INT. J. ELECTRONICS, 1992, VOL. 73, NO. 6, 1121-1132

Fast square root architecture based on prediction of result bits

MUKESH SHARMA+ and MEGHANAD D. WAGH+}

A new architecture for the fast evaluation of the square-root of normalized binary
numbers is presented. It exploits the fact that depending upon the relative
magnitudes of the partial result and the partial remainder at any stage of a non-
restoring square-root algorithm, a large number of result bits can be predicted.
This allows one to convert approximately two thirds of the additions in the square-
root procedure to shifts at the cost of a marginal increase in the hardware.

1. Introduction

The square root is one of the important operations used in many diverse
computational algorithms. Consequently, the design of fast square-root architec-
tures has proved to be a topic of considerable research interest in recent years. Even
though some other variations are available (Lim and Jullien 1989), most square-root
algorithms evaluate the required result through a series of additions. Each addition
provides a single bit (or digit) of the answer beginning with the most significant bit.
To improve the performance of a square-root circuit requires either fast addition
techniques or a modification of the basic square-root algorithm to require less
additions.

The speed of the addition can be improved mainly by expressing the computa-
tion in non-redundant number systems based on a radix higher than two (Oklobb-
zija and Ercegovac 1982, Montuschi and Ciminiera 1989). Square-root architectures
employing this principle and using radix 4 or 8 have been discussed by Fandrianto
(1989) and Ercegovac and Lang (1990). The speed of computing each answer digit
may be further improved by using the digit set {—1,01} to express the answer
(Metze 1965) or by using an intermediate non-binary redundant number system
(Majerski 1985).

Other methods improve the square-root computation through modification of its
basic algorithm to require less additions. These methods typically require minimal
change of the normal square-root architecture and are therefore cost effective.
Typical among these is the modification of the basic restoring square-root algorithm
to a non-restoring version which requires an average of only n additions as against
the original 3n/2 to compute an n bit answer. New algorithms have been reported
which allow one to skip some of the addition steps corresponding to the digit 0 in a
non-binary square-root computation (Montuschi and Ciminiera 1991).

In this paper, we develop a new square-root algorithm that uses substantially less
additions than the non-restoring algorithm with a very small hardware penalty. Our
algorithm is based on the prediction of several answer bits in every cycle. This work
is similar to the Wilson-Ledley algorithm for division (Wilson and Ledley 1961)
which predicts a number of result bits in each cycle from the magnitude of the

Received 20 July 1992; acceted 22 July 1992.
+Department of Electrical Engineering and Computer Science, Lehigh University, Bethle-
hem, PA 18015, U.S.A.

0020-7217/92 $3.00 © 1992 Taylor & Francis Ltd.

1122 M. Sharma and M. D. Wagh

partial remainder. In the algorithm proposed here, the magnitude of the partial
reminder relative to that of the partial result allows us to do the same thing in case of
a square-root computation. The relative magnitude comparison is accomplished by
identifying the leading significant bits of the two operands. The hardware complexity
of the resultant architecture is marginally increased from the conventional architec-
ture while the number of additions required to obtain the square root are decreased
significantly.

Section 2 of this paper starts from the non-restoring square-root algorithm and
derives the algorithm to predict the result bits. Section 3 is devoted to the realization
of this algorithm to obtain the fast square-root architecture. We show that it is
possible to convert many of the additions in the algorithm to mere shifts by tapping
three specific bits of the partial remainder register. Since a shift operation is several
times faster than an addition, the resultant architecture provides substantial speed
improvement. Section 4 further discusses hardware related issues that directly
control the complexity and speed of this architecture. Finally, Section 5 concludes
the paper by summarizing the results obtained.

2. Algorithm to preduct the result bits

In this section we derive the algorithm to predict several answer bits in each
addition cycle of a square-root computation. This prediction is based on the relative
magnitudes of the partial remainder and the partial answer. In general, such a
magnitude comparison could be time consuming; but we show that the knowledge of
the positions of the most significant bits in the two quantities is sufficient to carry
out the prediciton. By using a normalized input operand, one can easily figure out
the position of the leading significant bit of the partial answer at every clock. The
bounds on the partial remainder derived here shows that its leading significant bit
can be predicted by examining only three bit positions. Thus theé architecture
implementing this algorithm only needs to examine three bits of the partial
remainder to predict several result bits at the cost of a single addition in every cycle.

The commonly used non-restoring algorithm to compute the square root B of a
2n bit number A may be described as follows (Hwang 1979):

Define the initial values of the partial result, B;, and the partial remainder, R;, as

Ro=2_2(n_1)A"1 and Bo=0 (1)
and for 1<i<n, compute them recursively as:

Ri=4Ri_1—(8Bi_1 +5), Bi=2Bi‘—1+13 ifRi_1>0 (2)
Ri=4Ri—1+(8Bi+1+3)9 Bi=2Bi—l’ ifRi_1<0 (3)

The value of B, then gives the desired square root B.

