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sented in Table II. It is seen that for the same specified error 
probabilities the ASN for the sequential algorithm is about half 
that of the Bayes algorithm. 

V. EXPERIMENTAL RESULTS 

To verify experimentally the performance of the two algo- 
rithms, signals from a noise generator (HP 3722A) were used. 
The generator settings were as follows: mode-infinite, band- 
width-l.SkHz, and RMS value-0.3V. The record length of 50 
seconds was digitized (12 bit A/D) and stored on disc using a 
PDPl l/40 minicomputer. The sampling rate used was 1 kHz to 
ensure independent samples. The two algorithms were then 
simulated on the PDP11/40 minicomputer in the BASIC lan- 
guage. For both B and e2 the hypotheses were chosen as in (38) 
and (39). 

To generate the different hypotheses, the digitized signal was 
broken up into five sections {Se, S,, S,, Ss, S,} each 10 000 
points long. The appropriate 0 was then added to each section, 
i.e., {so+eo,... , S, + 0,) was formed, or in the case of u2 each 
section was multiplied by the appropriate factor, i.e., 
{GS,,~ . . ,K&} was formed. The different sections were then 
applied to the two algorithms. Table II shows the final results for 
the average number of samples required to make a decision and 
confirms the analytical results for the ASN. 

VI. CONCLUSIONS 

A sequential multiple hypothesis test for the unknown param- 
eters of a  normal distribution has been developed. Since the 
problem considered is fairly common the results should find 
applications in many different fields. Analytical expressions are 
obtained for the average sample number and error probabilities. 
As far as the authors are aware this is the first mary sequential 
algorithm for which the performance has been found analyti- 
cally (at least for m  > 3). It is shown that the ASN for the end 
hypotheses ii,-, and ii,,-, is approximately equal to the ASN for 
an optimal binary algorithm. The dependence of ASN for the 
middle hypotheses 5 on the number of hypotheses m  is slight. 
Also, for decreasing error probabilities (Y and /3, 5  tends asymp- 
totically (from above) to the value fi,, (which as mentioned is 
close to the ASN for the binary case). The error probabilities are 
the same for the end hypotheses as in the binary case. The 
principle difference (in terms of performance) between the bi- 
nary case and mary case is that the error probabilities are 
approximately doubled for the middle hypotheses of the mary 
case. In terms of the ASN this is equivalent to increasing i$ by 
about 20 percent. A comparison with a Bayes algorithm shows 
that the algorithm described here provides a gain (in terms of 
sample size) of a  factor of approximately two. Experimental 
results obtained for the performance agree closely with the 
analytical results. The sequential mary algorithm developed here 
represents a natural generalization of the binary sequential test 
to an mary one. For m  =2 this algorithm reduces to the known 
optimal algorithm. 
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Interpolation of Data from Redundancies in Fourier 
Transforms over Finite Abelian Groups 

SHARAD V. KANETKAR AND MEGHANAD D. WAGH 

Absrmcr-It is shown that if the Fourier transform over an Abe&n 
group G  of a sequence is zero except over a set of co& representatives of 
asu~upH’cG,thenthesequencecanbeeasilyreconstructedfromits 
vaIues over a subgroup H c G  related to H’. 

I. INTRODUCTION 

Given a sequence x of N = n,n2. . . n, components and a finite 
Abelian group G- C”, X C+ X . . . x C,,, C,,, being a cyclic group 
of order n, and generator a,, one can relabel the sequence 
component x(i) as x8, where i (0 Q i <N - 1) and g (E G) are 
related uniquely by 

i=i,nzn~...n,+izngn,...n,+... +r,-,n,+r,, 

O<i,<n,- 1, 1 <t <r. 
The Fourier transform with respect to G of x,,g E G, is defined 
as a sequence X,,, h  E G, given by 

A= x d%h(k+g~ hEG, 
g=G 

where &,(g) is the image of g  under the homomorphism +, from 
G into the multiplicative group of nonzero complex numbers. 
Note that the isomorphism of the multiplicative group of such 
homomorphisms with G allows one to label them with the group 
elements. The N X N transform kernel matrix M  given by 
M(h,g)=&,( g), g,h E G, is in fact the character table of G. The 
inverse transform is given by 

where the asterisk denotes the complex conjugate. In this corre- 
spondence, the transforms of sequences are uniformly denoted 
by corresponding capital letters. 
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Many of the transforms found useful in digital signal process- 
ing are Fourier transforms over finite Abelian groups. If G = C,, 
the resultant transform is a discrete Fourier transform (DFT); 
for G=C,XC,X..- XC,, it is a Hadamard transform (HT); 
and for G=C,XC,X*.* x C,, it is the reordered Chrestenton 
transform. In general, the transform with respect to G-C,,, X C,,, 
x . . . x C,,, has as a kernel a Kronecker product of the Fourier 
matrices of orders n,, n,, . . . , n,. 

Various properties of Fourier transforms with respect to G 
were discussed earlier by Nicholson [I], Apple and Wintz [2] 
Karpovsky [3], and Kanetkar and Wagh [4], among others. In 
particular, a convolution of y,,t,, g E G, is a sequence w,,, h E G, 
defined by 

wh= 2 Yg=h-g, hEG, 
L%EG 

and denoted by w=ymz. It is known that if w=y@, then 

w, = Y*.Zg, gEG. 

