
MINMAX RECURRENCES IN ANALYSIS OF ALGORITHMS 

by 

Dr. Arindam Saha Dr. Meghanad D. Wagh 
Dept. of Electrical & Computer Engg. CSEE Department 
Mississippi State University Lehigh University 
P.O. Drawer EE Packard Lab #19 
Mississippi State, MS 39762. Bethlehem, PA 18015. 

Abstract: Recurrence relations with minimization and maxi- 
mization, called minmax recurrence relations are commonly en- 
countered in the analysis of algorithms. In this paper we present 
the solution of one such challenging recurrence relation. We 
characterize the optimal partition sizes as well as derive the order 
of complexity of the overall recurrence relation. It is proved that 
ad hoc equal partitioning is never the optimal choice. We also 
provide a survey of three other interesting minmax recurrence 
relations found in the literature. 

1. Introduction 

The complexity analysis of several recursive algorithms requires the 
solution of a variety of recurrence relations. A special type of recur- 
rence relations is the minmax recurrence relation, which involves re- 
cursive minimization and maximization. The standard techniques 
used for simple recurrences such as the generating functions, the 
characteristic equations and the summing factors fail to deliver ade- 
quate results with minmax recurrences. Thus, often the solution of 
minmax recurrences becomes a challenging and interesting task. Un- 
fortunately, the current knowledge of researchers in this field is not 
mature enough to enable establishing general solution techniques. 
Hence minmax recurrences are mostly solved in a case-by-case basis 
with not much commanality between different solution methods. In 
this paper, in Section 2, we first show three examples of minmax re- 
currences found in the literature, how they are derived'from the analy- 
sis of algorithms and how they are solved. The remaining and major 
part of this paper, Section 3, deals with our solution of minmax recur- 
rence derived from the analysis of a parallel divide-and-conquer 
computational model. In Section 4 we draw some conclusions. 

2. A Survev of Minmax Recurrences 
In thii section we present three interesting minmax recurrences found 
in the literature. This paper deals with functions that are convex in 

nature. A real-valued functionfln) over the nonnegative integers is 
def ied  convex if its second difference is nonnegative, i.e., if 

g(n+2) - g(n+l) 3 g(n+l) - g(n) for all n 3 0 .  

The following result [l] shows that the convolution minimization of 
convex functions is particularly simple. 

Claim 1; Let a(n) and b(n) be two convex functions and define the 
new function 

c(n) = min { a(r)+b(n-r)}, for all n 5 0 

Then c(n) is convex. Moreover, if c(n) = a(k) + b(n-k), then 

c(n+l) = min( a(k)+b(n+l-k), a(k+l)+b(n-k)} 

Pmofl Let 6f(n) = f(n+l) - f(n). The two sequences 

(1) 6a(0), 6a( I), 6a(2), ..., 
6b(0), 6b(l), 6b(2), ..., 

are nondecreasing by hypothesis. Suppose that the smallest n ele- 
ments of (1) are 6a(O), ..., 6a(i-l), 6b(O), ..., 6bG-1). where i+j = n. 
If r u ,  then n-r-13 j; hence 6b(n-r-1) 5 6a(r), i.e, 

a(r) + b(n-r) 3 a(r+l) + b(n-r-1). 

On the other hand, if r 2 i, then n-r- l<j; hence 

a(r) + b(n-r) S a(r+l) + b(n-r-1). 

Thus it follows that c(n) = a(i) + b(i). As we increase n to n + l ,  we 
increase i or j by one, depending on which of { 6a(i), 6b(j)) is larger. 
In other words, the sequence 

W O ) ,  6c(l), 6c(2), ..., 

is precisely the result obtained when merging the two sequences (1) 
@7803-1257-0/93/%3.00 Q 1993 IEEE. 



into nondecreasing order. The claim then follows immediately. a) ~f is increasing, then 1 E R,, 3 2. 
b) Ifg is decreasing and concave, then Ln/2] E R,, n 9 2, andfis also 
convex. 
c) Ifg is decreasing and convex, then o(n) and e(n) ER,, n 3 2, where 

forp L O ,  
2.1. An Insertion Problem 

We are interested in knowing the average number of comparisons, 
h(n), required to insert an element A, into a sorted list u(2P+q) = q  

Clnirn 2: h(1) = 0, 

for OSqS2P. 
A1 S A2 G ... G A,-1 [2]. " 

Moreover, if the monotonicity of g is strict then the only r in R, are 
those given above. h(n) = 1 + min ((r/n)h(r) + ((n-r)/n)h(n-r) ). 

