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Abstract—This paper obtains all the automorphisms of a
wrapped butterfly network of degree n using an algebraic
model. It also investigates the translation of butterfly edges
by automorphisms. It proposes a new strategy for algorithm
mappings on an architecture with faulty edges. This strategy
essentially consists of finding an automorphism that would map
the faulty edges to the free edges in the graph. Having a set of
n2n+1 well defined simple automorphisms which translate graph
edges deterministically, makes this a very powerful technique
for dealing with edge faults. We illustrate the technique by
mapping Hamilton cycle on the butterfly under various edge
fault scenarios.

I. INTRODUCTION

Last few decades have seen rapid development of the semi-
conductor technology resulting in faster computing devices.
However, during the same period, the need for computing
resources has increased much faster. As a result, parallel
machines with many processors working simultaneously on
the same problem have become a necessity.

Unfortunately, the speed of data transfers between co-
operating processors has not kept pace with the increase
in the computing speed. Consequently, the performance of
distributed memory parallel machines is often governed by
the underlying interconnection networks. The choice of the
interconnection network also affects other key characteristics
of the system such as the ease of algorithm development,
reliability, scalability and complexity of physical layout. These
networks can be modeled as graphs whose nodes represent
processors, and edges, the communication paths between them.
Hypercubes, butterflies and meshes are some of the popular
graphs on which many of the existing parallel machines are
based [1].

The wrap-around butterfly network represents a good trade-
off between the cost and the performance of a parallel ma-
chine. It has a large number of processors, fixed node degree,
low diameter, symmetry, and ability to support a variety of
parallel algorithms. Cube Connected Cycles is a sub-graph of
Bn [2]. Other extensions of Bn are also available [3, 4]. Bn

supports many parallel algorithms efficiently [1, 5–11].
Let Zn denote the group of integers {0, 1, . . . , n−1} under

the operation of addition modulo n and Zn
2 , the group of

binary vectors of length n under the operation of modulo 2
addition. Then the wrapped butterfly graph Bn, n ≥ 3, is
defined to have n2n nodes, each labeled with a pair (m,V )
where m ∈ Zn and V ∈ Zn

2 . A node (m,V ) is connected to
four distinct nodes: (m+1, V ), (m+1, V⊕2m), (m−1, V ) and

(m−1, V ⊕2m−1). Note that the third and the fourth edges are
inverses of the first and the second edges respectively. Thus
the edges of a wrapped butterfly are bidirectional. The first
index m of the node (m,V ) is often called its column and the
second index, V , its row.

With the advances in the VLSI technology, it is now possible
to build parallel machines with a large number of processors.
However, larger the machine, higher is the probability that one
or more of its processors or links will develop a fault. Thus,
for the underlying networks of these large machines, mappings
of algorithms on faulty graphs becomes an important design
issue.

Previous results about mappings on faulty butterflies include
one by Vadapalli and Srimani who have shown that in Bn,
there exists a cycle of length at least n2n − 2 with one faulty
node and n2n − 4 with two faulty nodes [12]. Later, Tsai et
al., improved this to show that for odd n, cycle length n2n−2
is possible with two faulty nodes [13]. They also proved that
in the presence of one faulty node and one faulty edge, there
exists a cycle of length n2n − 2 when n is even and n2n − 1
when n is odd. Hwang and Chen have shown that the maximal
cycle of length n2n can be embedded in a faulty butterfly even
with two edge faults [14]. However, these studies have used
the binary representation of the butterfly resulting in rather
complex mappings.

This paper proposes a new approach to mappings on faulty
butterflies using an algebraic model first given in [11]. We
show that with this model, it is rather simple to obtain all the
automorphisms of the butterfly. Automorphisms can be used to
translate an algorithm mapping to one that avoids node faults.
For example, an algorithm mapping can avoid a faulty node
Nfaulty by using a free node Nfree (assuming one exists) and
an automorphism φ(·) of the interconnection graph such that
φ(Nfree) = Nfaulty . By remapping tasks on each node N to
node φ(N), one can run the algorithm entirely on fault free
nodes. Automorphisms have also used to obtain better VLSI
layouts of butterfly networks [15, 16].

We explore the edge transformations in butterfly networks
due to automorphisms. This allows one to map algorithms
onto butterfly machines with edge faults. As an example, we
show that a butterfly Bn supports a Hamilton cycle even when
it has up to 2n faulty edges of the same type (to be defined
later) in each column except one. As a corollary, one can show
that Bn is Hamiltonian with up to n − 1 random edge faults
distributed one per column. Our procedure allows one to map
the Hamilton cycle on to the faulty butterfly easily and directly.
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The simplicity of the automorphism and the resultant edge
mappings show promise of wide applicability of this technique
to a variety of applications.

