
PARALLEL RECURSIVE COMPUTATIONS WHERE BOTH
RECOMBINATION AND PARTITION OVERHEADS

ARE PROBLEM-DEPENDENT
Dr. Arindam Saha

Dept, of Electrical & Computer Engineering
and NSF Engineering Research Center for CFS
Mississippi State University, P.O. Box 6176

Mississippi State, MS 39762
Abstract: Parallel recursive computations
incorporating the unavoidable and significant parallel
computing overheads, encompassing a wide variety of
applications, can be modeled as

Dr. Meghanad D. Wagh
Electrical Engineering and Computer Science

Lehigh University
19 Memorial Drive West
Bethlehem, PA 18015

from recursive algorithms in the presence of overheads.
The complexity of such optimal algorithms shows a
considerable improvement over algorithms using equal
partitions [5]. But unfortunately, the choice of optimal
partition sizes is greatly influenced by the nature of the
overheads. It is therefore imperative to correctly model
the architectural and algorithmic overheads and then
efficiently determine the optimal partitions given any
problem size. This paper develops procedures to obtain
such optimal partitions for certain special cases.

Section II of this paper describes me model for
parallel recursive algorithm incorporating both the
symmetric and asymmetric overheads inherent in any
parallel computing environment. A specific case of the
generalized model is solved in Section III. Section IV
concludes the paper with some discussions.

IL PARALLEL R E C U R S I V E M O D E L
The complexity of a parallel recursive algorithm

may be described by the following equation.

where k(r) and X(n,r) represent the partition and
recombination overheads respectively. The optimal
partition size (solution to r of the above minmax
recurrence relation) is nontrivial and is very different
from the n/2 value conventionally used. Using the
optimal partitions at every stage of the recursion
enhances the performance greatly. In this paper we
solve a challenging case of our parallel recursive
model where the overhead functions are
problem—dependent.

I. INTRODUCTION
Many parallel processing algorithms are based on

the recursive paradigm [1]. This technique allows a
problem to be partitioned into smaller instances of itself,
and combining the partial results to obtain the final
solution. Since these smaller instances can themselves
be recursively partitioned into even smaller sizes, the
procedure reduces to solving minimal sized problems
and recombining their results. The recursive technique
is ideal for parallel processing because the smaller sized
problems are mutually independent and hence can be
executed concurrently in different processors.

The performance of any parallel recursive algorithm
is greatly affected by the architectural and algorithmic
overheads inevitable in any realistic parallel computing
environment. These overheads, among others, include
the cost of interprocessor communication to distribute
data and collect results, the cost of combining the partial
results and the costs associated with converting one or
both subproblems to conform to the exact form of the
original problem. Conventionally these overheads are
neglected in the design of algorithms [2] - [41. This
leads to ad hoc equal partitioning and nonoptimal
performance of the recursive technique on real world
parallel machines.

It has recently been [51 shown that by proper choice
of partitions, one may extract optimal performance

where, T(n) is the complexity of a size n problem, h0 is
some small problem size below which the recursion is
not applied and all problems have the same complexity
to, k(r) is the partition overhead dependent on the
partition size, and X(n,r) is recombination overhead as
a function of the problem size and/or the partition size.

While the symmetric recombination overhead,
X(n,r) characterizes the costs associated with the
recombination of me partial results, the asymmetric
partition overhead k(r) is related to the costs incurred
during interprocessor communication as well as any
extra computations one of the partitions may require.
Note that in some cases both processors participate in
the communication phase, but such a symmetric cost
can be easily incorporated in the X(n,r) term.

The aim of this paper is two-fold. 1) We want to
determine optimal r values in the solution of (1) for all
problem sizes of interest. Such r values will be referred
to as the optimal partitions. It will be shown in this paper
that that the optimal partitions are very different from
the ad hoc equal partitions n/2. Note that our model does
not suggest binary partitioning, but with the help of our

partitioning algorithms one can easily generate many
partitions simultaneously. The complexity of such
algorithms is of little consequence because they are
going to be used by parallelizing compilers infrequently
(analogous to time-consuming place-and-route in
VLSI). Similar partitioning algorithms have been
previously published by the authors [8]. 2) We want to
derive either a closed-form or an asymptotic solution of
the complexity function T(n). Again, we will show that
the complexity T(n) is far better considering the optimal
partitions as opposed to the ad hoc equal partitions.