OUul 

Proof: We begin the sorting process by comparing A, with some ele- 
ment AI in the sorted list. Since all permutations are assumed equally 

2.2. A GraDh Matchinp Problem 
likely, 

Pr(A, < A,) = r/n 
&(A, > A,) = (n-r)/n. 

If the result of the comparison is A, > An we are left with the problem 
of inserting A, into the ordered list AI, . . . , An-l. Similarly if An < 
Ar then we have to insert An into the ordered list AI, . . . , &-I. When 
we multiply the required number of comparisons in each case by the 
probability of occurrence of the case, add 1 for the f i t  comparison, 
and choose the value of r that minimizes the expression, we obtain the 

0 result given in the claim. 

In order to solve h(n) it is worthwhile to study the functionf(n) = 
nh(n). Hence we have 

f( 1) = 0, 
f(n) = n + min (f(r) + f(n-r) ). (2) 

OUul 

The minmax recurrence relation (2) has been studied extensively as 
the generalized subadditive inequality [3,4]. This generalized se- 
quence is as follows 

f( 1) = 0, 
f(n) = g(n,r) + min (f(r) + f(n-r) ). (3) 

OUul 

Batty and Rogers [4] discuss maximal solutions of (3) for various 
types of g(n,r) function. Some of their results are listed here without 
proof. 
1. Let g(n,r) = g(n) be independent of r and monotonic in n. 
a) Ifg is decreasing, then 1 E R,, n 9 2, where R, is the set of r values 

that satisfy the minmax recurrence for any given n. 
b) Ifg is increasing and convex, then Ln/2] E R,, n 9 2, andfis also 

convex. 
c) If g is increasing and concave, then e(n) E R,, n 9 2, where for 

P20, 

d) If g is increasing and nonnegative, thenfis increasing. 

1. Let g(n,r) = g(rJ  be independent of n and monotonic in r. 

The problem of drawing a graph on a mechanical plotter with prespe- 
cified vertex locations [ 5 ] ,  where the distances satisfy the triangle in- 
equality, arises in numerous applications. To draw the graph e%- 
ciently we must minimize wasted plotter-pen movement, i.e., 
movement of the pen off the paper. If the graph contains an Eulerian 
cycle or path (a cycle or a path that traverses every edge of the graph 
exactly once), then it can be drawn with no wasted pen movement; 
otherwise, the graph contains an even number n > 2 of vertices of odd 
degree. In the latter case, as a simple consequence of the triangle in- 
equality, the minimum wasted pen movement can be achieved by 
finding a minimum weighted matching (a matching is the set of edges 
no two of which have a vertex in common) of the n vertices of odd 
degree. The graph can then be drawn by traversing the Eulerian cycle 
that exists when the edges of the minimum matching are added to the 
original graph with fhese edges traversed with the pen off the paper. 

The currently known best algorithm for finding the minimum 
weighted complete matching is O(n3). In order to reduce this time 
complexity many heuristics have been used. One obvious heuristic 
is the greedy algorithm : repeatedly match the two closest unmatched 
remaining vertices, resolving any ties arbitrarily. For n vertices this 
can be done in the worst-case time O(n210gn(n)) by sorting the n dis- 
tances. But one must consider how far from the minimum matching 
the resultant greedy matching will be. 
We now analyze the ratio of the cost of the matching found by the 
greedy algorithm to the cost of the minimum matching in the worst 
case. Observe that the union of any two matchings is a collection of 
disjoint cycles, the edges of which alternate between the two match- 
ings. Consider the collection of such cycles that results from taking 
the union of the greedy and the minimum matchings. Without loss 
of any generality we can consider the ratio of the two costs when the 
union of the two matchings is a single cycle. 