II. AN ALGEBRAIC MODEL OF THE BUTTERFLY

Binary representation has been widely used to model many
common interconnection networks including the butterfly.
However, binary models are difficult to analyze and complex
to use. In this paper we will use an algebraic model using
direct product of finite fields and cyclic groups, first given
in [11]. The simplicity of the model and access to powerful
algebraic techniques allows us to explore the automorphisms
of the butterfly with relative ease.

In the butterfly model of [11], nodes of Bn are labeled
with pairs (m,X), m ∈ Cn, X ∈ GF (2n), where Cn

is the cyclic group of integers 0 through n − 1 under the
operation of addition modulo n and GF (2n) is the finite
field of 2n elements. Let α denote the primitive element of
GF (2n) and 〈βn−1, βn−2, . . . , β0〉, its dual basis. The node
connectivity of graph Bn can then be described through an
algebraic relationship. In particular, a vertex (m,X) of Bn is
connected to the vertices (m+ 1, αX), (m+ 1, αX + βn−1),
(m−1, α−1X) and (m−1, α−1X+β0). For convenience, We
refer to these four edges as f , g, f−1 and g−1 respectively.
It is easy to verify that if edge f goes from node N1 to N2,
then the edge that goes from N2 to N1 is f−1. The same
observation is also true for g and g−1. The simplicity of
this model should be apparent from the fact that the two
components of the destination of (m,X) are independent.
On the other hand, in binary representation, the destination
of (m,V ) is (m + 1, V ⊕ 2m), where, as one can see, the
second coordinate is a function of both m and V , the two
coordinates of the source. For the proof and examples of the
algebraic model, reader is referred to [11]. For later reference,
we provide the relationships between the elements of GF (24)
used in the definition of B4 in Table I.

TABLE I
STRUCTURE OF GF (24).

Primitive Polynomial: x4 + x + 1
Elements and their Relationships:

0 α7 = α3 + α + 1
1 α8 = α2 + 1
α α9 = α3 + α
α2 α10 = α2 + α + 1
α3 α11 = α3 + α2 + α
α4 = α + 1 α12 = α3 + α2 + α + 1
α5 = α2 + α α13 = α3 + α2 + 1
α6 = α3 + α2 α14 = α3 + 1

Dual Base 〈β3, β2, β1, β0〉 = 〈1, α, α2, α14〉.

For the purpose of this paper, one need not worry about the
dual basis elements, except that they are constants satisfying
the properties given in the following Lemma.

Lemma 1: Let 〈βn−1, βn−2, . . . , β0〉 denote the dual base
of GF(2n). Then

βi =
{
αβ0 if i = n− 1
αβi+1 + pi+1βn−1 if i = 0, 1, . . . , n− 2,

where α is the primitive element of the field and pi is the
coefficient of xi in the primitive polynomial used to generate
the field.
Proof. Omitted for brevity.

III. AUTOMORPHISMS OF THE BUTTERFLY NETWORK

Wagh and Guzide have previously shown that the algebraic
model allows efficient mappings of cycles of all (possible)
lengths and trees of largest sizes on the butterfly [11]. We now
explore the automorphisms of butterfly in the same setting.

We first give the following lemma which relates the edges
in a column to edges in any other column.

Lemma 2: (connectivity) Let Km,Km+1 ∈ GF (2n) be
related as Km+1 = αKm or Km+1 = αKm + βn−1. For any
X,Y ∈ GF (2n) and t ∈ Zn, if nodes (m,X) and (m+1, Y )
are connected in Bn, then so are the nodes (m+ t,X +Km)
and (m+ 1 + t, Y +Km+1).
Proof. The presence of the edge (m+t,X+Km) → (m+1+
t, Y +Km+1) can be proved by showing that Y +Km+1 =
α(X +Km) + cβn−1 for some c ∈ {0, 1}. Since (m,X) →
(m+ 1, Y ), the connectivity of Bn gives Y = αX + c′βn−1

for c′ ∈ {0, 1}. Further, the given constants Km and Km+1

are related as Km+1 = αKm + c′′βn−1, where c′′ ∈ {0, 1}.

Therefore Y +Km+1 = α(X +Km) + (c′ + c′′)βn−1.

The connectivity specified by Lemma 2 can be used to
obtain the automorphisms of the butterfly network as shown
in Theorem 1.

Theorem 1: If constants K0,K1, . . . ,Kn−1 ∈ GF (2n)
satisfy

Ki =
{
αKi−1 or αKi−1 + βn−1, if 0 < i ≤ n− 1,
αKn−1 or αKn−1 + βn−1 if i = 0,

then function φ(·) : Bn → Bn defined as

φ((m, X)) = (m+ t, X +Km) (1)

for any t ∈ Zn, is an automorphism of Bn, i.e., it maps nodes
of Bn to nodes and edges to edges.
Proof. The fact that φ(·) maps edges to edges is clear from
Lemma 2. To prove that it is an automorphism we only have
to show that it is a one-to-one and onto mapping.

