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ABSTRACT
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By making an example of the earlier proposed
cyclic convolution algorithms, the computational
efficiency of the multidimensional techniques over
finite fields is investigated. It is shown that the
multidimensional techniques are inferior to the

directly designed algorithms for all lengths except
when applied to lengths whose exponents are rela-
tively prime. Relations between the complexities
of the directly designed algorithms and those de-
rived through the multidimensional techniques are
also established in various cases.

INTRODUCTION

It is well known that some practically import-
ant algorithms (such as the discrete Fourier trans-
form or the cyclic convolution algorithms) of large
lengths can be constructed from small factor length

algorithms using the multidimensional techniques
[1,2,3]. This procedure, applicable when the factor

lengths are relatively prime, is generally taken
to be quite efficient and has a multiplicative com-
plexi ty equal to the product of the mul tip1 ica ti ye
complexi ti es of the factor algorithms.

Recently, the authors have developed cyclic
convolution algorithms over finite fields [4].
These algorithms can be constructed for all lengths
not divisible by the field characteristics. In this
paper, we develop an expression for the multiplica-
tive complexity of these algorithms of composite
lengths. Then, making an example of these algo-
rithms, we examine the efficiency of the multi-

dimensional techniques to compute cyclic convolu-
tions Over finite fields.

We are able to show that for the multidimen-
sional technique to be efficient, not only should
the factor lengths be relatively prime, but so
should be their exponents defined in terms of the
field characteristics. Thus the efficiency of a
multidimensional technique is also dependent upon
the field over which the convolution is being corn—
uted,

2. COMPUTATIONAL COMPLEXI TV
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of the cyclic convolution of length N and R(N),
the complexity of multiplication of two N-i de-
gree (i.e,,with N coefficients) polynomials. The
exponent of an integer N with respect to a prime
p (pN) is defined as the smallest integer e such
that NI(pe_l). For example, with respect to 2, the
exponents of 3,5,7 and 9 are 2,4,3, and 6 respect-

ively. When N=Nj.N2 with gcd (N1 ,N2)=l , N1 and
N2 are called the factor lengths of N. The quan-
tities e, e1 , and e2 always denote the expon-
ents of N, Nl * and N2, respectively, with respect
to the prime p determined by the field of con-
stants GF(p).

Further, the integers {j(pe-1)/N, l<j<N—l}
are partitioned into subsets Si1,Sj2,...A subset
Sj is defined by the smallest element i (from
the set {j(pe_l)/N, l<j<N—l}) not covered by pre-
vious subsets and is constructed as Si={i,ip,ip2,.
.1, where each element is evaluated rnodulo (pe_l).

The order of Si, Si I' is denoted by Oj and the

set i1 ,i2,. ..} containing the first element of
each subset by SN.

With this notation we then have [4]:
M(N) = 1 + iSN

R(ai.) (1)

Obviously, to appreciate this expression one
should look into the properties of the functions o.
and R(N). We list below some of the properties
which are important for further analysis. The

proofs of these properties are given in [6].
(P1) R(s.t) = R(s).R(t) for py integers s and t
(P2) a e for all iESN
(P3) For any N, at least for one IESN, ae
(P4) For prime N, oj=e for all ieSN.
(P5) i.s = N—i

(P6) If NNn where q is a prime (different from
p), then any , iESN,is of the type

= e'q
where e' is the exponent of q and t is an
integer O<a<n—i

(P7) If N=Nj.N2 with gcd(N1 ,N2) = 1, one can
fully characterize the set

E {ai IiCSN} from the sets

a-j1 jlcSNl} and a2 a {ai2i2eSN2
First construct a set a' in which for every pair
ailEl ,ai2E2, one has gcd(a2,a2) occurrences o

lcm(ai1,ai2). Then

In this work, by complexity of an algorithm, we
always mean the multiplicative complexity. In addi
tion, the multiplications by the elements from the
field of constants are not counted.
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1+ R(o)= U U But
M(N1)

