
Pattern Recognition Letters 15 (1994) 253-259 March 1994
North-Holland

PATREC 1181

A parallel Hough transform algorithm for
nonuniform images

Fevzi O. Ozbek and Meghanad D. Wagh *
Department of Electrical Engineering and Computer Science, Lehigh University, Bethlehem, PA 18015, USA

Received 3 September 1992

Abstract

Ozbek, F.O. and M.D. Wagh, A parallel Hough transform algorithm for nonuniform images, Pattern Recognition
Letters 15 (1994) 253-259.

A Distributed Hough Transform Algorithm (DHTA) is proposed and its performance is analysed. It is shown that
by distributing the algorithm rather than the image or transform space, one can avoid the asynchronism overheads.
Mapping of DHTA on real architectures is discussed and results on linear array, mesh and hypercube are presented.

Keywords. Hough transform, load balancing, parallel algorithms.

1. Introduction

Hough Transform is rapidly becoming indispen-
sable to industrial automation, diagnostic health care
and national defense as a powerful tool to recognize
parametrically described curves. Pattern recognition
using Hough transform is a two-step process. In the
first step, Hough transform is used to translate a bi-
nary image consisting of black curves on light back-
ground into a parameter space. Each point of this
parameter space represents a curve with the corre-
sponding parameter attributes. The translation pro-
ceeds by examining each image pixel and for every
pixel and for every black pixel, computing the pa-
rameters of all possible curves to which that pixel may
belong. The cells corresponding to these curves in the
parameter space are appropriately marked. At the end

* Corresponding author. Email: mdw0@lehigh.edu

This research was partially supported by a grant from the Center
for Manufacturing Systems Engineering at Lehigh University.

Elsevier Science B.V.
SSDI 0167-8655 (93)E0044-O

of this translation process, the parameter space holds
information about the number of image pixels on each
curve. The second step of pattern recognition simply
searches the parameter space for cells containing the
highest number of marks identifying the curves pres-
ent in the image.

Hough transform computation is very intensive.
Curves such as straight lines or circles are parame-
trized by two independent parameters each of which
is discretized into M levels giving an M × M parame-
ter space. Each black point in the image space can
then potentially generate M points in the parameter
space which are determined by varying one of the pa-
rameters through its M values and computing the
other each time. Assuming that this computation
takes a constant time, Hough transformation of an
N × N image into an MX M parameter space implies
a O(N2M) complexity. Naturally, substantial re-
search effort in recent years is devoted to improving
the computation of Hough transform.

One approach that has been very successful in im-
proving Hough transformation speed is the use of

253

Volume 15, Number 3 PATTERN RECOGNITION LETTERS March 1994

parallel architectures. Since the computations corre-
sponding to each image pixel are independent, they
may be carried out concurrently. Similarly the com-
putations corresponding to different parameter re-
gions are independent and can also be carried out
concurrently. The parallel algorithms for Hough
transform therefore distribute either the binary im-
age or the parameter space, or both to multiple pro-
cessors. A variety of parallel architectures have been
employed for this purpose. These include systolic ar-
rays by Chuang and Li (1985) and Li et al. (1989),
meshes by Rosenfeld et al. (1988) and Kannan and
Chuang (1990), SIMD trees by Ibrahim et al. (1986),
scan line array processors by Fishburn and Highnam
(1987), shared memory MIMD machines by Tha-
zhuthaveetil and Shah (1991) and Choudhary and
Ponnasamy (1991), and hypercube multicomputers
by Ranka and Sahni (1990).

There are several unforeseen overheads in parallel
Hough transform implementation. The costs of data
distribution and communication in parallel ma-
chines may sometimes limit the algorithm perform-
ance. Shared memory architectures present the lock-
ing overheads. In addition, if the pattern distribution
within the image is nonhomogeneous, the load distri-
bution between processors is not equal. The speed of
computation is then limited by the speed of the pro-
cessor that has the largest task. This overhead, called
the asynchronism overhead is one of the important
factors limiting the performance of parallel Hough
transform algorithms. Partial elimination of asyn-
chronism overhead by shifting loads between neigh-
boring processors is possible (Ranka and Sahni,
1990), but it implies the costs of running a load bal-
ancing algorithm and of the additional communica-
tion to shift the loads. Most other parallel algorithms
in literature fail to eliminate asynchronism overhead
and some state that it is impossible without a priori
knowledge of the pixels distribution (Thazhuthav-
eetil and Shah, 1991).

