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ABSTRACT

By making an example of the earlier proposed
cyclic convolution algorithms, the computational
efficiency of the multidimensional techniques over
finite fields is investigated. It is shown that the
multidimensional techniques are inferior to the
directly designed algorithms for all lengths except
when appiied to lengths whose exponents are rela-
tively prime. Relations between the complexities
of the directly designed algorithms and those de-
rived through the multidimensional techniques are
also established in various cases.

1. INTRODUCTION

It is well known that some practically import-
ant algorithms (such as the discrete Fourier trans-
form or the cyclic convolution algorithms) of large
lTengths can be constructed from small factor length
algorithms using the multidimensional techniques
[1,2,3]. This procedure, applicable when the factor
lTengths are relatively prime, is generally taken
to be quite efficient and has a multipiicative com-
pltexity equal to the product of the muitiplicative
compiexities- of the factor algorithms.

Recently, the authors have developed cyclic
convolution algorithms over finite fields [4].
These algorithms can be constructed for all Tengths
not divisible by the field characteristics. In this
paper, we develop an expression for the multiplica-
tive complexity of these algorithms of composite
lengths. Then, making an example of these aigo-
rithms, we examine the efficiency of the multi-
dimensional techniques to compute cyclic convolu-
tions over finite fields.

We are able to show that for the multidimen-
sional technique to be efficient, not only should
the factor lengths be relatively prime, but so
should be their exponents defined in terms of the
field characteristics. Thus. the efficiency of a
muitidimensional technique is also dependent upon
the field over which the convolution is being com-
nuted.

2. COMPUTATIONAL COMPLEXITY

We assume here that the input vectors are from
GF(p™) for an arbitrary m and the field of con-
stants is GF{(p). M(N) denotes the complexity
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of the cyclic convolution of tength N and R(N),
the complexity of multipiication of two N-1 de-
gree (i.e,with N coefficients) polynomidls. The
exponent of an integer N with respect to a prime
p (p+N) is defined as the smallest integer e such
that N|(pe-1). For example, with respect to 2, the
exponents of 3,5,7% and 9 are 2,4,3,and 6, respect-
ively. When N=Ny-Np with gcd (Ny,Np)}=1, Ny and
N, are called the factor Tengths of N. The quan-
tities e, ey, and e always denote the expon-
ents of N, N7, and Ny, respectively, with respect
to the prime p determined by the field of con-
stants GF(p).

Further, the integers
are partitioned into subsets Siy,Sip,...A subset
Si is defined by the smallest element i (from
the set {j(pe-1)/N, 1<j<N-1}) not covered by pre-
vious subsets and is constructed as 51={1,ip,ip2,.
..}, where each element is evaluated modulo (p®-1).
The order of Si, |Si|, is denoted by o and the
set {i1,ip,...} containing the first element of
each subset by Sy.

With this notation we then have [4]:

M(N) =1 + ;% R(Oi)

{i(pe-1)/N, 1<j<N-13

. (1)

Obviously, to appreciate this expression one
should Took into the properties of the functions oy
and R(N). We 1ist below some of the properties
which are important for further analysis. The

proofs of these properties are given in [6].

(P1) R(s-t) = R(s)-R(t) for any integers s and t

(P2) oile for all ieSy

(P3) For any N, at least for one ieSy, oj=e

(P4) For prime N, oj=e for all ieSy.

(PS) .IESN G_i = N-1

(P6) 1f "N=q" where q is a prime (different from
p), then any i, ieSysis of the type

o; = e'qt

where €' is the exponent of g and ¢ is an
integer O<@<n-1.

(P7) If N=Nj-Np with gcd(Nj,Ny) = 1, one can

fully characterize the set
z {o3|ieSN} from the sets ]
Iy {ci1|11€SN1} and 1y = {oj,|igeSyn)

HEonE

First construct a set ' in which for every pair
oi1ely»0ipel,, One has gcd(ciz,ciz) occurrences of
1cm(01],c12). Then

¥ In this work, by compiexity of an algorithm, we
always mean-the multiplicative complexity. In addi-
tion, the multiplications by the elements from ths
field of constants ave not counted.
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For p=2,
obtained from
responding to

=Z'UZ-‘U22.
the set ¢ (corresponding to N=9-25) can be

the sets £1={6,2} and £,={20,4} (cor-
Ny=9 and Np=25); thus, :' has

gcd(6,20) = 2 occurrences of 1cm(2 ,6) = 60
gcd(6,4) = 2 occurrences of lcm(6,4) =12
gcd(2,20) = 2 occurrences of 1cm(2,20) = 20 and
gcd(2,4) = 2 occurrences of 1lcm(2,4) =4 or,
' = {60,60,12,12,20,20,4,4}

Finally,
= {60,60,12,12,20,20,4,4,6,2,20,4}

We end this section by giving the following
lTemma which illustrates the applicability of the
properties {P1) through (P6).