Defmeffn) to be the smallest fraction of the total length that can con- 
sist of edges of the matching due to the minimum matching of the n 
vertices. Then it can be shown [5] that 

f( 1) = 0, 

(4) f(n) = min {af(r) + pf(n-r) }. 
1erct-l-1 

where a 9 l-a-p>O and p 3  l-a-p>O. 

Since the extremum of a linear function on a polyhedron must occur 



at a vertex of the polyhedron [6], the only possible values a and fl can 
be (l,O), (0.1) and (1/3,1/3) of which (1/3,1/3) is the only nontrivial 
value. Thus in this case the value of r is always 4 2 .  One can then 
easily show by induction thatfln) = O(n'0g(2'3)). The recurrence (5) 
has been solved in a generalized form in [7]. 

2.3. ODtimum Lopsided Binarv n e e s  

Lopsided binary search trees with costs a and f3, respectively, on the 
left and right edges are encountered in various applications [8]. Such 
trees with weights a = fi =l are the normal binary trees, whereas with 
a =1, fi =2 correspond to the familiar Fibonacci trees. An important 
application of optimum lopsided trees is the construction of optimum 
prefii-free codes. When the alphabet consists of two letters (say 1 
and 0) with costs c1 and cz, the problem is modeled by lopsided binary 
trees with a =q and fJ = c ~ .  The optimum lopsided tree with n leaves 
gives the minimum-cost prefix-free code for n symbols occurring 
with uniform probability. 

Let T be a lopsided binary search tree with n leaves and let d(E), the 
weighted depth of a node E, bet the sum of the weights on the path 
from the root to the node E. The cost of the tree, C(T), is defined to 
be the max(d(E)) over all the leaves in T. Let t(n) be the worst-case 
optimum lopsided binary search tree, i.e., C(r(n)) = min (C(T)) over 
all possible trees T with n leaves. Clearly, the value of C(t(n)) is given 
by the recurrence 

f(n) = min {max{a+f(r), B+f(n-r)}}. ( 5 )  O u a  

where fi 3 a 3 0 and dfl is rational. 
We can view r(n) as being the result of a sequence of replacements 
of a leaf by an intemal node and two leaves as children, starting with 
an initially empty tree because the following is true. 

Claim 3: t(n) is obtained from t(n-1) by replacing a leaf with mini- 
mum cost in r(n-1) by an intemal node with two leaves as children. 
Proof: Follows easily from Claim 1. U 

When a=O, t(n- 1) has a leaf of depth 0 andt(n) is obtained by replac- 
ing this node. Hence when f3 5 a=O, fln) = p, the minimum possible 
cost. When a s ,  it follows from Claim 3 that every leafwill be placed 
eventually and An) will be if the form ia + jg for some i 3 0, j 5 1. 
The difficult recurrence (5) is solved indirectly by solving a simpler 
recurrence in aquantity that specifies the maximum number of leaves 
with a certain depth. Let a/@ = p/q where p and q are mutually prime 
integers. Then every integer k>pq can be represented as ip + jq, 
i >O, j 2 1. Thus for all k a p q ,  ak/p will be the depth of aleafin r(n) 
for some n. If Pk is the maximum number of leaves with depth ak/p, 
then Pk satisfies the recurrence 

Pk = Pk-p + P k q  (6) 

since leaves of depth ak/p are obtained by replacing leaves of depths 
a(k-p)/p and a(k-q)/p. In order to solve (6) we use the following 
result from [8,9] without proof. 

Claim 4; Let r be the root of largest magnitude of zq - z4-P = 1, where 
p and q are mutually prime integers. Then r is real and simple, 
lu S 2, and there is no other root of absolute value r. 

As a consequence of claim 4, we have Pk = crk+ o(& where c is some 
constant. Thusfor$~aa>O,itcanbeshown(af~somealgebraicma- 
nipulation) that 

f(n) = a(rlog,.(n+l)l-l+q-log,.(c/(r-l)) + o( 1). 