=

I
For p=2, the set (corresponding to N=9.25) can be
obtained from the sets i=6,2 and 2=20,4} cor- and M(N2) 1 + z R(o12) giving

responding to N1=9 and N2=25) thus, ' has 2ESN2
gcd(6,20) = 2 occurrences of lcm(20,6) = 60 N(N1N2)=M(N2) —

gcd(6,4) = 2 occurrences of lcm(6,4) = 12
gcd(o. ,a.

gcd(2,20) = 2 occurrences of lcm(2,20) = 20 and 11 12
+ . E

5N R(gcd(
R(a. )R(. )gcd(2,4) = 2 occurrences of lcm(2,4) = 4 or,

1cSN 12E O• O• 1)
11 12= {6O,60,12,l22O,20,4,4} 11 12

Finally, (2)
= {60,60,12,12,20,20,4,4,6,2,20,4} If

We end this section by giving the following gcd(e1,e2) = 1, from (P2),

lemma which illustrates the applicability of the gcd(o ,o ) = 1 * for
all 11ESN1, i2ESN2properties (P1) through (P6). 1 12

Lemma 1: If N is prime with exponent e, then Using the fact that R(1) = 1, we have in this case

M(N) = 1 + (N—i) M(N1N2)=M(N1)+M(N2) — 1

___ .E R(cs.)R(o.)Proof: Using (P4) and (P5), SN = (N—l)/e for
12cSN2 11 12primeN. Also using (P4) in (1)

M(N) = 1 + R(e) N' M(N1)+M(N2)-l+(M(N1)—l)(M(N2)—1)M(N1)M(N2)

which directly leads to the result. On the other hand, if gcd(e1,e2)>l, at least for
one ilESNi and i2CSN2, o =e- and c2=e2 from (P3).

3. CENTRAL RESULT For this i1,i2 pair, the'T-atio

We now examine the complexities of algorithms
gcd(o

of composite lengths. Of particular importance is 'l'2
< 1.

,o.the following theorem which compares the complexity R(gcd(o.
12of the length NlN2 algorithm generated directly 11

with that of the same length algorithm generated as R(L)>L if L>l. Moreover, for other ij,i2 pairs,
from length N1 and N2 algorithms using multidimen-
sional techniques.

Theorem 1: Given Ml and N2 relatively prime,
gcd(a1a)

with exponeTE e1 and e2,respectively, R(gcd(oa)) —

M(N1N2) M(N1).M(N2) if gcd(e1,e2) = 1

Thus, in this case, the summation over i1 and 2 isand
M(N1N2) < M(N1).M(N2) if gcd(e1,e2) > 1

strictly less than (M(N1)-l)(M(N2)-l). As a result
we have

Proof: We have from (1),
M(N1N2) < McN1)MN2)

M(N N ) = 1 + .
1 2

1ESN1N2
1

Theorem 1 states that a directly designed con-

vol ution algorithm (with complexity M(N1 N2) is com—= 1 + . R(a11)+. E R(oi2) putationally superior to the one obtained through
11E5N1 12cSN2

multidimensional techniques (with complexity
)• M(Nl)•M(N2)). Using the properties (P1) through

11E5N1 l22lli2 (P7), it is also possible to determine in many cases
the exact value of M(N1N2). This gives a clearer

R(lcm(11,a2)] picture of the computational efficiency of the
multidimensional techniques. The following two

where use is made of (P7) to separate the °i' corollaries are typical amongst these results. The
into three groups. Now, proofs of these corollaries may be found in E6].

n m
'1 12 c.ilil Let N1=p1 and N2=p2 where P1

R(lcm(u1,G1) = R l'i2) and P2 are primes (different from p) with exponents

e an e, respectively. If

= from (p1). gcd(p, e) =
12 ' and

gcd(p1, 01) =
Using this, we obtain

then
gcd(e,e)

:1(NiN2)+ilsNR(0il
)+.R(2) M(N1N2)=M(N1)M(N2)(l-

(M(N1)—l)(M(N2)—l
gcd(j1,o Let N1p and N =p where p

i1.cp1 i2 R(gcd(r and P2 are primes (di fferent from p with exponents
2 e and e , respectively. If
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Note that if either N1 or N2 is a prime, then
one condition in each corollary is trivially satis-
fied and only one condition needs to be checked.
Interestingly, if both Ml and N2 are prime, then
both the conditions in both the corollaries are sat-
isfied trivially and the same complexity would be
obtained from either of the corollaries.

