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Fast Algorithm for Modulated
Complex Lapped Transform

Xingdong Dai and Meghanad D. Wagh

Abstract—A new algorithm for the modulated complex lapped
transform (MCLT) with a sine windowing function is presented. It
is shown that by merging the windowing operation with the main
computation, both the real and the imaginary parts of the MCLT
with � inputs can be obtained from two -point discrete co-
sine transforms of type II (DCTs-II) of appropriate inputs. The
resulting algorithm is computationally very efficient. In general,
the value of is an even number. When is a power of 2, the
proposed algorithm uses only ��� � � real multiplications
(including the scaling factors in the DCT computation), with none
of those being outside the DCT blocks.

Index Terms—Audio coding, fast algorithm, modified discrete
cosine transform, modified discrete sine transform, modulated
complex lapped transform.

I. INTRODUCTION

T HE modulated complex lapped transform (MCLT) is
structured as a cosine-/sine-modulated filter bank that

maps overlapping blocks of a real-valued signal into blocks of
complex-valued transform coefficients [1]. It is a special form
of a two times oversampled discrete Fourier transform (DFT)
filter bank to perform frequency decomposition. Since the
reconstruction formula of the MCLT is not unique, the MCLT
allows more flexible implementations of audio enhancement
and encoding systems than the DFT. Recent MCLT applications
include acoustic echo cancellation [1] and audio watermarking
[2] by using the phase information from the imaginary coeffi-
cients.

The -point MCLT of a -point input sequence is
defined as [1]

where the real and imaginary parts of the MCLT kernel are,
respectively, defined as

(1)
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Function in (1) is the windowing function. The most
common choice for is the sine windowing function

(2)

which is used in many audio coding applications including
MPEG-1/2 layer III (MP3) since it permits a perfect recon-
struction [3], [4], [6].

The real part of MCLT is the forward/direct modulated lapped
transform (MLT) [3], which is used to implement transform
coding in video and audio compression applications [5]. The
MLT represents the perfect reconstruction cosine-modulated
filter bank based on the concept of time domain aliasing can-
cellation (TDAC) [6]. The MLT has also been referred to as the
oddly stacked modified discrete cosine transform (MDCT) [6],
[7]. Similarly, the imaginary part of MCLT is the oddly stacked
modified discrete sine transform (MDST). However, following
[8], we use in this letter rather the MDCT to refer to the MLT
without a windowing function. The calculation of MLT often
involves scaling the input by applying the windowing function
and then using a fast MDCT algorithm based on either FFT or
the DCT with appropriate pre-and post-permutations [8]–[10].
Computational efficiency of the MLT can be improved by
combining the windowing function with the MDCT [3], [9],
[11], [12].

The original sequence can be recovered from MCLT
by using either its real or the imaginary part, or both [13]. If
only the real part is used, the inverse transform is the same as
the inverse MLT (IMLT) which has been studied in detail [3].
Here we focus on fast algorithm for the forward/direct MCLT
where both real and imaginary parts are required.

As a complex extension of the MLT, the MCLT shares many
fast algorithms with MLT. Malvar has shown that the real part of
the MCLT with arbitrary windowing function can be obtained
from a discrete cosine transform of type IV (DCT-IV) and the
imaginary, from a discrete sine transform of type IV (DST-IV)
[1]. However, the computational complexity is affected by ap-
plying the windowing function to the input before using the
DCT-IV or DST-IV. Later, FFT-based MCLT algorithms have
been developed that merge a sine windowing function [13], [14]
with the main computation to improve the computational effi-
ciency. Another recently proposed MCLT algorithm applicable
to arbitrary but symmetric windowing function uses two DCTs
of type II (DCTs-II) to compute the real and imaginary parts
of the MCLT separately [15]. However, this algorithm employs
permutation stages with nonconstant multiplications outside the
main computation module limiting its efficiency. An improved
version of the MCLT algorithm [15] can be found in [20].

This letter focuses on MCLT computation with a sine win-
dowing function merged with the main computational modules.
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Our algorithm for the -point MCLT is based on the evenly
stacked MDCT and the corresponding MDST, each with in-
puts and outputs. The real and complex parts of the MCLT
can be obtained by adding the outputs of these evenly stacked
MDCT and MDST. This allows one to use any algorithm for
the evenly stacked MDCT and MDST in MCLT computation
with a sine window function. We further show that the evenly
stacked MDCT and MDST may be computed with two -point
DCTs-II of appropriately folded input sequences. This results in
a simple derivation of a new MCLT algorithm with lower com-
putational complexity than almost all the algorithms available
today.

II. PROPOSED ALGORITHM

Recall that the real and imaginary parts of the MCLT are
the oddly stacked MDCT and MDST, respectively. When one
applies the windowing function separately, the oddly stacked
MDCT and MDST can be computed through evenly stacked
MDCT and MDST [16]. We apply a similar strategy directly
to the MCLT with a sine windowing function. For this purpose,
we use the intermediate transforms with input and
output points defined as

(3)

(4)

. Note that (3) and (4) describe the evenly stacked
MDCT and corresponding MDST [4], [16], respectively, with a
constant scaling factor.

