

Butterfly architecture is a popular interconnec-
tion network used in parallel computing. It is also
used in peer-to-peer networks [4, 5].

A degree n (wrap-around) butterfly network Bn

has n2n nodes each labeled with a pair (i,X) where i
is an integer between 0 and n−1 and X is a binary vec-
tor of length n. There are four edges from each node
(i,X) going to (i+1, X), (i+1, X⊕2i), (i−1, X) and
(i − 1, X ⊕ 2i−1) where ⊕ denotes ExOR of two vec-
tors. One can see that the last two of these edges are
simply the first two edges in the reverse direction. Be-
ing a fixed node-degree network, Bn is easily scalable.
The symmetry of Bn and its small diameter of only
b3n/2c makes it very attractive in many applications.

Bn supports mappings of many signal processing al-
gorithms such as the fast Fourier transform as well as
many basic structures such as cycles and trees.

In this paper we show that by proper integra-
tion of n copies of Bn, one can get a new symmet-
ric network, referred here as the Extended Butterfly,
XBn, with n22n nodes and a constant node degree of
8. The diameter of XBn is b3n/2c, equal to that of
Bn. We also show that XBn contains n disjoint Bn

copies as subgraphs. It can therefore run up to n in-
dependent algorithms designed for butterfly networks.
It also supports cycle and tree mappings much better
than many other networks. We give here results for
cycle subgraphs showing that when n is odd, cycles of
all lengths up to n22n (except odd lengths less than
n) are subgraphs of XBn. When n is even, all even
lengths cycles are subgraphs of XBn.

2 Elementary Properties

Let Zn denote the group of integers {0, 1, . . . , n−
1} with the operation of addition modulo n and Zn

2 , the
group of binary vectors of length n under the operation
of bit-by-bit modulo 2 addition. The Extended But-
terfly, XBn, of degree n ≥ 3, is defined as a graph on
n22n nodes labeled by triples (p, r, X) where p, r ∈ Zn

and X ∈ Zn
2 . A node in XBn is connected to the eight

nodes shown in Fig. 1. Integers p, r and the vector
X in a node label (p, r,X) are referred to as the first,
second and the third indices of the node respectively.
The eight edges from the node of XBn are labeled g,
g−1, f , f−1, h, h−1, i, and i−1 as shown in Fig. 1.

Note that edges of XBn are bidirectional. In par-
ticular, for u, v ∈ XBn, g(u) = v implies g−1(v) = u,
f(u) = v implies f−1(v) = u, h(u) = v implies
h−1(v) = u, and i(u) = v implies i−1(v) = u. Since
every node of XBn has a fixed node degree of 8, there
is a total of n22n+2 edges in XBn. Clearly XBn is a
symmetric network.

Extended butterfly XBn is closely related to the
popular wrap-around butterfly Bn. Recall that Bn is
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Figure 1: Connections from node (p, r, X) in the
Extended butterfly network.

a graph on n2n nodes, each with a label (p,X), where
i ∈ Zn and X ∈ Zn

2 . By comparing the Bn with the
above definition of XBn, one can observe the follow-
ing.

Theorem 1. XBn contains n disjoint copies of Bn

subgraphs.

Proof. Partition the nodes ofXBn in n sets based
on the first index. Denote the set of nodes in a par-
tition where all nodes have the same first index p by
XBn(p, ∗, ∗). To show that the subgraph on nodes
XBn(p, ∗, ∗) is isomorphic to Bn, define a mapping
ψp : XBn(p, ∗, ∗) → Bn as ψp(p, r,X) = (r + p,X).
Clearly, ψ(·) is a one-to-one onto mapping. Further,
the edges within XBn(p, ∗, ∗) are exactly mapped onto
the edges of Bn. For example, consider the edge
(p, r,X) → (p, r + 1, X ⊕ 2p+r) of XBn(p, ∗, ∗). By
using the mapping ψ(·), this edge translates to the
edge (r + p,X) → (r + p+ 1, X ⊕ 2p+r) of Bn.

Theorem 1 immediately implies that n instances
of any algorithm that is designed to run on Bn can be
run on XBn without any performance degradation.
Further, these instances can exchange information us-
ing the additional links present inXBn. This structure
also suggests a possibility of being able to map other
algorithms on XBn. In Section 4 we exploits the rela-
tion between XBn and Bn to develop cycle mappings
on XBn.