In Section 2 we develop a Distributed Hough
Transform Algorithm (DHTA) by partitioning the
algorithm, rather than the data space. This algo-
rithm, suitable for distributed memory MIMD mul-
tiprocessor architectures, greatly reduces the asyn-
chronism overhead. The results obtained from the
implementation of DHTA on different MIMD archi-

tectures are described in Section 3. Finally Section 4
presents the conclusions from this work.

2. The distributed Hough transform algorithm

We illustrate the Distributed Hough Transform Al-
gorithm (DHTA) for the simple application of
straight line detection in a binary image. By using pa-
rameters r, the distance from the origin, and 0, the
angle with the positive x-axis, any straight line may
be expressed through parameterized equations

x = r c o s 0 , and y = r s i n 0 . (1)

By restricting r, this parametrization leads to a fi-
nite-sized parameter space with a one-to-one corre-
spondence with all possible lines in the image. Under
(1), a black image pixel at (x, y) may belong on any
line whose parameters satisfy the relation

r=x cos O+y sin 0. (2)

Consequently, the count in each (r, 0) cell in param-
eter space satisfying (2) is incremented to indicate
that there is possibly a line with these parameters in
the image. After the entire image is scanned, the pa-
rameter space holds the Hough transform of the im-
age. The cell in the parameter space containing the
highest count corresponds to the line to which the
maximum number of black pixels fitted.

DHTA separates the task of scanning the binary
image from the task of generating the parameter
space. It is useful for distributed memory MIMD ar-
chitectures with many different geometries. DHTA
assigns to a set of processors (image nodes) the tasks
of scanning the image, extracting the coordinates of
black pixels and communicating these coordinates to
the remaining processors. Since in distributed mem-
ory MIMD computers, communication set-up time
is significant, DHTA generates messages only after
examining successive (1/Q)th portions of the image
for some appropriate Q. Each of these Q messages
contains the total number of black pixels found in that
region and the coordinate pairs of all those pixels. A
second set of processors (parameter nodes) are as-
signed to update the parameter space which is dis-
tributed amongst them. The data communication
proceeds in a pipeline fashion: when a processor gets
a message, it sends a copy to the 'next' processor be-

254

Volume 15, Number 3 PATTERN RECOGNITION LETTERS March 1994

fore using the data. This algorithm is shown in Figure
1. l

Mapping DHTA to a given MIMD architecture re-
quires a one-to-one correspondence between the al-
gorithm nodes and the processors. The number of
processors to be used as images nodes, p~, versus those
as parameter nodes, PH, is governed by the relative
complexities of image scanning and parameter space
generation tasks. The image scanning task involves
finding all the black pixels in the image, and gener-
ating and transmitting messages containing their co-
ordinates. Its complexity, TI, depends upon the im-
age size and its average gray level as well as on the
communication set-up time. The task of parameter
space generation, of complexity TH, involves receiv-
ing the messages containing the coordinates, and for
each coordinate pair, evaluating (2) for every 0 in
the parameter space. The processor partitioning
should be such that the average load on each proces-
sor is approximately the same, i.e.,

(T . / p H) ~ (T , /p~) .

1 The 'type' qualifier added to each message of Figure 1 allows
each node of the MIMD architecture to distinguish between the
messages it receives from the same source.

In our studies, we found that for realistic images and
reasonable parameter spaces, t91 << PH.