3. Our Minmax Recurrence Relation 

In the remaining part of this paper we derive and solve a challenging 
minmax recurrence that arises from a parallel divide-and-conquer 
computational model. Divide-and-conquer allows partitioning of a 
problem in (typically) two smaller instances of itself, and combining 
the partial results to get the final solution. Since these smaller 
instances can be recursively partitioned into even smaller sizes, the 
procedure reduces to solving minimal sized problems and recombin- 
ing their results. The divide-and-conquer paradigm is ideal for par- 
allel processing because the subproblems are mutually independent 
and can be executed concurrently in different processors. Unfortu- 
nately, the performance of any parallel divide-and-conquer algo- 
rithm is significantly affected by both architectural and algorithmic 
overheads that are inevitable in any parallel processing environment. 

The overheads can be broadly classified into two groups - the parti- 
tion overhead and the recombination overhead. The partition over- 
head typically includes interprocessor communication cost necessary 
for data distribution and result collection. On the other hand, the re- 
combination overhead results from the cost of combining the partial 
results. Conventionally, these overheads are neglected during the de- 
sign of algorithms. This leads to adhoc equal partitioning and nonop- 
timal performance of the divide-and-conquer technique on real- 
world parallel machines. 

The complexity of a parallel divide-and-conquer algorithm may be 
described by the following minmax recurrence 

T(n) = min (max{T(n-r), T(r)+kr}+)r}. (7) Ouen 

where T(n) is the complexity of a size n problem, kr is the partition 
overhead that depends upon the partition size, and A. is the constant 
recombination overhead. Note that (7) is hue for all problem sizes 
n 5 ng, where ng is some small problem size below which recursive 
partitioning is not employed and all problem sizes up to ng have same 
complexity equal to some predefined constant say b. The recurrence 
(7) is derived by noting that the execution of size r problem in one 
processor together with the interprocessor communication are car- 
ried out concurrently with the execution of problem size ri-r. The 
max function in (7) is due to the fact that the slower of these two tasks 
dominate. In order to ensure that the best possible partitions are cho- 
sen for proper optimization we use the min function. The minmax 
recurrence relation (7) can realistically model a wide range of com- 
mon applications. 



Note that the “ax recurrence (7) is different from the previously 
solved minmax recurrences (3), (4). and (5).  Both equations (3) and 
(4) did not involve any recursive maximization. Although equation 
(5)  is a true minmax recurrence, it is simpler than (7) because of the 
constant nature of a and p. Thus (7) is considerably more challenging 
and interesting than the previously solved recurrences. 

There are two main aspects related with minmax recurrences in gen- 
eral and (7) in particular that nee+ to be addressed. We are interested 
not only in the behavior of T(n) and the order of complexity, but also 
in the proper characterization of the optimal partition values for every 
problem size. 

3.1. Main Results 

Let S, denote the set of all the problem sizes n that have the same 
complexity T(n) = m. Denote the maximum of this set by q,. In other 
words qm’s are those problem sizes such that the complexity value 
necessarily changes atq,+ 1. For mathematical convenience assume 
that qm=qm-l when ISmI = 0. Recall that Rn denotes the set of all opti- 
mum partition sizes for a problem size n. Now we list some of our 
results. 

We begin by substantiating the intuitive belief that solving larger 
problems takes more time. 

Lemma 1: T(n) is a monotonically increasing function of n. 
Proofi (By induction over n). Recall that for n<ng, T(n)=to. For n=ng, 
r=l is optimal and thus T(ng) = t~ + k + A > T(% - 1). Assuming that 
the result is true up to certain n 3 ng, its truth for n+l can be estab- 
lished as follows. Let r denote the optimum partition size for problem 
size n+l, i.e., 

T(n+l) = max{T(n+l-r)+h, T(r)+kr+h] (8) 

If r=n, then T(n+l) = T(n) = kn + h > T(n). If r<n, note that 

T(n) S max{ T(n-r)+h, T(r)+kr+A} (9) 

Since the monotonicity is assumed for problem sues up to n, 
T(n-r)ST(n+l-r). Combining this with (8) and (9) gives 
T(n) S T(n+l) for r e  also. 0 