If N

M(N) =1 + Ré e) (y-1)

Proof: Using {P4) and (P5),
prime N. Also using (P4) in (1)

M(N) =1 + R(e) [Sy]
which directly leads to the result.
3. CENTRAL RESULT

We now examine the complexities of a1gorithms
of composite lengths. Of particular importance is
the following theorem which compares the complexity
of the length Ny-N2 algorithm generated directly
with that of the same length algorithm generated
from length N] and No algorithms. using multidimen-
sional techniques.

Lemma 1: is prime with exponent e, then

Syl = (N-1)/e for

Theorem 1:  Given Ny and N, relatively prime,
with exponents ey and eps respectively,

M(N,N,) = M(N1}-M(N2) if ged(e 1,e2) =1

1
D MONN,) < MON)-MON,)  TF ged(egse,) > ]

N]N

Proof: We have from (1),

M(N]Nz) =1 + iésﬁ1N2 R(“i)

=1+, Rio 11)

T R(ci,)
11881y ( 12

ZESNZ

+ .3 . L cd(os,:055)°
1188m 12€SN2[9 (611 012)
R(]Cm(ci1,oj2ﬂ

where use is made of (P7) to separate the oy,

TeSyynp into three groups. Now,
o5 95 -
RCICm{o, wos.) = R (oog—f—e)
177915 cdicg1,oiz)
Rloi;)*R(oi)

| = WT§Cd\7xi=0x )y from (P1).
Using this, we obtain

M H N "1:'5“ pA Ria: )’L‘ X R(C- )
SaRY & ‘ 2 3
2 11“‘N1 117 1,88y, 2
ng( ’0’:,,) :
* 5 By 18w, T g'zaﬁgﬁ'fﬂ\wR(“-fz)

But M(N;) =1+ . % R(o. )
1 1.|s:SN_| 11
and M(N2) =1+ 12§3N2R(0i2) giving
M(N1N2)=M(N2) -1
ged(o; o5 )
+ 12 = R(o, R, )
. T .3 . .
T1ESN; 15ESN, Rchd(ci],01255 iy i,
(2)
If
9Cd(e1,ez) =1, from (P2),
ng(Ui1’012) =1, for all i]e§N], izeSNz

Using the fact that R(1)
M(N]N2)=M(N1)+M(N2) -1

1, we have in this case

. %o Rlo: ) R(o; )
1283N2 1 i,

= MONY D+MON, )1+ (HON) )1 ) (N )1 ) =M(N, ) -M(N,)

On the other hand, if gcd(e1 ep)>1, at least for
one 11eSN) and i2eSn;., =e1 and oy,=ep from (P3).
For this 17,1, pair, the Lat1o

,0; )

ged(o;
1 2 <
R(gcd(ci 504 )) :
1 2
as R(L)>L if L>1.

+. I
1153N1

Moreover, for other i7,i2 pairs,

gcd(o, .o, )
e <1
Rlgcd{o, .0, )) =
i;77,

Thus, in this case, the summation over i; and i is
strictly less than (M(N7)-1)-(M(N2)-1). As a result,
we have

M(NN,) < M(N,)-M(N) g

Theorem 1 states that a directly designed con-
volution algorithm (with complexity M(N No) is com-
putationally superior to the one obta1ned through
multidimensional techniques (with complexity
M(N7)-M(N»)). Using the properties (P1) through
{P7), it is also possible to determine in many cases
the exact value of M(NINp). This gives a clearer
picture of the computational efficiency of the
mul tidimensional techniques. The following two
corollaries are typical amongst these results.
proofs of these corollaries may be found in [6].