Let φ(m,X) = φ(m′,X ′), then from the definition of φ(·),
(m+ t,X +Km) = (m′ + t,X ′ +Km′).

From the first components of the two pairs, m = m′. From
the second components, X +Km = X ′ +Km which implies
that X = X ′. Thus two distinct nodes cannot have the same
image under φ(·), i.e., φ(·) is one-to-one.
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Now consider any node (m′, Y ) ∈ Bn. It is easy to see that
this node is the image of (m′− t, Y +Km′−t). Therefore φ(·)
is onto.

Note that constant t merely translates edges in one column
to a column t away. As Theorem 1 shows, this t and constant
elements Ki ∈ GF (2n), 0 ≤ i < n fully define the
automorphism φ(·). We will henceforth refer to t as the column
offset and Kis as the automorphism offsets,

One can see the simplicity of the automorphism φ(·) defined
in (1). Every node in the network is applied the same column
offset and every node in the same column is applied the
same automorphism offset. Further, the offsets of the two
coordinates of a node label are independent. This makes use
of such an automorphism especially attractive.

Theorem 1 allows one to design such an automorphism
under various conditions. For example, suppose one wants
an automorphism such that for a given pair of nodes N1 =
(a, U), N2 = (b, V ) ∈ Bn, the automorphism maps N1 to
N2, i.e.,

φ(N1) = N2. (2)

(If we can do this for an arbitrary pair of nodes, it would
imply that Bn is a symmetric network.) Such a mapping can
be obtained by choosing a column offset t and automorphism
offsets K0,K1, . . . ,Kn−1 ∈ GF (2n) satisfying condition in
Theorem 1) and then defining φ as in (1). Note that the
relations between Kis provide certain flexibility in the choice
of the constants. We exploit this flexibility to ensure that (2)
is satisfied.

Let us rewrite the relations between Kis as

Ki = αK(i−1) mod n + ciβn−1, 0 ≤ i ≤ n− 1, (3)

where each ci is either 0 or 1. One can use (3) repeatedly to
express any individual automorphism offset as

Ka = αK(a−1) mod n + caβn−1

= α2K(a−2) mod n + (c(a−1) mod n α+ ca)βn−1

= α3K(a−3) mod n +
(c(a−2) mod n α2 + c(a−1) mod n α+ ca)βn−1.

Proceeding in this fashion, one gets

Ka = αn Ka + (
n−1∑
j=0

c(a−j) mod n αj)βn−1,

or

Ka = (1 + αn)−1(
n−1∑
j=0

c(a−j) mod n αj)βn−1. (4)

Further, if φ((m, X)) = (m + t, X + Km), then to satisfy
(2) requires that

t = (b− a) mod n and

Ka = U + V. (5)

TABLE II
AUTOMORPHISM φ(·) : B4 → B4 SUCH THAT φ(3, α14) = (1, α2).

(m, X) φ(m, X)
(0, 0) (2, α3)
(0, 1) (2, α14)
(0, α) (2, α9)
(0, α2) (2, α6)
(0, α3) (2, 0)
(0, α4) (2, α7)
(0, α5) (2, α11)
(0, α6) (2, α2)
(0, α7) (2, α4)
(0, α8) (2, α13)
(0, α9) (2, α)
(0, α10) (2, α12)
(0, α11) (2, α5)
(0, α12) (2, α10)
(0, α13) (2, α8)
(0, α14) (2, 1)
(1, 0) (3, α4)
(1, 1) (3, α)
(1, α) (3, 1)
(1, α2) (3, α10)
(1, α3) (3, α7)
(1, α4) (3, 0)
(1, α5) (3, α8)
(1, α6) (3, α12)
(1, α7) (3, α3)
(1, α8) (3, α5)
(1, α9) (3, α14)
(1, α10) (3, α2)
(1, α11) (3, α13)
(1, α12) (3, α6)
(1, α13) (3, α11)
(1, α14) (3, α9)