Table 1. contains a list of all the relevant symbols
used in this paper and their corresponding definitions.

Table 1. Symbols and their definitions
in . SOLUTION OF THE MODEL

The logarithmic merging or recombination
overheads occur in many real world algorithms that
include many parallel sorting and searching problems.
This scenario is modeled by the following recursion.

Due to the logarithmic factor in the recombination
overhead function, one can realize that any problem size
of the form of a power of 2 is special in the sense that the
contribution of the recombination part necessarily
increases mere. This intuitive notion is formalized in
me following lemma.

Lemma 3: T(2') - T(2'-l) ≥ A, for any positive i.

The determination of the optimal partition size
in recurrence (2) for any n is of utmost importance
for design and implementation of optimal
algorithms. In this section, we present relevant
results to characterize the optimal partition sizes.
Clearly, T(n) is monotonically increasing with n.

Lemma 1: T(n) is a monotonically increasing
function of n.

Proof: (By induction over n) Trivial. Q
Note mat although according to (2), any integer

between 1 to n-1 can be an optimal partition size, the
search domain for the optimal partition size, is in
actuality, highly restricted as shown by the following
result.

Lemma 2: If p e Rn, Uien T(rt + 1) = mill

Proof: this result is similar to that of the
convolution minimization stated by Fredman and Knuth
in [7]. Please refer to it for the proof. Q

There may exist more man one optimal partition size
for any n. But as shown in Theorem 1, it is uniquely
defined at every r\m, the largest problem size with
complexity m.

Theorem 1 The optimum partition set Rr\,„

It can be shown that for every ‰ which is not of the
form 2'-l, rm is the only partition size. For an T‰ of the
form 2'-l, rm is the smallest possible optimal partition
size. When the problem size is not an r„„ there may exist
numerous partition sizes. But, as the following result
shows, r„, can still be used as an optimal partition size.

Theorem 2; For any n e S,„, R„ includes r,„.
Proof: As a consequence of Lemma 4 we know that

Proof: Let ISm! ≠ 0. This means that there is a
problem of size T|„, whose complexity is m. Let r e Rf↑m■
Clearly then, m = T(‰, r) = max { T(‰ - r) + XLlog‰J,
T(r) + kr + UlogT]mJ}.
If m equals the first term of the max function, then the
size (‰ - r) problem has a complexity (m - X|_l°g‰J
implying IS(m _ XLlogT)mJ)l ≠ 0. On the other hand if
the second term was chosen, then T(r) + kr + X[log‰J
= m, as specified in the statement of the theorem. This
proves necessity of given conditions for ISml to be ≠ 0.

We prove sufficiency by showing that either of the
two conditions implies ISml ≠0. Let's consider first IS(m
-UiogTimJ>l≠O. We will prove that ISm!=0 is a
contradiction to this as follows. If ISinl≈0, then there
exists a problem size n such that T(n)<m and T(n+1) >
m. Obviously n is the maximum of its complexity class
and from Theorem 1, if r is its optimum partition size,

We now investigate the behavior of the complexity
T(n). First, we look at the allowable complexity values.

Lemma 4: For any complexity m for which ISml ≠
0, g I (m-to), where g = gcd(k,X)■

Proof: This result is obvious from the fact that for
n<rk>, complexity of size n problem is to, and at every
stage of computation, it differs from an earlier
complexity by (kr+X Vlogz (‰) \ or X Llog2 (r|„,) J.
both of which are multiples of g. Q

Lemma 4 shows that the complexity T(n) is not a
continuous function of the problem size n and the gaps
in the complexity are at least equal to g. In general, the
converse of Lemma 4 is not true. The necessary and
sufficient condition for the a complexity class to be
nonempty is much more complex and is specified by the
following theorem.