The

Corollary 1 Let Ny= p? and Np= pz where pj
and p, are primes (different from p) with exponents
' 5 e,, respectively. If

ged(py~ 1, es) =1

and ged({ p@ 1, ej) =1

then

ged(ey,e,)

’ M(N1N2)=M(N1)'M(NZ)~(1— §(§EETE§:E;T))

CoroTlarx 2 let M= P] and N
and pp are primes {di fferent from p%

e1 and e , respectively. If

m
=p7 where py
with exponents



n-1 |

Py 2
and
== m-1 '
P2 [ ©
Then

M N, )=HON, )N, )= LCHN ) =T ) (MO )T (8 =1 (1)

1 ]
. R(]cm(e1,e2) 1
' t
1cmie1,e25

Note that if either Ny or Ny is a prime, then
one condition in each corollary is trivially satis-
fied and only one condition needs to be checked.
Interestingly, if both Ny and Ny are prime, then
both the conditions in both the corollaries are sat-
isfied trivially and the same complexity would be
obtained from either of the corollaries.

Tables I and II compare the computational
complexity of the algorithms derived by the multi-
dimensional techniques with those derived directly.

The ratio M(N)/(M(N7)M(N,)) in the last column
of these tables allows one to determine the compu-
tational efficiency of the multidimensional tech-
niques. It is possible to get an approximate idea
of this ratio easily from the corollaries. For
example, under the conditions of corollary 1,

acd(e]» ep)
R(gcd(E-i s PETY ?

My
N JH(N, )

and under the conditions of corollary 2,

M(N) N] N, R(]cm(ei,eé))
W{N,M(N) * MN NT] TMN,Y T TTem{elley) e].e;

Many more results in this direction may be ob-
tained by making use of the principles developed
earlier. We give below just two of these. The
proofs of these corollaries may be found in [6].

then the ratio

Corollary 3 If N]=p—1,
Wy |
M N] M N2

Corollary 4 If N1=p+1 and N2, a prime
power gf, then

. HIN
M(N})M2N25

]

1 if e, is odd
N;/M(N}) if e, is even

?

In corollary 4, M(Ny) equals 1+3p/2 or {3p+1)/2
depending on whether p equals 2 or an odd prime.
Both of these can be incorporated in M(N})=1ﬂw3p/2J
to refine M(N1N2) to

M(N{N2) = NqM(N2) + Lp/2J]
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This is an interesting expression because it shows
that increasing the length Ny times increases the
multiplicative complexity by only Ny times (approx-
imately). =

When N can be factored in more than one way,
Theorem 1 can sometimes be used to determine the
'best' factorization for applying the multidimen-
sional technique (factorization resulting in the
least computational complexity) as the following
corollary demonstrates:

Corollary 5 If N=NyN2:«-N,. such that the
factors are relatively prime pairwise and

gcd(e],ei) =1 for i=2,3,4,...,r
then the 'best' factorization of N is

N = Ny - (N2N3---Nr)
To illustrate Corollary 5, consider N=595=5x7
x41. If N is factored as 35x17, 119x5 or 85x7 one
requires 7150, 7150 or 3640 multiplications for
the cyclic convolution using multidimensional tech-
niques over GF(2). The 'best' factorization 85x7
could have been predicted from Corollary 5, since
the exponents of 5,7 and 17 are 4,3,and 8, res-
pectively. Another example over GF(2) is that of
N=1533=3x7x73 which calls for 15028, 15028 and 8116
multiplications using multidimensional techniques
with N factored as 73x21, 219x7, and 511x3, respec-
tively. Again the 'best' factorization 511x3 could
be obtained from Corollary 5 since exponents 3,7
and 73 and 2,3,and 9 respectively. Over GF(3),
one may consider N=2665=5x13x41. The exponents of
5,13,and 41 are 4,3,and 8, respectively, and ac-
cordingly, the factorization 205x13 is best. By
actual evaluation, one finds that the multidimen-
sional techniques call for 34000, 34000,and 17125
multiplications when N is factored as 533x5, 65x4],
and 205x13, respectively.