The mapping of DHTA should also ensure that the
source and destination nodes of a node are its topo-
logical neighbors so as to minimize the communica-
tion overheads. For architectures other than a linear
array, a DHTA implementation may be configured
as several concurrent pipelines. A DHTA implemen-
tation has time complexity

T= (T,/pl) / Q+ Q" Ts

q- (tma x - l) ' T c + (TH/PH) , (3)

where L m a x is the maximum length of a pipeline, Ts,
the communication set-up time and To, the total
communication time between neighboring proces-
sors. As shown by (3), the time complexity of DHTA
increases with the maximum length of a constituent
pipeline. Thus within the constraints of the architec-
ture, a mapping should minimize this quantity. Fig-
ure 2 shows a typical map of DHTA on a 16-proces-
sor hypercube having L m a x = 4 and multiple pipelines
{1, 3, 7, 15), {1, 3, 11}, ..., (4, 12}, {8}. In Figure 2,
the 0th processor scans the image and messages to
multiple destinations are arranged in a left-to-right
order. Thus, from processor 0, a message goes out to
processors 1, 2, 4 and 8 in that order. This ensures

D i s t r i b u t e d H o u g h T r a n s f o r m A l g o r i t h m .

if image node t h e n d o

D e t e r m i n e d e s t i n a t i o n nodes

f o r q = l t o Q d o

e x a m i n e (l / Q) i m a g e , no t i ng the b l ack pixels a n d c r e a t i n g m e s s a g e

send m e s s a g e of t y p e q to all d e s t i n a t i o n s

i f parameter node t h e n d o

D e t e r m i n e source a n d d e s t i n a t i o n nodes

f o r q = 1 t o Q d o

rece ive m e s s a g e of t y p e q f r o m source

send m e s s a g e of t y p e q to all d e s t i n a t i o n s

u p d a t e p a r a m e t e r space w i t h t he c o o r d i n a t e s of b l ack p ixe ls in t he m e s s a g e

Figure 1. The Distributed Hough Transform Algorithm (DHTA).

255

Volume 15, Number 3 PATTERN RECOGNITION LETTERS March 1994

E ~ X
0 /l

()

()

()

Figure 2. DHTA mapped on a degree-4 hypercube configured as several concurrent pipelines.

that the messages reach longer pipelines earlier than
the shorter ones.

The value of Q should also be judiciously chosen
based on (3). A small Q implies a large time lag (first
term of (3)) before any parameter space updating
may begin. On the other hand, a large Q causes a large
number of messages, increasing the second term of
(3).

Thus the exact implementation of DHTA greatly
depends on the topology and the communicat ion/
computation characteristics of the available MIMD
architecture.

3. Implementations and results

This section describes the results of DHTA map-
pings on a linear array, wrap-around mesh and hy-
percube topologies all of which were implemented as
subsets of the same NCUBE 10 hypercube machine.
This ensured that they all would have identical com-
putational and communication characteristics and the
results obtained would thus characterize the per-
formance of the chosen topologies.

NCUBE 10 is a multiprocessor MIMD architec-
ture configured as a hypercube. Each processor,
equipped with 128K local memory, has a peak per-
formance of 0.5 MFLOPs. The operating system of
NCUBE 10 supports time measurement in terms of
'ticks', a tick being approximately equal to 0.171 ms
for our 6 MHz system. Communication between pro-
cessors takes place in a DMA fashion and the time
required to move m bytes between neighboring pro-
cessors is given by

Tc= Ts +rm,

where T~, the communication set-up time is 4 ticks
and r, the incremental communication time is 0.017
ticks/byte.

A multitude of binary images characterized by pa-
rameters image density and image nonuniformity was
used. Image density of a binary image, varied be-
tween 5% and 25%, is the fraction of its pixels that
are black. Image nonuniformity was intended to de-
scribe the distribution of black pixels within the im-
age. Since such a distribution can be varied in a va-
riety of continuous ways, we constrained our
experimentation to a somewhat artificial setting in

256

Volume 15, Number 3 PATTERN RECOGNITION LETTERS March 1994

which both left an right halves of an image may have
uniform but different densities. The extra fraction of
black pixels in the right half (as compared to the left)
was chosen as the measure of nonuniformity. Thus
images with 0% nonuniformity have a uniform dis-
tribution of black pixels in the complete image,
whereas 100% nonuniform images have all their black
pixels in the right half and those with - 100% uni-
formity, have all of them in the left half.

Our experiments consisted of evaluating DHTA on
the chosen topologies for both speed and insensitiv-
ity to image nonuniformities. The speed improve-
ment of a multiprocessor implementation is charac-
terized by the Speed-Up, Se, defined as

time complexity using one processor
sp=

time complexity using P processors

Speed-up of DHTA on the three architectures is
shown in Figures 3-5.