(m, X) φ(m, X)
(2, 0) (0, α5)
(2, 1) (0, α10)
(2, α) (0, α2)
(2, α2) (0, α)
(2, α3) (0, α11)
(2, α4) (0, α8)
(2, α5) (0, 0)
(2, α6) (0, α9)
(2, α7) (0, α13)
(2, α8) (0, α4)
(2, α9) (0, α6)
(2, α10) (0, 1)
(2, α11) (0, α3)
(2, α12) (0, α14)
(2, α13) (0, α7)
(2, α14) (0, α12)
(3, 0) (1, α13)
(3, 1) (1, α6)
(3, α) (1, α12)
(3, α2) (1, α14)
(3, α3) (1, α8)
(3, α4) (1, α11)
(3, α5) (1, α7)
(3, α6) (1, 1)
(3, α7) (1, α5)
(3, α8) (1, α3)
(3, α9) (1, α10)
(3, α10) (1, α9)
(3, α11) (1, α4)
(3, α12) (1, α)
(3, α13) (1, 0)
(3, α14) (1, α2)

By combining (4) and (5), one gets

(U + V )(αn + 1)β−1
n−1 =

n−1∑
j=0

c(a−j) mod nα
j , (6)

One can see that the left hand side of (6) is an element
of GF (2n) and can therefore be uniquely expressed in the
normal basis 〈αn−1, αn−2, . . . , 1〉. This gives the unique set
of values for cis. One can then use these values in (3) to obtain
the automorphism offsets K(a+1) mod n, K(a+2) mod n, . . .,
K(a−1) mod n.

One can illustrate this procedure by computing an auto-
morphism φ(·) : B4 → B4 which maps node (3, α14) to
node (1, α2). For this function, the column offset t = (1− 3)
mod 4 = 2 and the automorphism offset K3 = α14 + α2 =
α13. (see Table I.) Further,

n−1∑
j=0

c(3−j) mod nα
j = K3σβ

−1
3 = α3 + 1.

Thus one gets c0 = 1, c1 = 0, c2 = 0 and c3 = 1 and
consequently, K0 = α3, K1 = α4 and K2 = α5. The resultant
automorphism function φ(·) is given in Table II.

It is easy to verify that the mapping in Table II preserves
connectivity.

As is evident from this discussion, all the automorphism
offsets for any φ(·) are related such that choosing any one of
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them, say, K0, fixes all the others. On the other hand, distinct
K0 and t values give rise to distinct automorphisms. Thus there
are exactly n2n automorphisms of butterfly Bn when the first
index of all the nodes is translated by the same amount.

Because the automorphism offsets play such a central role
in defining the automorphism, we now provide some of their
basic properties.

Theorem 2: Let φ(·), φ′(·) : Bn → Bn be any
two automorphisms of Bn based on sets of constants
t,K0,K1, . . .Kn−1 and t′,K ′

0,K
′
1, . . .K

′
n−1. Then,

1) If any Km = 0, then all Ki = 0, 0 ≤ i < n.
2) If any Km 	= 0, then all Ki 	= 0, 0 ≤ i < n.
3) If any Km = K ′

m, then all Ki = K ′
i, 0 ≤ i < n.

4) If any Km 	= K ′
m, then for every i, 0 ≤ i < n, Ki 	= K ′

i.
5)

∑n−1
i=0 Ki is either 0 or (1 + α)−1βn−1.

Proof. From (4) one can see that Km = 0 implies that cj = 0,
0 ≤ j < n. Relation (3) then shows that each Ki is zero. On
the other hand, if any Km is nonzero, then so is every other
Ki or else, any Ki = 0 would invalidate any other nonzero
Km. This proves the first two parts of the corollary.

To prove the third and fourth parts, it is sufficient to note
from (3) and (4) that any given Km uniquely determines all
the other Kis. If Km = K

′
m, then from (6) we get the same

c values in the two cases, which will generate an equal set of
K values. Hence, Ki = K

′
i , for all i.

Finally, the sum of all Kis can be computed as follows. By
applying a summation to both sides of (3), one gets

n−1∑
i=0

Ki = α(
n−1∑
i=0

Ki) + (
n−1∑
i=0

ci)βn−1

= (
n−1∑
i=0

ci)βn−1(1 + α)−1 (7)

Since
∑n−1

i=0 ci in (7) is either 0 or 1, the sum of all Kis is

as stated in the Corollary.

We now investigate another automorphism of Bn that re-
flects the column index of each node.