Now we characterize the set Rn. This seemingly formidable task is 
simplified by the following result that shows that the optimal parti- 
tion size is uniquely def ied  at special problem sizes q,. 

f’heorem I :  The optimum partition set Rqm = { qm - qm-i;]. 
Proofi For any PER,,, m = max{T(qm-p)+h, T(p)+kp+h]. The first 
term of the max yields T(qm-P) S T(qm-i;), implying from Lemma 1, 

P 2 qm-qm-k (10) 

Similarly, the second term of the max gives 
Now if P>qm - qm-k, then flm-P+1 S qm-1 or, T(qm-P+l) S m-h. 

T@)+kp+h S m 

Thus, in this case, 

T(qm+l) S ma~{T(q~+l-p)+A.T(p)+kp+h} S m ,  

a result contradicting the definition of qm. Therefore, p S qm - Tlm-k. 
U Combining this with (10) gives the desired result. 

Let r& = qm - qm-k. This partition size r, is important for two rea- 
sons. Firstly, rm is optimal for a large number of problems whose 
complexities satisfy some inequality. Secondly, it turns out to be the 
optimal partition size for all problem sizes in Sm. These to facts are 
illustrated in the following two results. 

Lemma 2: The partition size r, is optimal for problems whose com- 
plexity m satisfies 

T(r,)+krm+h S md‘(r,+l)+k(r,+l)+hr 

Proof: Follows from the definition of qm and Theorem 1. 

Theorem 2: For any nESm, the set of optimal partition sizes is given 

Proofi we first prove that any PER, is an optimal partition size for 
problem size nESm. The lower bound on p and the monotonicity of 
T(n) yields T(n-p)Sm-h, and the upper bound gives 
T(p)+kp+h S T(r&+kr,+A S m. Consequently, max{ T(n-p)+h, 
T@)+kp+h S m. However m = T(n). In other words max{ T(n-p)+A, 
T(p)+kp+h 3 m. Therefore any PER, is an optimal partition. 

by Rn = { p I n- qm-i;S p S rm}. 

Conversely, to prove that any p4 Rnis not an optimal partition we pro- 
ceed as follows. For any p>r,, one has p > r,+l . From Lemma 1 and 
Lemma 2, one gets T(n-p)+kp+bm. This implies that with such a 
p as partition size T(n)>m, clearly ruling out such a possibility. Simi- 
larly, if p a -  qm-1, then n-p2qm-k+l. Thus, in this case with such 
a p as a partition size T(n-p)>m-A, implying that T(n) will be greater 

U than m.Thus such a p is also ruled out. 

Theorem 2 has been used by the authors [lo] to design some optimal 
partition algorithms. The reader is referred to [ 101 for accompanying 
results. Such algorithms to compute the optimal partition size given 
any problem size, although vital, are omitted in this paper for brevity 
purposes. 

Conventionally, researchers ignore the effect of overheads in parallel 
divide-and-conquer and end up using the nonoptimal ad hoc n/2 
partitioning. Now we prove that n/2 is almost never an optimal parti- 
tion size when the overhead k is nonzero (as is true in all practical 
cases because k represents the inevitable interprocessor communica- 
tion overhead in parallel processing). 

Theorem 3; If k # 0 then $2 is never an optimal partition size for any 
problem size n>2(@). 
Proofi Suppose n is not an q. If n>2(@) and n/2&Rn, then clearly n/2 
is the largest element of R,. Further, since n is not an q. from Theo- 
rem 2, (n/2)-l~Rn as well. However equating the two expressions of 
T(n) with these two as partition sizes one gets 



But it can be easily shown that T(n+l)-T(n) h [lo]. Use of this 
fact in (11) contradicts the fact that n>2(W). Therefore n/24Rn. 
Now suppose n q m  Assume if possible q& is the optimal partition 
size for n. From Theorem 1 one then gets qm - qm-i = q&. Simple 
algebraic manipulation yields rm = qm-h. and T(qm) = m = max{ m, 
m+kqm-i]. However since k ;t 0 this cannot be correct. therefore 

0 q& is not an optimal partition size for problem size qm. 