3 Routing and Diameter

Routing strategy and diameter are important
properties of any interconnection network. A low di-
ameter and a good routing strategy is important to ef-
ficient implementation of parallel algorithms. To this
end, we first provide an algorithm to obtain paths be-
tween nodes of XBn.

Simple path algorithm to go from (p1, r1, X1) to
(p2, r2, X2) in b3n/2c hops.

1. (increase the first index cyclically to p2.)
for p = p1 to p2 − 1
Let the current node be (p, r1, X).
If X and X2 match in the (p+r1)-th bit, then use
edge g and go to node (p+ 1, r1, X).
else use edge f and go to node (p + 1, r1, X ⊕
2p+r1).

2. (increase the second index cyclically till the
third index becomes X2)
for r = r1 to r1 + p1 − n− p2 − 1
Let the current node be (p2, r,X).
If X and X2 match in the (p2 +r)-th bit, then use
edge h and go to node (p2, r + 1, X).
else use edge i and go to node (p2, r+1, X⊕2p2+r).

3. (increase or decrease second index to r2)
Let the current node be (p2, r,X2).
If −(n/2) ≤ (r2 − r) ≤ (n/2), then travel along
edges h till the second index becomes r2
else, continue along edges h−1 till the second in-
dex becomes r2.

Correctness of the above path algorithm is not
difficult to prove. Note that in steps 1 and 2 of the al-
gorithm, either the first or the second index increases
by 1 at every hop. Thus in each hop, they can mod-
ify a different bit of the third index. Together these
steps use n hops and can therefore modify all the n
bits of the third index to make it X2. Clearly, within
these first n hops, the first index will become p2 since
((p2 − p1) mod n) < n. Finally, after the second step
of the algorithm, the maximum distance between the
second index and r2 is at most bn/2c since one can
go cyclically to approach r2 from either directions by
using edges h and h−1. Thus the last step of the al-
gorithm uses at most bn/2c hops. Consequently this
algorithm provides a path of length at most b3n/2c
between any pair of nodes in XBn.

To illustrate this algorithm, consider the path
from node (4, 0, 111111) to node (2, 0, 000000) in XB6.
According to step 1 of the path algorithm, one would
use 4 hops along edges g or f as follows:
(4, 0, 111111) → (5, 0, 101111) → (0, 0, 001111) →
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(1, 0, 001110) → (2, 0, 001100).
The step 2 of the algorithm then suggests that we
should use 2 more hops along edges h or i to mod-
ify the successive bits of the third index to match the
destination. These two hops are as follows:
(2, 0, 001100) → (2, 1, 001000) → (2, 2, 00000).
Finally, the third step of the algorithm only adjusts the
second index using hops along either h or h−1. Since
in the present case one needs to change the second in-
dex from 2 to 0, using edges h−1 is prudent. These
last two hops are:
(2, 2, 000000) → (2, 1, 000000) → (2, 0, 00000).

It should be noted that the above algorithm may
not give an optimal path between the two nodes. But
it is a simple algorithm and suffices to specify the di-
ameter of XBn as the following theorem illustrates.

Theorem 2 (Diameter of XBn). Diameter of the
Extended Butterfly XBn is b3n/2c.

Proof: As shown by the path algorithm given above,
a path of length at most b3n/2c exists between any
pair of nodes in XBn. Therefore to prove the theo-
rem we merely have to show that b3n/2c is also the
lower bound on the diameter. Following Theorem 1,
we know that XBn contains n copies of Bn subgraphs.
Consider two nodes of XBn which lie in the same copy
of a Bn subgraph. It is obvious that the shortest path
between the nodes uses only the edges of that sub-
graph. The distance between these two points in XBn

is the same as the distance between the corresponding
points of the graph Bn. Thus the diameter of XBn

cannot be less than the diameter b3n/2c of Bn.

Theorem 2 shows that even though the Extended
Butterfly XBn has n times as many nodes as a wrap-
around butterfly Bn, its diameter is the same as that
of Bn.

It is interesting to note that the path algorithm
presented in this section uses edges f , g, h and i only.
Thus if one were to construct a directed graph XBn

which uses only these four edges, then the node degree
would drop to 4, but the diameter would remain un-
changed at b3n/2c.