Theorem 3: For every X ∈ GF (2n), X =
∑n−1

i=0 xiβi, let
X ′ =

∑n−1
i=0 xiβn−1−i. Then the mapping

ψ(m,X) = (n−m,X ′)

is an automorphism of Bn.
Proof. It is simple to see that ψ(·) is one-to-one and onto. We
only need to prove that it preserves the edge connectivity of
Bn. In particular, we demonstrate that since vertex (m,X) is
connected to the vertices (m + 1, αX + cβn−1), c ∈ {0, 1},
ψ(m,X) is also connected to vertices ψ(m+1, αX+cβn−1).
Let X =

∑n−1
i=0 xiβi. Then using the relationships between the

consecutive βis given in Lemma 1, one gets

αX + cβn−1 =
n−1∑
i=1

(xiβi−1 + xipiβn−1) + (c+ x0)β0

=
n−2∑
i=0

xi+1βi + (c+
n−1∑
i=0

pixi)βn−1. (8)

Thus

ψ(m+ 1, αX + cβn−1) = (n−m− 1, Y ) (9)

where,

Y =
n−2∑
i=0

xi+1βn−1−i + (c+
n−1∑
i=0

pixi)β0

=
n−1∑
i=1

xiβn−i + (c+
n−1∑
i=0

pixi)β0) (10)

Now,

αY =
n−1∑
i=1

xiαβn−i + (c+
n−1∑
i=0

pixi)βn−1)

=
n−1∑
i=1

(xiβn−1−i + xipn−iβn−1)

+ (c+
n−1∑
i=0

pixi)βn−1)

=
n−1∑
i=0

xiβn−1−i + c′βn−1, (11)

where c′ ∈ {0, 1} denotes

c′ = c+
n−1∑
i=0

(pi + pn−i)xi. (12)

Note that

ψ(m,X) = (n−m,

n−1∑
i=0

xiβn−1−i)

= (n−m,αY + c′βn−1). (13)

From (9) and (13) it is obvious that vertex ψ(m,X) is

connected to vertex ψ(m+ 1, αX + cβn−1), c ∈ {0, 1}.

Unlike the φ(·) automorphisms investigated earlier, ψ(·)
maps some of the butterfly vertices to the same rows (but may
be to different columns) as stated by the following theorem.

Theorem 4: In every column of Bn, there are exactly 2�n/2�

nodes that do not change their row index under automorphism
ψ(·).
Proof. Consider a node (m,X) ∈ Bn, where X is expressed in
its dual basis as X =

∑n−1
i=0 xiβi. As a consequence of Theo-

rem 3, ψ((m,X)) = (n−m,X) if and only if xi = xn−1−i,
for i = 0, 1, .., 
n/2�. Thus the first half of xis determine
the last half. Therefore there are exactly 2�n/2� values of
X ∈ GF (2n) that will satisfy ψ((m,X)) = (n − m,X).

We end this section with the following theorem enumerating
all the automorphisms of Bn.

Theorem 5: Bn has a total of n2n+1 automorphisms.
Proof. Note that the product of two automorphisms is also an
automorphism. Thus in addition to the n2n automorphisms
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defined by Theorem 1, another set of automorphisms can be
defined by multiplying each of these φ(·)s by the automor-
phism ψ(·) in Theorem 3. Since the order of automorphism

ψ(·) is 2, these are all the automorphisms of Bn.

IV. EDGE TRANSFORMATIONS BY AUTOMORPHISMS

This section investigates the effect of an automorphism on
the butterfly edges. We call edges (i − 1,X) → (i, αX) and
(i − 1,X) → (i, αX + βn−1) for all X ∈ GF (2n) as the
edges in the ith column of Bn.

The automorphism φ(·) of Theorem 1 affects all the edges
in the same column similarly as shown below.

Theorem 6: Let the automorphism offsets be related as:

Ki = αK(i−1) mod n + ciβn−1, 0 ≤ i ≤ n− 1,

(a) If ci = 1, then the automorphism φ(·) maps all f edges of
Bn in column i to g edges and all g edges to f edges.
(b) If ci = 0, then the automorphism φ(·) maps all f edges
of Bn in column i to f edges and all g edges to g edges.
Proof. Consider an f edge between nodes N1 = (i − 1,X)
and N2 = (i, αX) of the sub-graph of Bn. Now, φ(N1) =
(i− 1,X +Ki−1) and,

φ(N2) = (i, αX +Ki)
= (i, αX + αKi−1 + ciβn−1)
= (i, α(X +Ki−1) + βn−1)

From this, one can clearly see that the edge between φ(N1)
and φ(N2) is a g edge. The translation of a g edge into an f

edge can be similarly proved.

Note that the automorphism φ((m, X)) = (m+t, X+Km)
also advances the column number m by quantity t. In this case,
cm = 1 has the effect of mapping the f edges of the sub-graph
between columns m− 1 and m to g edges and all g edges to
f edges; but these transformed edges now appear in column
m+t. Similarly the edges in mth column are mapped to edges
of the same type in column m+ t if cm = 0.

We will show in the next section how Theorem 6 is helpful
in avoiding faulty edges in a mapping. However, for complete-
ness, we provide below results (without proofs) relating to the
effect of automorphism ψ(·) on edges of the butterfly.