4. CONCLUSIONS

In previous work [4], a structured design
method for efficiently performing cyclic convolu-
tion over finite fields was presented. These
algorithms are applicable to lengths not divisible
by the field characteristic. In this paper, fur-
ther results are obtained on -the computational com-
plexities of these new algorithms. "It is already
been shown in [4] that the directly designed new
algorithms are more efficient than the conventionatl
convolution algorithms [1,5]. Furthermore, it is
now shown that the use of small size new algorithms
and multidimensional techniques are inferior to the
directly designed large algorithms except for
lengths whose exponents are relatively prime. This
result is contained in Theorem 1 of this paper. For
specific cases, several coroliaries are presented
which express the multiplicative complexity of
the large length algorithms in terms of the complex-
ities of the factor length algorithms. Results
related to the 'best’ factorization.in terms of
computational complexity are presented. Finally,
comparisons of multiplicative complexities of
lerigth N ¢yclic cenvoiutions obtained directly,
with those cbtained through multidimensional tech-
nigues are made for N in the range of 10 fo 6000
and fieldsof constants GF{2) and GF(23).

Thess



results illustrate the dependence of the efficiency
of the multidimensional techniques on the field of
constants. For example, for a convolution of len-
gth 455 over GF(2), the direct-to-multidimensional
complexity ratio is 56%; whereds, over GF(3), it is
73%. - Note that the direct approach offers consid-
erable savings over both fields. .In this example,
the 'best' factorization turns out to be different
for each field. In the case of length 55, the
‘best' factorization is the same, and over GF{2),
the ratio is 71%; whereas, both techniques are
equivalent over GF(3). This work, in conjunction
with the previous work [4] demonstrates that the
direct approach should be used whenever possible,
and isolates those cases when the multidimensional
techniques are equivalent to the direct approach

in complexity.
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TABLE 1

A COMPARISON OF THE MULTIPLICATIVE COMPLEXITIES OF LENGTH N cyciic
CONVOLUTION ALGORITHMS OBTAINED DIRECTLY, M(M), AND THOSE OBTAINED
THROUGH THE MULTIDIMENSIONAL TECHNIQUES, Mp(N), oveEr GF(2),

NN My ] gy MOND MG M) HOD RATIO
5 5 3 4 2 0 4 40 31,7778
33 011 3 10 2 48 4 196 18,7551
3% 7 5 3 4 3 1 130 130 1.0
51 17 3 8 2 55 4 220 166 7545
55 11 5 10 4 4810 490 U5 7061
8 17 5 8 4 55 10 550 280 5091
91 13 7 12 3 55 13 715 391 5489
%3 3 3 5 2 97 i 338 383 1.0
17 13§ 12 6 55 22 1210 508 4138
205 41 5 20 4 223 10 2890 1450 5017
315 63 5 6 4 178 10 1780 1285 7219
45 g5 7 12 3 280 13 /U0 2020 .5550
511 75 7 9 3 283 13 357 2029 L5401
663 221 3 2 2 1805 4 3620 4216 7507
765 85 3§ 5 28 22 6180 4207 6330
%49 73 13 9 1z 289 55 158%5 8119 5108
1989 117 7 12 3 500 55 27980 12982 L4Eub
6643 949 7 36 3 811 13 105547 56839 .5385

TABLE 2

A COMPARISCN OF THE MULTIPLICATIVE COMPLEXITIES ©F LENGTH N CycLIC
CONVOLUTION ALGORITHMS OBTAINED DIRECTLY, M(N), AND THOSE OBTAINED
THROUGH THE MULTIDIMENSIONAL TECHNIQUES, mD(N), OVER GF(3).

NN Ny o oey  MOND ROL) MAD RO RATIO
w5 2 4 1 10 2 2 20 10
2 05 & o4 o2 1 5 s 4l 82
2 7 4 6 2 18 5 9 77 8105
% 17 2 16 1 8 2 1 16 10
33 7 5 6 4 18 10 10 136 7158
% & 5 oz 4 11 10 10 83 7545
% 11 & 5 2 33 5 185 185 L0
55 11 5 5 4 33 10 3% 3% 10
s 8 7 2 & 118 2@ 15 7416
88 7 4 16 2 8 5 40 329 802t
5017 5 16 4 8 10 80 4IS 5063
13 7 3 6 25 18 45 259 5453
205 &1 5 3 4 1% 10 1%0 685 5037
5591 5 5 4 259 10 2590 1833 7250
656 41 15 & 4 136 20 39y 2188 5550
657 41 17 3 15 13% 82 11152 3457 3100
Se89 757 79 6 3025 19 57475 20259 5265
605 757 8 8 2 025 11 3375 35 LS