The conclusion of Theorem 3 is that n/2 should never be arbitrarily 
used to parti-tion any moderately sized problem. A simple brute- 
force solution of (7) using r=n/2 at every step of the recursion yields 
T(n) = O(n), The following result shows that we can improve the or- 
der of complexity of T(n). 

Theorem 4: T(n) is of the order O ( d n ) .  
Proof: The proof of this result is long and involved. It is omitted in 
this paper for brevity purposes. The reader is referred to Chapter 3 
of the first author’s dissertation[ll] for the proof. 

The result of Theorem 4 shows that a proper partitioning strategy, as 
opposed to the arbitrary equal partitioning scheme, can reduce the 
complexity of a parallel divide-and-conquer computation consider- 
ably. 

4. Conclusions 

The major contribution of this paper is the solution of a challenging 
minmax recurrence relation. This minmax relation is derived from 
a model of parallel divide-and-conquer computations that incorpo- 
rates the unavoidable and significant parallel processing overheads. 

The minmax recurrence is solved by characterizing the properties of 
the optimal partition sizes. It is shown that the optimal partition size, 
given a problem size n, is nontrivial and very different from the ad 
hoc n/2 value taken conventionally. It is also shown that the complex- 
ity of the algorithm reduces from O(n) to O(Jn) by choosing the op- 
timal partition size instead of the equal partition size size at every 
stage of the recursion. 

The other contribution of this paper is a survey of some of the existing 
theory of minmax recurrence relations. We mention three interesting 
recurrences, how they are derived in the analysis of algorithms and 
how they are solved by various authors. 

References 

[ 11 M.L. Fredman and D.E. Knuth, ”Recurrence relations based on 
minimization,” J. of Math. Analvsis an ADpl ., 48,1974, pp 435-559. 

[2] R. Moms, ”Some theorems on sorting,”SIAM J. ApDh ‘ed Math., 
Vol. 17, NO. 1, January 1969, pp 1-6. 

[3] J.M. Hammersley and G.R. Grimmett, ”Maximal solutions of the 
generalized subadditive inequality,” in -hastic G e o m e u  E.F. 
Harding and D.G. Kendall eds., John Wiley, London, 1974, pp 
270-284. 

[4] C.J.K. BattyandD.G. Rogers,Somemaximalsolutionsofthegen- 
eralized subadditive inequality, SIAM J. Alp. Discrete Methods., 
Vol. 13, NO. 3, 1982, pp 369-378. 

[5] E.M. Reingold and R.E. Tarjan, On a greedy heuristic.for com- 
plete matching, SIAM J. C- . Vol. 10, No. 4, November 1981, 
pp 676-68 1. 

[6] G.B. Dantzig, Linear Prog&”bvZ and Extensions, Princeton 
University Press, Princeton, NJ, 1963, Chapter 3, page 154. 

[7] S. Kapoor and E.M. Reingold, ”Recurrence relations based on 
minimization and maximization,” J. Math. Analvsis and ApD l., 109, 
1985, pp 591-604. 

[8] S. Kapoor and E.M. Reingold, ”Optimum lopsided binary trees,’’ 
J. of the ACM, Vol. 36, No. 3, July 1989, pp 573-590. 

[9] M.D. Wagh and G. Bakdash, ”Optimality in parallel divide-and- 
conquer algorithms in the presence of overheads,” in review. 

[ 101 A. Saha and M.D. Wagh, ”Optimal partition algorithms for par- 
allel divide-and-conquer computations,” 1991 hoc. o f the Int’l 
Conf. on Parallel Processirg, St. Charles IL, pp 75-82. 

[ 111 A. Saha, ”Design and analysis of parallel recursive computations 
in the presence of overheads,” Ph.D. Dissertation, Chapter 3, pp 
39-45. 

We note that the current knowledge of researchers in this field is not 
mature enough to enable establishing general solution techniques. 
Hence minmax recurrences are mostly solved in a case-by-case basis 
with not much commanality between different solution methods. Our 
solution of a minmax recurrence relation in this paper will hopefully 
enrich this field and help others to solve such problems in future. 