Note that in the non-restoring algorithm above, B; may be computed from B;_,
through a left shift with either a 1 or a 0 sliding into the least significant bit position.
This new bit of the result B is obtained at the cost of one addition required to obtain
R; from R;_;. We now show that by comparing the magnitude of B;_; and R;_,,
one can save many of these addtions. To do this, define s and ¢ to be the positions of
the most significant bits in B;_; and R,_,, respectively. (In two’s complement
number system, the position of the most significant bit is the position of the leading

Predictive square-root architecture 1123

1 for a positive number and position of the leading 0 for a negative number. For
example, for six-bit representations, if B;_; =<001011) and R;_, =<111010), then
s=3 and t=2.) Note that B,_,, representing the partial result, is always positive. We
now consider the following two cases based upon the sign of R;_;. In each case, we
are able to predict s—¢+2 bits of B at the cost of a single addition.

Case 1. R,_20and t<s
Since R;_, =0, application of (2) gives
R,=4R;_;—(8B;_;+5) and B;=2B; ,+1
If this R;<0, one would apply (3) to obtain
R;,,=4R;+(8B;+3) and B;,,=2B;
Substituting for R; and B, in these equations gives
R;.1=16R,_,—16B;,_,—9 and B;,;=4B;_,+2.

If this new R, , is still negative, (3) would be applied again to obtain R;,, and B;,,
as

Ri+2=64Ri—1—32Bi—1—17 and B,-+1=83i_1+4

Proceding in this manner, we find that if R;, R;,, R;+2,. .., Ri1_; are all negative,
then R;,, and B;,, would be evaluated as

Ri+k=22(k+l)Ri_1__2):+3Bi_1_(2k+2+1)} (4)

Bi+k=2k+lBi—l +2¢

We now show that it is possible to predict the value of k for which R; to R,
are all negative by examining the magnitudes of B;_, and R;_ characterized only by
s and ¢. The definitions of s and ¢ in the case of positive B;_, and R;_ clearly imply
that

R,_,<2*! and B,_ 2%
Using these limits, one obtains
Ri+k_1=22kRi_1__2k+2Bi_1_(2k+1+1)<2k+t+1(2k_23-t+1)

Clearly, for all k values satisfying 1 <k <(s—1+1), one obtains R;,,_; <0, implying
that (4) is true for all these k values. Therefore one can directly compute R;,s_ 4y
and B;,,_,,, from R;_; and B,_, as

Rissorr =227 DR, — (2748, 4274 1] ®
Bigoye1=2"""2B_ 42271 (6)

It should be noted that (5) represents a single addition because the terms in the
square brackets form a single operand. Equation (6) represents the prediction of
(s—t+2) consecutive bits of B consisting of a 1 followed by a string of (s—¢+1)

1124 M. Sharma and M. D. Wagh

zeros. Thus in this case, our algorithm allows one to advance the square-root
calculation through s—¢+2 cycles of the nonrestoring alogrithm within the cost of
just one addition.

Case 2: R;,_; <0 and t<s
In this case one may apply (3) to obtain

Ri=4Ri=l+(8Bi—l+3) and Bi=ZB,-_1

If R, Riyq,..., Riyy_, are all non-negative, then R;, 4, R;;5,..., Riy, would be
obtained by the application of (2) to give

Ri+k=22(k+1)Ri_1+2k+3Bi_1+(2k+2_1)
B =2""'B;_;+(2*-1) @)

To find the largest value of k for which (7) is true, characterize the magnitudes of
negative R;_, and positive B;_, as

R,_;>—-2*! and B, ,>2
Hence,
Ri+k—1=22kRi—1+2k+2Bi—1+(2k+1—1)>2k+t+1(2s—t+1_2k)

Thus for all k satisfying 1<k<(s—t+1), R;14-1>0 and (7) is true. Thus once
again, one can compute R;,,_,,; and B, _,,, directly from R;_, and B;_, as

Rivgopr1=22C""PR, +[2°7 4B, (427173 —1] ®)

Bi+s—t+1=29_t+2Bi—1 +(28_t+1_1) (9)

Thus even in this case, one can predict (s— ¢+ 2) consecutive bits of B as a string
made up of a 0 followed by (s—¢+1) I’s at the cost of one addition required to
obtain R, ,,_,+, from R,_,.

The results of this section lead to the square-root algorithm shown in Fig. 1.
Note that when the conditions of neither of the two cases discussed above apply, we
merely resort to the usual steps (2) and (3) of the non-restoring square-root
algorithm. It can be seen that in each pass of the algorithm, one performs exactly
one addition to obtain a new R value. (The bracketed terms form a single operand of
this adition.) The modification of B can be interpreted as left shifts of B with 0’s or
I’s entering from right.