4 Cycle Subgraphs

As indicated in Section II, XBn contains n dis-
joint copies of wrap-around butterfly Bn. We use this
fact to obtain larger cycle subgraphs of XBn by merg-
ing smaller cycle subgraphs located in these copies. To
facilitate this, we first restate the following result from

[6] that relates to the cycle subgraphs of butterflies.

Theorem 3 (Cycle subgraphs of Bn) [6]. Cycles
of all lengths L are subgraphs of Bn except when:

a. odd L when n is even.

b. odd L less than n.

c. L = 6 when n = 5 or n ≥ 7.

d. L = 10 when n = 7, n = 9 or n ≥ 11.

We do not discuss here designs of cycles in Bn. It
is sufficient to note that for lengths smaller than 4n,
these cycles are generated using a template given in [6].
For larger lengths, one first obtains a cycle subgraph
of length L′ such that n|L′ and L−L′ is a small even
number ≤ 2(n−1). One can then attach up to (n−1)
additional pairs of nodes to this cycle to get the length
L cycle. Cycle subgraphs of length L′ are obtained by
judiciously picking edges h and i (see Fig. 1 for the
edge naming convention) to form the cycle.

Recall that XBn contains n distinct copies of Bn,
each made up of those nodes of XBn which have the
same first index. By identifying cycle subgraphs in
these copies of Bn and merging them together, one can
get the desired cycle subgraphs ofXBn. One needs the
following two lemmas to carry out this merging.

Lemma 1 (Cycle merging using edges g). Given
a node pair u, v ∈ XBn connected by an h-edge, i.e.,
h(u) = v, there exists another node pair z, w ∈ XBn,
also connected by an h-edge, i.e. w = h(z) such that
g(u) = z and g(v) = w. Further, the four nodes v, u,
w, and z are distinct.

Proof: Let u = (p, r,X). Then, v = h(u) = (p, r +
1, X). One can verify that the nodes z = (p+ 1, r,X)
and w = h(z) = (p + 1, r + 1, X) satisfy the required
conditions of the lemma.

Fig. 2 illustrates the connections specified in
Lemma 1. Note that nodes u and v in this figure be-
long to the same copy of Bn (they have the same first
index) and w and z to another copy. One can relate
node pairs in different copies of Bn by f edges as well.
This is given in Lemma 2.

Lemma 2 (Cycle merging using edges f). Given
a node pair u, v ∈ XBn connected by an i-edge, i.e.,
i(u) = v, there exists another node pair z, w ∈ XBn,
also connected by an i-edge, i.e. w = i(z) such that
f(u) = z and f(v) = w. Further, the four nodes v, u,
w, and z are distinct.
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Figure 2: The connection of four nodes in XBn.

Proof: One can verify that the nodes u = (p, r,X),
v = (p, r + 1, X ⊕ 2p+r), z = (p+ 1, r,X ⊕ 2p+r) and
w = (p+1, r+1, X⊕2p+r⊕2p+r+1) satisfy the required
conditions of the lemma.

Before we identify the cycle subgraphs of XBn,
we first present a result that imposes a fundamental
limit on the cycle subgraphs of XBn.

Theorem 4 (Impossible cycle subgraphs of
XBn). Cycles of the following lengths L are never
subgraphs of XBn:

a. odd L when n is even.

b. odd L less than n.

Proof: For an even n, partition the nodes of XBn

into two sets based upon on whether the sum of the
first two indices of a node is even or odd. Clearly, all
XBn edges go only between these sets and no nodes in
the same set are connected. Thus XBn is a bipartite
graph for even n and therefore cannot support odd
length cycle subgraphs.

Now consider a length L, L < n, cycle subgraph
of XBn. Since L < n, there exists an integer k,
0 ≤ k < n such that no node on the cycle has the form
(k, n−k−2, X). Replace each node (p, r,X) of the cy-
cle by node ((p− k− 1) mod n, (r+ k+1) mod n,X).
Note that this does not change the cycle connectiv-
ity. The new cycle of the same length L will not have
any node whose first or second index is n− 1. Conse-
quently, this new cycle will not use any wrap-around
edges (i.e., edges that go between nodes whose first or
second index changes from n−1 to 0). Thus along this
cycle, the sum of the first two indices of the nodes tra-
versed alternates between odd and even. This implies
that the cycle length L < n must be even.