Theorem 7: Automorphism ψ maps f edges from (m,X)
to f edges and g edges from (m,X) to g edges if and only if

ψ(X) = αψ(αX)

Theorem 8: Edges from exactly half the nodes in every
column of the butterfly are mapped to edges of the same type.

Theorem 7 shows that edges starting from nodes in the same
row (i.e., nodes (m,X) having the same X) behave similarly,
i.e., all of them either map to edges of the same type (f to
f , g to g) or map to edges of the other type (f to g, g to
f ). Further, Theorem 8 shows that there are equal number of
rows of each kind.

V. APPLICATION OF AUTOMORPHISMS TO TOLERATE EDGE

FAULTS

Previously automorphisms have only been used to tolerate
node faults. However, Theorems 6 and 7 directly express the
effect of an automorphism on the butterfly edges. Conse-
quently, one can now use these automorphisms to tolerate edge
faults for many mappings on the butterfly.

The general procedure to obtain a fault free mapping on a
faulty butterfly is simple. If some edges used in the mapping
are faulty but the edges to which they can be mapped by some
automorphism are free, then applying that automorphism to the
mapping will allow it to use only fault-free edges. Note that
much of the power of this method is due to the fact that we
have n2n+1 well-defined and simple automorphisms that map
edges in a deterministic fashion. We illustrate this procedure
by constructing a Hamilton cycle under various edge fault
scenarios.

Theorem 9: If the edges in one of the columns of Bn are
fault free and the faults in each of the other columns are limited
to only one type of edges, then Bn is Hamiltonian.
Proof. As shown in [11], it is possible to construct a Hamil-
tonian cycle in Bn by first constructing two cycles using
only f edges; one linking all nodes (m,X), X 	= 0, and
another linking all nodes (m, 0). These cycles are merged into
a Hamiltonian cycle by using a pair of g edges in column
t: (t − 1, 0) → (t, βn−1) and (t − 1, β0) and (t, 0). With
0 ≤ t < n, there are n such independent pairs of g edges that
may be used to merge the cycles. We will use the g edges in
the column of Bn that has no faults. We now show that one
can design an automorphism φ : Bn → Bn which will avoid
all faults. To construct φ, we compute constants ci, 0 ≤ i < n
such that

ci =
{

1 if there is a fault in f edge in column i
0 otherwise

(14)

One can then get K0 by (6) as

K0(αn + 1)β−1
n−1 =

n−1∑
j=0

c(−j) mod nα
j .

The other Ki values can then be inferred from (3). Theorem
6 then shows that the Hamilton cycle will use f edges in
columns where f edges are fault free and g edges where f
edges have faults. Thus the transformed Hamiltonian cycle will

not have any faulty edges.

To illustrate Theorem 9, consider a butterfly B4 shown in
Fig. 1 with faults in columns 0 and 1 restricted to f edges
and in column 2 to g edges. Edges in column 3 are fault free.
Clearly in this case, c0 = c1 = 1 and c2 = c3 = 0. This gives
from (14), K0 = α13, K1 = α3, K2 = α4 and K3 = α5.
By following the procedure of Theorem 9 we first create the
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Fig. 1. Butterfly B4 with faulty edges marked with light lines and fault-free
edges with dark lines. The column numbers are at the top and the row index
of each node is marked next to the node.

original Hamilton cycle as:

(0, 1) → (1, α) → (2, α2) → (3, α3) → (0, α4) →
(1, α5) → (2, α6) → (3, α7) → (0, α8) → (1, α9) →
(2, α10) → (3, α11) → (0, α12) → (1, α13) → (2, α14) →
(3, 0) → (0, 0) → (1, 0) → (2, 0) → (3, 1) →
(0, α) → (1, α2) → (2, α3) → (3, α4) → (0, α5) →
(1, α6) → (2, α7) → (3, α8) → (0, α9) → (1, α10) →
(2, α11) → (3, α12) → (0, α13) → (1, α14) → (2, 1) →
(3, α) → (0, α2) → (1, α3) → (2, α4) → (3, α5) →
(0, α6) → (1, α7) → (2, α8) → (3, α9) → (0, α10) →
(1, α11) → (2, α12) → (3, α13) → (0, α14) → (1, 1) →
(2, α) → (3, α2) → (0, α3) → (1, α4) → (2, α5) →
(3, α6) → (0, α7) → (1, α8) → (2, α9) → (3, α10) →
(0, α11) → (1, α12) → (2, α13) → (3, α14) → (0, 1)

By applying the automorphism offsets already calculated,

one can then obtain the required fault-free Hamilton cycle as:

(0, α6) → (1, α9) → (2, α10) → (3, α11) → (0, α11) →
(1, α11) → (2, α12) → (3, α13) → (0, α3) → (1, α) →
(2, α2) → (3, α3) → (0, α) → (1, α8) → (2, α9) →
(3, α5) → (0, α13) → (1, α3) → (2, α4) → (3, α10) →
(0, α12) → (1, α6) → (2, α7) → (3, α8) → (0, α7) →
(1, α2) → (2, α3) → (3, α4) → (0, α10) → (1, α12) →
(2, α13) → (3, α14) → (0, 0) → (1, 1) → (2, α) →
(3, α2) → (0, α14) → (1, 0) → (2, 0) → (3, 0) →
(0, 1) → (1, α4) → (2, α5) → (3, α6) → (0, α9) →
(1, α5) → (2, α6) → (3, α7) → (0, α2) → (1, α14) →
(2, 1) → (3, α) → (0, α8) → (1, α7) → (2, α8) →
(3, α9) → (0, α5) → (1, α13) → (2, α14) → (3, 1) →
(0, α4) → (1, α10) → (2, α11) → (3, α12) → (0, α6)

Theorem 9 is interesting because it implies that up to 2n−1

edges of the same type may be faulty in up to n− 1 columns
and the faulty butterfly is still Hamiltonian. It is easy to extend
this idea to any other mapping also. A direct result of Theorem
9 is the following result.

Corollary 1: A butterfly with n− 1 edge faults distributed
one per column is Hamiltonian.

We now give an alternate simple proof due to the results
developed in this paper of a previously a known result [14].

Theorem 10: Graph Bn with up to 2 random edge faults is
Hamiltonian.
Proof. If there is only one fault or if there are two faults,
both in the same type (f or g) of edges, or if they are in
two different columns, then by Theorem 9 one can generate a
Hamiltonian cycle for Bn. Thus we only need to treat cases
that involve two faulty edges of different types (one f and one
g) in the same column.

Consider now the case of an f and a g faulty edge in the
same column m such that they do not share a node. Let the
faulty f edge be (m−1,X) → (m,αX), X 	= 0. In this case,
one can first create a cycle containing all the nodes (i,X),
0 ≤ i ≤ n − 1, X 	= 0 using only the f edges. Clearly
this cycle avoids the faulty g edge. Further, it can be easily
modified to avoid the faulty f edge. To achieve this, add the g
edges (m−1,X) → (m,αX+βn−1) and (m−1,X+β0) →
(m,αX) and remove the f edges (m−1,X) → (m,αX) and
(m−1,X+β0) → (m,αX+βn−1) as shown in Fig. 2. This
removes the faulty f edge from the cycle, but partitions it into
two disjoint cycles.

We now show that there exist g edges (shown as horizontal
lines in Fig. 2) connecting the two parts which can be used to
rejoin the two halves and create a single cycle of all the nodes
(m,x), x 	= 0 without any faulty edge. It is easy to see that the
number of nodes in each part is a multiple of n, and in fact,
is at least 2n. Let k be any integer between 0 and n− 1 other
than m−1 or m−2 mod n. This is always possible because
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n ≥ 3. Since there are exactly 2n − 1 nodes with first index k
in the two cycles, one of the cycles will have an odd number
of such nodes. Without loss of generality, assume that it is the
right cycle. Consider a typical node (k, y) in this cycle. If node
(k+1, αy+βn−1) also belongs to the same cycle, then the g
edge from (k, y) → (k+1, αy+βn−1) will end up in the same
cycle. At the same time, the node (k, y + β0) which belongs
to the same cycle will have a g edge going to (k + 1, αy) in
the same cycle. Thus the g edges starting from that cycle and
ending up in the same cycle occur in pairs. Since there are
odd number of nodes with first index k, one of these nodes,
say (k, Y ), will have a g edge to the node (k+1, αy+βn−1)
in the left cycle. Further, the node (k, Y + β0) from the left
cycle has a g edge ending up at (k+1, αY ) in the right cycle.
Using this pair of g edges, one can create a cycle of all nodes
(i, x), x 	= 0 without using any faulty edge as shown in Fig. 2.
Note that because the f and g edge faults are not incident on
the same node, none of the g edges used here are faulty.

β 0β
n−1

α(m,    X +         )

β
n−1

α(k+1,   Y +         )

β 0(k,Y+     )

(k, Y)

(k+1,    Y)

(m−1, X) (m, αX)

α

(m−1, X +      )

Fig. 2. Fault free cycle of all nodes (i, X), 0 ≤ i ≤ n − 1, X �= 0 when
an f edge (m − 1, X) → (m, αX) is faulty.

To add the rest of the Bn nodes to the Hamiltonian cycle,
one can build the cycle of all the nodes (i, 0), 0 ≤ i ≤ n− 1,
using faultless f edges and merge it with the cycle in Fig. 2
using g edges in any column other than m.