One can show that the transforms given by (3) and (4) are
related to the DCT-II when is an even integer. To convert
evenly stacked MDCT into an -point DCT-II, note that in the
computation of (3), samples and
for are multiplied with the same cosine term

. Similarly, the samples and
for are also multiplied with the

same cosine term, . Further, as goes
over the stated ranges, the sample indices of span the
entire range from 0 to . To take advantage of this, define
a sequence as

(5)
It is then obvious that

(6)

Thus, for , evenly stacked MDCT of the
sequence is the same as the -point DCT-II of the
sequence except for a constant multiplication factor

. Therefore, transform coefficients can be

computed using any available DCT-II algorithms [17], [18]
without incurring additional computational penalty except for
one multiplication. Further, (6) also shows that

(7)

Evenly stacked MDST can also be related to the DCT-II in
a similar way. In the definition (4), samples and

when as well as
and when are all multi-
plied with the same sine term, . Again,
the indices of these four terms span the entire input index
range, 0 to , when goes over the specified ranges. To
take advantage of this, define the sequence as

(8)
One can then see that

(9)

Equation (9) shows that except for the scaling factor
, evenly stacked MDST is converted to the -point

discrete sine transform of type II (DST-II) and can be obtained
using any available algorithm for the DST-II [18]. However,
since we are already using the DCT-II for the computation of

, we prefer to use the same for computation of
as well. For this, we employ an approach similar to that of [19].
Define a new sequence as

(10)

Then (9) can be then rewritten as

(11)

Equation (11) shows that when , except for
the constant multiplication factor , the th coefficient

is the same as the th coefficient of the -point
DCT-II of . As before, coefficients can be
computed using any available DCT-II algorithm with at most
one additional multiplication. Equation (11) also shows that

(12)

In the following two subsections, we show that the real and
imaginary parts of the MCLT can be obtained directly from

and . This then allows us to compute MCLT from
the DCTs-II of and .
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A. Real Part of the MCLT

The real part of the MCLT kernel given by (1) with
the sine windowing function given by (2) can be simplified to

where

Using trigonometric identities, and can be simplified to

From these expressions, one can obtain the real part of the
MCLT of the sequence as

(13)

B. Imaginary Part of the MCLT

The imaginary part of the MCLT can also be computed
through and . The imaginary part of the MCLT
kernel given by (1) with the sine windowing function
(2) can be expressed as

where

Using trigonometric identities, and can be simplified to

The imaginary part of the MCLT of the sequence is
then obtained as

(14)

C. New MCLT Algorithm

The above discussion leads to the following MCLT algorithm.
• Create sequences and using (5), (8), and

(10). This step requires additions.
• Compute the DCT-II of and using any

of the fast DCT-II algorithms. For example, when is
a power of 2, one may employ the procedure of [17] to
compute each DCT-II in multiplications and

additions. The algorithm in [17]
recursively partitions the DCT-II into two DCTs-II of half
size. Denote them by and . The input for

is obtained by folding the input sequence, and its
output gives the even-indexed DCT-II components. The
input for is obtained by folding the input sequence
and then multiplying each component by a proper cosine
term. A linear combination of output gives the odd-
indexed DCT-II components. The DCT-II output can be
scaled by a constant factor [see (6) and (11)] by
combining this factor with the multipliers applied to create
the input of . This gives scaled odd-indexed DCT
components without increasing the multiplication count.
Since the algorithm of [17] is recursive, the same process
can be used repeatedly every time is partitioned to
scale half of its outputs. Thus, the only extra multiplica-
tion needed to scale all the components of the DCT-II is
the multiplication used to scale the 0th DCT-II compo-
nent. Two DCTs-II with the scaling factor as required in
(6) and (11) can be computed in multipli-
cations and additions. If the scaling
factor in DCT-II calculation is ignored as in [20], then the
scaled DCTs-II require only multiplications. The
scaled DCTs-II of and provide values of

and for from relations (6),
(7), (11), and (12).

• Finally, to obtain the MCLT coefficients, first compute

and the real and imaginary parts of MCLT are obtained
from (13) and (14) as

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on December 13, 2008 at 17:19 from IEEE Xplore.  Restrictions apply.



DAI AND WAGH: FAST ALGORITHM FOR MODULATED COMPLEX LAPPED TRANSFORM 33

Fig. 1. Proposed algorithm for the 2N-point MCLT. The filled circles indicate
additions and the dotted lines show negations of operands. The top DCT pro-
duces � ���� � � � � � and the bottom DCT produces � ���� � � � � �

in reverse order.

TABLE I
COMPLEXITIES OF VARIOUS FAST MCLT ALGORITHMS FOR LENGTH � � �

This step requires additions, ignoring the trivial
additions by and , each of which is 0.

Thus, we can obtain the MCLT in if the
scaling factor in DCT-II calculation is ignored) real multiplica-
tions and real additions.

The flow chart of the algorithm is shown in Fig. 1.

III. DISCUSSION AND CONCLUSION

This letter shows that by merging the windowing operation
with the MCLT computation, both the real and imaginary parts
of the MCLT can be computed from the same two -point
DCTs-II. Table II compares the computational complexity of
our algorithm to those of [1], [3], [15], and [20].

One can see from Table I that when is a power of 2, our
algorithm and that of [20] have the smallest number of multipli-
cations amongst all algorithm available in literature. However,
unlike [20], our algorithm exploits the relationship between the
MCLT with a sine windowing function and the evenly stacked
MDCT/MDST. This places our MCLT algorithm in a unique po-
sition to take advantage of any new developments in the evenly
stacked MDCT and MDST computation.

When the evenly stacked MDCT and MDST are computed
using the DCT-II as shown here, one may employ any efficient
DCT-II software or hardware modules. For example, by using a
bilinear algorithm for DCT-II, one can get a bilinear algorithm
for the MCLT which can result in a very fast implementation

in VLSI. Most other algorithms use multiplications outside the
main computational blocks of DCT and therefore cannot have a
bilinear structure.

Finally, it should be mentioned that this letter extends the
results of [16] to show that the oddly stacked MDCT/MDST can
be computed through the evenly stacked MDCT/MDST even in
the presence of a merged sine windowing function.
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