In this correspondence we study a discrete analog of the 
reconstruction of a uniformly sampled bandlimited signal 
through a procedure which is well-known in the continuous 
signal domain. In the case of a continuous signal with frequen- 
cies between -B and + B, it is sufficient to sample it uniformly 
at the rate of 2B samples per unit time. The original signal can 
be reconstructed from the sampled version by placing the sine 
functions of appropriate parameters (which depend on the value 
of B) and amplitudes (which depend on the sample value) at the 
sample points and then summing them. We show correspond- 
ingly that if the Fourier transform with respect to G of a finite 
sequence is restricted to a set of coset representatives, then it is 
possible to obtain the entire sequence from a few of its compo- 
nents in a similar fashion. 

II. MAINRESULT 

Given a subgroup H c G, the set 
H’={h’~Gl+,Jh)=l,allhEH} 

is a subgroup of G and H’E G/H. We denote the set of coset 
representatives of H’ in G  by B. 

Lemma I: [I#$( g)], g E B, h E H, is the character table of H. 

Proof It is sufficient to prove that A = [$(h)], g E B, h E H, 
is the character table of H. Obviously each row of A is a 
character of H. Further, no two rows of A are identical because 
if 

+g,(h) =q2(hh all hEH, 

then 

$,-g2(h)= 1, all h E H. 

This implies g, - g, E H’, hence g, = g, because g,,g, E B, the set 
of coset representatives of H’. Thus the 1 H 1 rows of A are all the 
distinct characters of H and A is the character table of H. 

Q.E.D. 

We now show how to compute a sequence zg, gE G, which 
vanishes over the nonzero elements of H, i.e., z,, = 0 if h E H and 
h#O. 

Lemma 2: Let 

2,=lGl/lHL ifgEB, 
=o, otherwise, 

then the inverse transform satisfies 
z*= 1, if h=O, 

=o, if O#hEH. 

Proof: 

The result then follows from Lemma 1. Q.E.D. 
Lemma 3: If rs, g E G, and its transform Rg, g E G, satisfy 

r9=0, if gEH, 

and 
R,=O, ifgBB, 

r+=O, forgEG. 
Proof: For h E H, 

Since the matrix [$$( g)], g E B, h E H, is invertible (from Lemma 
1) and the vector on the left side is zero, $ = 0, for g E B. This 
means R,=O, for gE G, from which the required result follows. 

Q.E.D. 
Theorem I: If xg is known over H and Xg = 0, g B B, then xs 

can be constructed fully as y@z, where z is the sequence in 
Lemma 2 and 

Yg = xg’ gEH, 
=o, otherwise. 

Proof Let 2 =y@z. Then 

But when h E H, h-g E H, and therefore from Lemma ,2, zheg 
vanishes except for h - g = 0. Thus .?,, = xh, if h E H, and Xp = Yg* 
Zg = 0, g @  B. The result f = xg, for g E G, now follows directly 
by applying Lemma 3 to the sequence rg = Zg - xg, g E G. Q.E.D. 

From the theorem, the sequence x satisfying Xg = 0, g B B, can 
be generated from its values over H by the following method. 

i) Compute the sequence z as in Lemma 2. 
ii) x is obtained as a weighed sum of 1 H 1 shuffled versions of 

z. Corresponding to each h E H, the shuffling is zg++,h-p 
and the weighing factor is x,. 

For example, in the case of a DFT of length 16 (which is a 
Fourier transform with respect to Cl6 = (a)), if the only nonzero 
components of X are X(O), X(l), X(14), and X(15) (correspond- 
ing to B= {O,a, 14a, 15a}), the complete sequence x can be 
generated from x(O), x(4), x(8), and x(12) (corresponding to 
H = (4a) = {0,4a, 8a, 12a)) as follows. 

i) For the given B, z(i)=(l+ w’+ w’~~+ w15’)/4, where w is 
a sixteenth primitive root of unity. 

ii) x(i)=x(O)-z(-i)+x(4)-z(4- i)+x(8)*z(8-i) 
+x(12).=(12-i), 

where the indices are evaluated modulo 16. 
Note that for any given proper subgroup H c G, B is not 

unique. This increases the probability of the transform being 
restricted to some B, thus improving the applicability of the 
technique under discussion. For example, in the above case, 
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there are 44 different sets B defined by B = { i,,a,i,a, i,a,i,a}, sum of shifted sine functions. The weighing constants in both 
where i,rt (mod4), t=O,1,2,3. cases are the known signal samples. 

The reconstruction procedure described here is analogous to 
the construction of a  bandlimited signal from its samples. The 
restriction of the transform energy in our case to the set B PI 
corresponds to the bandlimitedness in the continuous domain. 
The z sequence which depends only on the set B corresponds to 

121 

the sine function used in the continuous domain. The sine also 
depends only on the bandwidth. Finally, our reconstructed f31 
sequence is a weighed sum of shuffled z sequences. Analogously, 
in the continuous domain, the reconstructed signal is a  weighed 

L41 
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