If the faulty f edge is (m − 1, 0) → (m, 0), then one can
create a cycle of all nodes (t,X), X 	= 0 using faultless f
edges, and of all nodes (t, 0) using f edges. The faulty f
edge will be in the second cycle. Merging the two cycles gets
rid of the faulty edge.

Finally, consider the case of the faulty f and g edges in the
same column and also sharing a node. We initially construct a
Hamiltonian cycle considering that both f and g edges from
the node (0, 0) to be faulty. This cycle can then be translated
using an appropriate automorphism to one that avoids f and
g edges from any node.

We first partition the butterfly nodes into three sets of nodes
connected by f edges as follows.

Set 1: (1, 0)
f−→ (2, 0)

f−→ (3, 0)
f−→ · · · (0, 0).

Set 2: (0, β0)
f−→ (1, βn−1)

f−→ (2, αβn−1)
f−→ · · ·

(n− 1, β0).

Set 3: (0, βn−1)
f−→ (1, αβn−1)

f−→ (2, α2βn−1)
f−→ · · · (n− 1, α−1β0).
Note that sets 2 and 3 when joined together give the cycle

of length n2n − n containing all the nodes with nonzero
second coordinates obtained by continuously traveling along
the f edges. Set 1 contains all the Bn nodes with their
second coordinate 0. We can connect sets 1 and 2 into a
cycle because their endpoints are connected by g edges. In
particular, (0, β0)

g−→ (1, 0) and (n − 1, β0)
g−→ (0, 0).

The nodes in Set 3 can be incorporated in this cycle if the two
end nodes of Set 3 are connected to some two consecutive
nodes in the cycle. Note that the end nodes of Set 3 have
the following connectivity: (0, βn−1)

g−→ (1, αβn−1+βn−1)
and (n − 1, α−1β0)

g−→ (0, β0 + βn−1). One can verify

that (0, β0 + βn−1)
f−→ (1, αβn−1 + βn−1). Thus if node

(0, β0 + βn−1) is in Set 2, then one can remove the f edge
between this node and the next, and instead connect the nodes
of Set 3 into the cycle using the g edges noted here. The
resultant cycle is shown in Fig. 3.

On the other hand, if the node (0, β0 + βn−1) is in Set
3 rather than in Set 2, then the g edges from the endpoints
of Set 3 go to adjacent nodes of Set 3, namely the nodes
(1, αβn−1 + βn−1) and (0, β0 + βn−1). By removing the f
edge between these adjacent nodes and adding the g edges
from the endpoints, one can see that all the nodes of Set 3
form a cycle. To show that this cycle can be merged with the
cycle formed by the nodes in Sets 1 and 2, we show that there
is some (m,β0) in cycle 3 with m 	= 0 and m+1 	= 0. Because

then, one can drop edge (m,β0)
f−→ (m+1, βn−1) in the

cycle of Set 3 and instead use connections to merge this cycle
with Set 1 using edges (m,β0)

g−→ (m+ 1, 0) and (m, 0)
g−→ (m+ 1, βn−1). To see that such a node (m,β0) exist

in Set 3, note that the number of nodes in Set 3 is at least
2n − 1. In other words, the second coordinate of the nodes
in Set 3 take all possible nonzero values. Consequently, there
will be some (m,β0) present in Set 3. Further, both (0, β0)
and (n−1, β0) are in Set 2, showing m 	= 0, n−1. Thus nodes
in Set 3 can also be merged in the cycle formed by nodes in

Sets 1 and 2. This gives the required Hamiltonian cycle.

VI. CONCLUSION

In the past, automorphisms have been used to map algo-
rithms on architectures with (generally one) node fault. This
paper has shown that automorphisms can also be used to map
algorithms on architectures with edge faults. To achieve this,
we propose the use of an appropriate interconnection graph
automorphism to map the set of faulty edges to free edges.
However, in order to be able to use this strategy in different
situations, one needs to know all the automorphisms and how
each maps edges of the graph. This paper has obtained all
the n2n+1 automorphisms of the butterfly of dimension n.
We use an algebraic model of the butterfly presented in [11].
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Fig. 3. The Hamiltonian cycle when the f and g edges from (0, 0) are faulty and the node (0, β0 + βn−1) is in Set 2. Note that all edges are bidirectional
and the dashed f edge is not part of the cycle.

The resultant automorphisms are simple; they map the two
coordinates of a node label independently. This simplicity
has allowed us to determine the mapping of edges due to
any automorphism. We have illustrated our technique by
mapping a Hamilton cycle on a butterfly under various edge
fault scenarios. We believe that having a large set of n2n+1

simple automorphisms, each with a specific determined edge
translation property makes this method applicable to a large
number of mappings on faulty butterflies.
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