In each case, the number of processors varied be-
tween 4 and 32. Exactly one processor was assigned
the task of image scanning and the rest, to parameter
space updating. The 64× 64 images (with uniform
density) were scanned from left to right and a new
message bearing the coordinates of black pixels was
generated after every 8 columns were examined.

A desirable characteristic of Se is Se=O(P). 2 Such
linear speed-up implies that the algorithm implemen-
tation is scalable, i.e., its time complexity may be kept

2 Se cannot be P because of the communication and problem
partitioning overheads.

14 i i i i , i

12

4 6 ~ ~ ~c

2 i I I I I I

5 l 0 15 20 25 30
number of processors

Figure 3. Speed-up on a linear array for various image densities.

20

18

16

14

~12

8

6

4

2

I I I I I

I I I L I

10 15 20 25 30
number of processors

Figure 4. Speed-up on a mesh for various image densities.

2 0 i i i i i

1 4 1 5 ~

m

8 f j ~ -- 5 ~7~

4 6 f ~

2 I I I I J
10 15 21) 25 3(1

number of processors

Figure 5. Speed-up on a hypercube for various image densities.

the same even if the problem size is increased by pro-
portionate increase in the size of the architecture.

In case of DHTA whose behavior is modeled by
(3), an increase in P keeping Q constant results in a
proportionate decrease in (T~/p~) and in (TH/PH).
The second term of (3) is a constant that becomes
negligible in the presence of large (TH/PH). HOW-
ever, the third term of (3) increases with P, and in
particular, is proportional to the diameter of the ar-
chitecture. For the linear array, mesh and hypercube
architectures, the diameters are P, w/P and log2 P, re-
spectively. One can thus conclude that the DHTA
implementation on all these three architectures is
scalable and provides O (P) speed-up for large prob-
lems. This conclusion is supported by the results
plotted in Figures 3-5.

257

Volume 15, Number 3 PATTERN RECOGNITION LETTERS March 1994

One should however note that if the problem size
is small and the architecture size is increased un-
bounded, one may actually get a lower speed-up be-
cause the increase in the overheads outpaces the de-
crease in the computations per processor. Thus, for
example, in case of linear array computing the Hough
transform of a low density (5%) image, the speed-up
actually decreases as P increases beyond 16. For
higher densities, the amount of computation is higher
and the speed-up curve does not decline till a much
higher processor cardinality. In case of both mesh and
hypercube, similar declines are not observed (within
the range of P plotted) because their diameters are
much smaller than a linear array implying a much
lower overhead represented by the third term of (3).

The results of Figures 3-5 were obtained with uni-
form image densities. When nonuniform images were
used, these results were negligibly affected. Figures 6
and 7 show the DHTA complexity for nonuniform
images. Even though we have presented here results
for a 32-processor linear array and hypercube, other
architecture sizes and the mesh behave similarly. The
insensitivity of DHTA to image nonuniformity can
be understood by noting that in our implementation,
the average time to create a new message,
((T~/pI)/Q), is chosen to be a little less than the av-
erage time to digest that message, ((TH/pH) / Q). This
implies a load imbalance as the PI nodes working on
the image have a smaller load than PH others working
on the parameter space. However, since PI <<PR, the
proportion of less efficient nodes is small. On the

4500

4000

3500

3000

2500

2000 2 ~

1500 I
-100 -50

I I

0 50
nonun i fo rmi ty of image

25% -

20% -

15% -

10% -

5%

100

Figure 7. Time complexity of DHTA on a 32-processor hyper-
cube for various image densities.

other hand, a new massage arrives at the PH proces-
sors before (an average size) old message is com-
pletely digested. Thus even if the old message con-
tained fewer coordinate pairs than average (because
of image nonuniformities), the probability of the t91
processors becoming idle because of the lack of new
coordinate pairs is fairly small.

The results presented in Figures 6 and 7 show that
the asynchronism overheads are greatly reduced in
DHTA except in extreme image nonuniformities
(- 100%) which are rare in real images.