Note that the two cases that allow us to predict s—z+ 2 bits of the square root in
one addition require that ¢<s. If the most significant bit of R;_; is at a higher
position than that of B;_,, then one would not be able to take advantage of this
prediction technique.

However, as is shown by the following theorem, the magnitude of R;_, always
lies between 0 and 4B;_; +3. Thus there is a high probability that ¢<s.

Theorem 1
In the non-restoring algorithm described by (1), (2) and (3); for any i> 1,

Predictive square-root architecture 1125

Initialize : B = 0, s= -1, step = 0

-1
R= 22D A
I

% 2, +4 3
R 7D R P BB 1) ||[Re 4R+ (8B +3)| R+ 4R- (8B +5)||R= 2D g "™ B 4
1
pe 7" B o) B< 2B B<2B+1 a2 B4
step=—step + (s-t+2) step=- step +1 step=—step + 1 step=+ step + (s-t+2)
step > n?
no
yes

Figure 1. Square root algorithm based on prediction of answer bits.

—(4B,_,+1)<R,_,<4B,_,+3 (10)

Proof (by mathematical induction)
For i=1, (1) shows that (10) is true. If (10) is true for any i=k, its truth for
i=k+1 is established thus:

For non-negative R, _,, application of (2) gives
R,=4R,_,—(4B,+1) (11)
But since (10) is assumed true for i=k,
0<R,_;<4B,_,+3=2B,+1 12)
Combining (11) and (12) one obtains
—(@B,+1)<R,<4B,+3

which shows that (10) is also true for i=k+1.
Similarly for negative R,_,, from (3) one obtains

Rk=4Rk—1+(4Bk+3) (13)
Also since (10) is assumed true for i=k,

—(@B,+1)=—(@B,_, +1)<R,_, <0 (14)

1126 ' M. Sharma and M. D. Wagh

Bits inspected Operations for each step

ng m;, my R B FF
0 0 0 R—4R - B—2B+FF 1
0 0 1 R+4R—(8B+1+4FF) B—~2B+FF 0
0 1 0 R—4R—(8B+5) B—2B+FF 0
0 1 1 R«4R—(8B+5) B«—2B+FF 0
1 0 0 R«4R+(8B+3) B—2B+FF 0
1 0 1 R«4R+(8B+3) B—2B+FF 0
1 1 0 R«4R +(8B+3+4FF) B—2B+FF 0
1 1 1 R<4R B—2B+FF 1

Table 1. Synchronous modifications to R, B, and the FF based upon m;, m,, and m,.

Combining (13) and (14) one can see that (10) is true for i=k+1. O

3. Implementation of the algorithm

The square-root algorithm presented in §2 is attractive because it can predict
several bits of the result in a single cycle using one addition. An efficient
implementation of this idea is, however, not trivial. In order to determine the type of
modifications to be done to R and B, one should know the sign of R and the value of
s—t. The sign of R can be determined merely by examining its most significant bit, a
signal denoted by m;, in the following discussion.

The determination of s—¢ is a difficult task. We therefore break up each cycle of
modifying R and B into several steps. In each step we append a single bit to B. Thus,
for example, a cycle with R >0 on which one can predict s— ¢+ 2 bits of B is carried
out through s—r+2 steps; appending a 1 to B in the first step and 0’s in the rest.
Together, these steps imply B«2**'*2B+25~!*! g5 specified by the algorithm of
Fig. 1. In order to distinguish the first step of a cycle from the rest of the steps, we
use a flip-flop (FF) which holds a 0 during the first step of each cycle and a 1 during
the rest of steps of that cycle.

Consider a cycle which begins when the leading 1 of B is at position s,. Note
from (10) that the leading significant bit of R cannot be at a position higher than
so+2. Thus all the bits of R at positions s,+3, 5o+4, ... are identical to signal m,
(representing the sign of R) and provide no additional information. We create
signals m, and m, by tapping bits of R at positions s, + 2 and s, + 1, respectively, at
the beginning of a cycle and then moving the taps gradually to higher significant bits
during each step of the cycle. It can be shown that signals m,, m, and m; are
sufficient to decide the operations at each step.

Table 1 tabulates the modifications done to R and B at each step based upon
{mymym;) at that step. We now show for R>0 that the combined effect of the
actions in Table 1 is the same as that of the algorithm in Fig. 1. The case for R<0
can be similarly analysed.

Case 1: R>0 and t,<s, where ¢, and s, are the significant bit positions of R, and
By, the values of R and B at the beginning of the cycle.

Note that when s,—?,>0, m, and m; are identical to the sign bit of R, and
{mym,m,» equals {(000>. From Table 1, this would prompt the modifications