To prove the sufficiency of the second condition,
consider now that IS(„, _ xilogninj)' = 0 o u t f°r some r,
m = T(r) + kr + X|_logn,mJ∙ Relation IS(m _ xilogt|inJ)l =
0 implies that there exists a problem size n such thatT(n)
< m - >■Lk>giliiiJ and T(n + 1) > m - XLlog‰J ■We will
now show that problem size ni = n + r has complexity
m, dms proving that ISml ≠ 0. We can write

We now present an analysis to determine the order
of complexity. Interestingly enough, this scenario is
similar to the model solved by us in [X]. By using the
results derived so far in this section and the results of
complexity in [8] we now derive the order of T(n).
Theorem 4: T(n) is of order 0([nlog(n)]°■5).
Proof: Rewriting recurrence relation in (2) we have,
T(n)-XUog(n)J =min{max{T(n-r),T(r)+kr}. (22)
Now add a sufficiently large constant P = Xlog(N) to the
right hand side of equation (22), where N is the largest
problem size of interest, and subtract appropriate terms
from each element of the max function to get T(n) -

B making a simple substitution, f(n) = T(n) - XUog(n) J∙
we can transform (23) into
f (n)≤ min{max{f(n-r),f(r) + kr} + P } . (24)
Please refer to [10] to find that (24) is similar to the
recursion solved in that paper for the special case of a
constant s=l. A similar result has also been derived in
[6]. So from [6] and [8] we get the order of N, a
complexity m problem, to be 0((m2)log(N)). (25)
Note here that N denotes the problem size n and m
represents the value of the function f(n). Thus (25) is
interpreted to imply that the order of f(n) is
0([nlog(n)]°■5). Thus T(n) is of the order
0(([nlog(n)]°■5) + log(n)) = O([nlog(n)]° 5) . Q

If n/2 is chosen as the partition size at every stage of
the recursion (2), then one gets T(n) = T(n/2) + kn/2 +
XLlog(n) J. Clearly, mis forces the complexity T(n) to be
0(n + loglog(n)). Thus one of the most significant
impacts of optimal partitioning as opposed to the
commonly used equal partitioning is the drastic
reduction of the overall computational complexity. We
have succeeded in reducing the complexity from O(n)
to O([nlog(n)]0■5).

We now present a generalized algorithm to compute
the optimal partition size r for any problem size n as a
solution to (2). The algorithm is sell-explanatory and
is based on the results derived in mis section.
Algorithm to compute optimal partition size
Step 1. (Initialization)

parallel algorithms based on the principle of recursive
partitioning. Crucial to the analysis of optimality is the
development of a well defined analytical model in the
form of a minmax recurrence relation that incorporates
the algorithmic and architectural overheads
encountered in real world parallel computing
environments. Conventionally researchers have
ignored these unavoidable overheads in their design and
analysis of parallel recursive computations and most
have chosen the equal partition size on an ad hoc basis.
We have demonstrated a novel technique of including
these overheads at the outset such mat optimal
partitioning decisions can be made to mitigate the
adverse effect of these overheads. Our model does not
suggest binary partitioning, but with the help of our

partitioning algorithms one can easily generate many
partitions simultaneously.

The case solved in mis paper, deals with the
recombination overhead as logarithmic function of me
problem size. We have shown that the order of
complexity can be significantly reduced from O(n) to
O([nlog(n)]0■5) by using optimal partitions instead of
the ad hoc equal partitions at every stage of me
recursion. We have also designed a generalized
algorithm to compute these optimal partition sizes.

REFERENCES
[1] E. Horowitz and S. Sahni, Fundamentals of
computer Algorithms, Computer Science Press
Potomac, Maryland, 1978.
[2] M. J. Atallah, R. Cole and M. T. Goodrich,
"Cascading Divide-and -Conquer: A technique for
designing parallel algorithms," SIAM J. Comput, ,
18(1989), pp. 499-532.
[3] Q. F. Stout, "Supporting Divide-and-conquer
algorithms for image processing," J. Parallel and
Distributed Comput., 4 (1987), pp. 95-115.
[4j B. Abramson, "Divide and Conquer under global
constraints: A solution to the N-Queens problem,"
J. Parallel and Distributed Comput., 6 (1989), pp.
649-662.
[5] A. Saha, Design and Analysis of Parallel
Recursive Computations in the Presence of
Overheads, Ph.D Dissertation, Lehigh Univ., 1991.
[6] S. Kapoor and E. M. Reingold, "Optimum
lopsided binary trees." ./. ACM, 36 (1989), pp.
573-590.
[7] M. L. Fredman and D. Knuth, "Recurrence
relations based on minimization," J. Math.
Analysis andAppl., 48 (1974), pp. 534-559.
[8] A. Saha and M. D. Wagh, "Algorithms for
determining optimal partitions in parallel
divide-and-conquer computations," Proceedings
of the ICPP, St. Charles, Vol. Ill, (1991), pp. 75-82.

IV. C O N C L U S I O N S
This paper presents the design and analysis of