4. Discussion and conclusion

6000

5500

~ 5oo0 ~

4 5 0 0

E

~ 4ooo

35OO

3 0 0 0 I
-100 -50

I

0
nonun i fo rmi ty o f i mag e

5 %

I

50 100

Figure 6. Time complexity of DHTA on a 31-processor linear ar-
ray for various image densities.

This correspondence describes the Distributed
Hough Transform Algorithm (DHTA) and presents
results relating to its implementation on a linear ar-
ray, a wrap-around mesh and a hypercube. DHTA is
based on two principles: separating and distributing
the tasks of image examination and parameter space
updating, and mapping of these tasks on concurrent
pipelines.

DHTA speed-up on standard MIMD architectures
is seen to be linear unless the computational task is
very small with respect to the number of processors
used. In such cases, the task size is smaller than ideal,
the overheads increase disproportionately and the
speed up declines with increasing number of proces-
sors. DHTA implementation uses concurrent pipe-
lines carved out of an architecture and its speed-up is

258

Volume 15, Number 3 PATTERN RECOGNITION LETTERS March 1994

re la ted to the m a x i m u m length o f any such pipel ine .

There fo re , a smal le r d i a m e t e r a rch i t ec tu re such as a

hype rcube p rov ides a m u c h h igher speed-up than a

l inear ar ray wi th a larger d i ame te r .

An i m p o r t a n t c o n s e q u e n c e o f d i s t r ibu t ing the al-

go r i t hm ra ther t han the da ta is the r educ t ion o f asyn-

c h r o n i s m o v e r h e a d in D H T A i m p l e m e n t a t i o n s . Th i s

does not requ i re add i t i ona l tasks o f load shuff l ing be-

tween processors; ra ther , it is a c h i e v e d by the very

na tu re o f D H T A . T h e load i m b a l a n c e b e t w e e n TI/pt

and TH/PH al lows one to ensure that the large frac-

t ion o f processors engaged in p a r a m e t e r space upda t -

ing are rare ly idle even i f the image is no t un i fo rm.

O u r results in this respect are p r o m i s i n g bu t m o r e ac-

cura te m o d e l i n g o f image n o n u n i f o r m i t y and its re-

l a t ion to the 'bes t ' load i m b a l a n c e still is an open

p r o b l e m which needs to be addressed to m a k e mos t

e f fec t ive use o f D H T A in a prac t ica l s i tua t ion .

References

Choudhary, A.N. and R. Ponnusamy (1991). Implementation
and evaluation of Hough transform algorithms on a shared-

memory multiprocessor. J. Parallel and Distributed Computing
12 (2), 178-188.

Chuang, H.Y.H. and C.C. Li (1985). A systolic processor for
straight line detection by modified Hough transform. IEEE
Workshop on Computer Architecture, Pattern Analysis and Data
Base Management, 300-303.

Fishburn, A. and P. Highnam (1987). Computing the Hough
transform on a scan line array processor. IEEE Workshop on
Computer Architecture for Pattern Analysis and Machine
Intelligence, 83-87.

Ibrahim, H., J. Kender and D.E. Shaw (1986). On the application
of massively parallel SIMD tree machines to certain
intermediate level vision tasks. Computer Vision, Graphics, and
Image Processing 36 (3), 53-75.

Kannan, C.S. and H.Y.H. Chuang (1990). Fast Hough transform
on a mesh connected processor array. Inform. Process. Lett. 33
(5), 243-248.

Li, H.F., D. Pao and R. Jayakumar (1989). Improvements and
systolic implementation of the Hough transformation for
straight line detection. Pattern Recognition 22 (6), 697-706.

Ranka, S. and S. Sahni (1990). Computing Hough transforms
on hypercube multicomputers. ,L Supercomputing 4 (0), 169-
190.

Rosenfeld, A., J. Ornelas and Y. Hung (1988). Hough transform
algorithms for mesh connected SIMD parallel processors.
Computer Vision, Graphics, and Image Processing 41 (3), 293-
305.

Thazhuthaveetil, M.J. and A.V. Shah (1991). Parallel Hough
transform algorithm performance. Image and Vision
Computing 9 (2), 88-92.

259