Tables I and II compare the computational
complexity of the algorithms derived by the multi-
dimensional techniques with those derived directly.

The ratio M(N)/(M(N1)M(N2)) in the last column
of these tables allows one to determine the compu-
tational efficiency of the multidimensional tech-
niques. It is possible to get an approximate idea
of this ratio easily from the corollaries. For
example, under the conditions of corollary 1,

In corollary 4, M(N1) equals l+3p/2 or (3p+l)/2
depending on whether p equals 2 or an odd prime.
Both of these can be incorporated in M(N1)=k{_3p/2J
to refine M(N1N2) to

M(N1N2) = N1M(N2) + Lp/2J

This is an interesting expression because it shows
that increasing the length N1 times increases the
multiplicative complexity by only N1 times (approx-
imately).

When N can be factored in more than one way,
Theorem 1 can sometimes be used to determine the
'best' factorization for applying the multidimen-
sional technique (factorization resulting in the
least computational complexity) as the following
corollary demonstrates:

Corollary 5 If NN1N2" Nr such that the
factors are relatively prime pairwise and

gcd(e1,e.) = 1 for i=2,3,4,...,r

then the 'best' factorization of N is
N = N1 • (N2N3. •N)

To illustrate Corollary 5, consider N=595=5x7
x4l. If N is factored as 35x17, 119x5 or 85x7 one
requires 7150, 7150 or 3640 multiplications for
the cyclic convolution using multidimensional tech-
niques over GF(2). The 'best' factorization 85x7
could have been predicted from Corollary 5, since
the exponents of 5,7 and 17 are 4,3and 8, res-
pectively. Another example over GF(2) is that of
N=l533=3x7x73 which calls for 15028, 15028 and 8116
mul tip1 i cations using multi dimensional techniques
with N factored as 73x2l , 2l9x7, and 5llx3,respec—
tively. Again the 'best' factorization 5llx3 could
be obtained from Corollary 5 since exponents 3,7
and 73 and 2,3,and 9,respectively. Over GF(3),
one may consider N=2665=5x13x4l . The exponents of
5,13,and 41 are 4,3,and 8, respectively, and ac-
cordingly, the factorization 205xl3 is best. By
actual evaluation, one finds that the multidimen-
sional techniques call for 34000, 34000,and 17125
multiplications when N is factored as 533x5, 65x4l,
and 205x13, respectively.

4. CONCLUSIONS

In previous work [4], a structured design
method for efficiently performing cyclic convolu-
tion over finite fields was presented. These
algorithms are applicable to lengths not divisible
by the field characteristic. In this paper, fur-
ther results are obtained on the coñiputational com-
plexities of these new algorithms. it is already
been shown in [4] that the directly designed new
algorithms are more efficient than the conventional
convolution algorithms [1,5]. Furthermore, it is
now shown that the use of small size new algorithms
and multidimensional techniques are inferior to the
directly designed large algorithms except for
lengths whose exponents are relatively prime. This
result is contained in Theorem I of this paper. For
specific cases, several corollariesare presented
which express the multiplicative complexity of
the large length algorithms in terms of the complex-
ities of the factor length algorithms. Results
related to the 'best' factorization in terms of

computational complexity are presented. Finally,
comparisons of multiplicative complexities of
lecyth N cyclic convolutions obtained directly,
with those obtained through multidimensional tech
niques are made for N ic the range of 10 to 6000
and fieldsof constants GF(2) and GF(3). These

n_l e
and

1—
ej

Then

M(N1N2)=M(N1).M(N2)—[(M(N1)—l)(M(N2)—1)-(N1—l)(N2—l)

R(lcm(e' ,e' )

lcm(e,e)

M(N) — qcd(e, e)
M(N1)M(N2)

-

R(gcd(e, e))
and under the conditions of corollary 2,

M(N) N1 N2 R(lcm(eje))

M(N1)M(N2) M(N2)

Many more results in this direction may be ob-

tained by making use of the principles developed
earlier. We give below jUst two of these. The

proofs of these corollaries may be found in [6].