We now state the central result of this section.

Theorem 5 (Cycle subgraphs of XBn). Cycles of
all lengths, except those identified in Theorem 5, are
subgraphs of XBn.
Proof: Recall that nodes of XBn can be partitioned
into n distinct copies of Bn. By virtue of Theorem
3, cycle subgraphs of all lengths up to n2n (except
of lengths 6 and 10) specified in Theorem 6 exist in
XBn. Cycle subgraphs of length 6 and 10 may be
directly constructed in XBn as:

(0, 0, 0) → (0, 1, 1) → (0, 0, 1) → (1, 0, 0) →

(1, 1, 2) → (0, 1, 0) → (0, 0, 0).

(0, 0, 0) → (1, 0, 0) → (2, 0, 0) → (2, 1, 0) →

(2, 2, 0) → (1, 2, 8) → (2, 2, 8) → (1, 2, 0) →

(0, 2, 0) → (0, 1, 0) → (0, 0, 0).

To obtain cycle subgraphs of lengths greater than n2n,
one may first design cycle subgraphs on multiple copies
of Bn, and then merge them using Lemma 1 or Lemma
2. Recall that the cycles in each copy of Bn use only
h or i edges. The merging process using Lemma 2 is
illustrated in Fig. 3.
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f

Figure 3: Merging cycles in two Bn subgraphs by re-
moving the i-edges and adding f -edges between points
u = (p, r,X), v = (p, r+1, X⊕2p+r), z = (p+1, r,X⊕
2p+r) and w = (p+ 1, r + 1, X ⊕ 2p+r ⊕ 2p+r+1).

It should be clear from this figure that the merg-
ing of cycles in p-th and p+1-th copies of Bn is possible
if there exists an edge (p, r,X) → (p, r + 1, X ⊕ 2p+r)
in the first cycle and an edge (p + 1, r,X ⊕ 2p+r) →
(p + 1, r + 1, X ⊕ 2p+r ⊕ 2p+r+1) in the second cycle.
However, the index r of all the nodes in a cycle may
be incremented by the same amount without destroy-
ing the cycle connectivity. Thus the only requirement
for merging the cycles in the two copies of Bn is the
existence of an edge (p, r1, X) → (p, r1 +1, X⊕ 2p+r1)
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in the first cycle and an edge (p+ 1, r2, X ⊕ 2p+r2) →
(p+1, r2 +1, X⊕ 2p+r2 ⊕ 2p+r2+1) in the second cycle
for arbitrary r1 and r2. If one of these cycles has a
length of at least 2n − 1, then this requirement can be
easily met if the other cycle has an i edge. If the other
cycle has only h edges, then one may use Lemma 1 in
place of Lemma 2 in this proof.

Thus cycles of all possible lengths 3 ≤ L ≤ n2×2n

are subgraphs of XBn.

5 Conclusions

This paper describes XBn, an extended butterfly
network of degree n. XBn contains n distinct copies
of Bn and therefore can run n different algorithms de-
signed for butterflies without any slowdown. The in-
terconnection between these copies preserves all the
good properties of the butterfly. XBn is a symmetric
network with n22n nodes and a constant node degree.
It has a diameter equal to that of Bn, i.e., b3n/2c. We
have obtained a comprehensive solution to the prob-
lem of cycle subgraphs of XBn. We have shown that
XBn does not have odd length cycles of lengths less
than n. But when n is odd, all cycles of length larger
than n are subgraphs of XBn. When n is even, all
even length cycles are supported.

It is instructive to compare the properties of XBn

with those of the Hyper-Butterfly [3]. Hyper-Butterfly
is obtained by combining a Hypercube of degree m,
Hm with Bn to get a network with n2m+n nodes.
Clearly, this may be much larger than the number of
nodes n22n of XBn. On the other hand, XBn has a
constant node degree of 8 as compared with the node
degree m + 4 of a Hyper-Butterfly. Similarly, the di-
ameter of XBn is only b3n/2c as compared with the
diameter m+ b3n/2c of the hyper-Butterfly.
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