Corollary 3 If N1'p-l, then the ratio

M(N) -1
M(N1)M(N2)

—

cajja If N1'pfl and N2, a prime
power qfl, then

M(N; —l if e isodd
M(N1)M(N2)

2

N1JM(N1) if e2 is even
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results illustrate the dependence of the efficiency
of the multidimensional techniques on the field of
constants. For example, for a convolution of len-

gth 455 over GF(2) , the direct—to—multidimensional
complexity ratio is 56%; whereas, over GF(3), it is

73%. Note that the direct approach offers consid-
erable savings over both fields. In this example,
the 'best factorization turns out to be different
for each field. In the case of length 55, the
'best' factorization is the same, and over GF(2),
the ratio is 71%; whereas, both techniques are
equivalent over GF(3). This work, in conjunction
with the previous work [4] demonstrates that the
direct approach should b-e used whenever possi bi e,
and isolates those case-s when the multidimensional
techniques are equivalent to the direct approach
in complexity.
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TABLE 1

A COMPARISON OF THE MULTIPLICATIVE COMPLEXITIES OF LENCITH N CYCLIC
CONVOLUTION ALGORITHMS OBTAINED DIRECTLY, M(N), AND THOSR OBTAINED
THROUGH THE MULTIDIMENSIONAL TECHNIQUES, MD(N), OVER 89(z)

N
N1 62 E1 E2 6(Ni) 6(N2) MD6 6(N) RATIO

15 5 3 4 2 10 4 40 31 .7778

33 11 3 10 2 49 4 196 148 .7551

35 7 5 3 4 13 10 130 130 1.0
51 17 3 8 2 55 4 220 160 .7545

55 11 5 10 LI 49 10 490 346 .7061

85 17 5 8 L 55 10 550 283 .5091

21 13 7 12 3 55

53 31 3 5 2 97

117 13 8 12 6 55

205 41 5 20 4 289

315 63 8 6 4 178

45 65 7 12 3 280

511 73 7 9 3 289

663 221 3 24 2 1405

765 85 9 S 6 230

13 715

4 388

22 1210

10 2890

10 1780

13 3640

13 3757

4 5620

22 6160

391 .5469

383 1.0

508 .4198

1453 .5017

1285 .7219

2020 .5550

2029 .5401

4216 .7502

4207 .6830

8119 .5103

12982 .4646

56839 .5385

949 73 13 9 12 289 55 15895

1985 117 17 12 8 300 55 279(6

6643 949 7 36 3 8119 13 109347

TABLE 2

A COYPARISCN OF THE MULTIPLICATIVE COMPLEXITIES OF LENGTH N CYCLIC
CONVOLUTION ALGORITHMS OBTAINED DIRECTLY, 6(4), AND THOSE ONTAINED
THROUGH THE MULTIDIMENSIONAL TECHNIQUES, D8' OVER 69(3).

N
N1 N2 E1 E2 M(Ni) 6(N2) M0(N) 6(6) RATIO

10 5 2 4 1 10 2 20 20 1.0

20 5 4 4 2 10 5 50 41 .82

28 7 4 5 2 19 5 95 77 .8105

34 17 2 16 1 82 2 164 164 1.0

35 7 5 6 4 19 10 190 136 .7158

40 8 5 2 4 11 10 110 83 .7549

44 11 4 5 2 33 5 165 155 1.0

55 11 5 5 4 33 10 330 330 1,0

59 8 7 2 6 15 19 209 155 .7416

68 17 4 16 2 82 5 413 329 .8024

35 17 3 16 4 82 10 820 415 .5(61

91 13 7 3 6 25 15 475 259 .3453

205 41 316 136 10 1363 685 .5037

(65 91 3 6 4 259 10 2593 1383 .7290

955 41 16 8 4 136 20 3944 2189 .5350

697 41 17 8 16 136 82 11152 3457 .3100

3299 757 7 9 6 3025 19 57475 30259 .5209

6056 737 8 9 2 3025 11 33275 33273


