
Enhanced Butterfly: A Cayley Graph with Node Degree 5

Osman Guzide Meghanad D. Wagh

Department of CIS Department of ECE

Shepherd University Lehigh University

Shepherdstown, WV 25443 Bethlehem, PA 18015

oguzide@shepherd.edu mdw0@lehigh.edu

Abstract

We describe a new interconnection network called
the Enhanced Butterfly (EBn). It is a Cayley graph
with n2n nodes, each incident with five edges. This
new network has a diameter n which compares favor-
ably to the wrap-around butterfly (Bn) with the same
number of nodes and a diameter of b3n/2c. Bn is a
subgraph of EBn. The simple and optimal routing
algorithms for this network are presented.

1 Introduction

Performance of a distributed-memory message-
passing parallel computer is often limited by the un-
derlying interconnection network. The choice of the
network is complicated by the conflicting requirements
imposed on it. For example, for high communication
throughput, one needs a completely connected net-
work. But this implies a large node degree of each pro-
cessor node and therefore high costs associated with
the communication architecture within each processor.
In addition, the complexity of physical connections of
a complete network is overwhelming for a parallel pro-
cessor of any realistic size. Thus in a useful intercon-
nection network, the total number of edges is far fewer
than in a complete network and each edge is chosen
judiciously. A message is passed between unconnected
nodes by routing it along the best possible path go-
ing through other nodes. Since the communication
delay may be modeled by the length of such a path,
networks may be evaluated by the worst path length
encountered between any pair of nodes, known as the
diameter of the network.

The interconnection networks with a fixed node
degree are particularly attractive. De Bruijn net-
works [1], cube-connected cycles [2], wrap-around
meshes [3], trivalent Cayley graphs [4] and wrap-
around butterfly networks [3] are examples of fixed
node degree networks. In these networks, the com-
munication architecture of the processor and the as-
sociated communication hardware does not limit the

size of the parallel machine. Thus for example, using
processors with four communication edges, the largest
hypercube one may build is limited to 16 processors.
On the other hand, the same processors may be used
to build arbitrarily large de Bruijn networks. But
constant node degree networks have their own draw-
backs. The de Bruijn networks are not symmetric and
therefore do not allow simple task migration or fault
avoidance. Mesh networks support some parallel algo-
rithms well but in general, because of a large diameter,
are ineffective in other applications. Trivalent Cayley
graphs are relatively unexplored [5] and have not yet
been proven to support many parallel algorithm map-
pings. Wrap-around butterfly networks are symmetric
and support a large number of parallel algorithm em-
beddings [6, 7, 8]. They can also emulate other net-
works efficiently [9]. Unfortunately, they do not have
the same low diameter as the de Bruijn networks.

In this paper we show that by adding one more
edge between properly chosen pairs of nodes in a wrap-
around butterfly, one can reduce its diameter by 50%.
Addition of the new edges thus increases the node de-
gree of the network from 4 to 5 while maintaining
its symmetry. Note that such a technique has been
used previously to obtain a folded hypercube with 50%
smaller diameter by adding an additional edge between
complementary hypercube nodes [10]. Similarly by in-
creasing the node degree of the de Bruijn graph by
four, an enhanced de Bruijn graph with 50% smaller
diameter has been obtained [11].

In Section 2 we provide the definition and prop-
erties of the new network referred here as the En-

hanced Butterfly Network. We obtain the explicit Cay-
ley graph representation of the network. Section 3
gives the optimal path algorithm for this network. Fi-
nally, Section 4 provides a comparison of this network
with other popular networks commonly used in paral-
lel processing.

224

(m-1, V

(m+1, V)

(m-1, V)

g

f

(m, V)

)

-1f

-1g

(m+1, V

m-1
2

2
m)

Figure 1: Connections from node (m, V) in the but-
terfly network.

2 Definition and Properties of the En-

hanced Butterfly Network EBn

The Wrap-around Butterfly Network of degree
n ≥ 3, Bn, is a graph with vertex set Zn × {0, 1}n. A
vertex (m, V) is connected to the four vertices shown
in Fig. 1. We refer to these connections as the f , g,
f−1 and g−1 edges. Clearly, the first and third edges
are inverses of each other and so are the second and
fourth1. Note that in this figure since m ∈ Zn, m + 1
and m−1 are evaluated modulo n. V is a n-bit vector
whose bits are indexed 0 to n − 1 with the rightmost
bit being bit 0. Thus in this definition, 2m refers to
a length n vector with 1 in position m and 0’s every-
where else. Similarly an all zero vector is often written
simply as 0.

Bn is symmetric and has n2n vertices and n2n+1

edges. Its node degree is 4 and its diameter is b3n/2c.
Degree 4 Cayley graph recently proposed [12] is iden-
tical to Bn. Cube Connected Cycles is a subgraph of
Bn. Bn supports many parallel algorithms well. It is
known [13] that one can map on Bn (with dilation 1)
cycles of almost all lengths except 6 and 10 when n
is odd, and cycles of all even lengths except 6 and 10
when n is even. Similarly, Bn supports mapping of
largest possible binary trees with relatively low dila-
tion, e.g., dilation 2 for n < 16 [13].

The Enhanced butterfly network of degree n, EBn

is a graph with the same vertex set as Bn. Its connec-
tivity is shown in Fig. 2. One may note that the set
of edges of EBn is a superset of the set of edges of Bn

and the new h edge is bidirectional, i.e., h−1 = h.
Fig. 3 shows EB3, the degree 3 Enhanced but-

terfly network. (Bottom row of nodes in this figure
represents the same nodes as the top row. They are
duplicated for clarity.) The vertical, diagonal and hor-
izontal edges represent g, f and h edges respectively.

Clearly the degree of each node in EBn is 5. The

1By inverse edges we mean the following: If edge f (or g)
goes from (m1, V1) to (m2, V2), then the edge f−1 (or g−1)
goes from (m2, V2) to (m1, V1).

(m, V 2
m+ n / 2)

(m-1, V)
(m, V)

f

g

h

(m+1, V)

(m+1, V 2
m

g -1

f -1

)

)m-1(m-1, V 2

Figure 2: Connections from node (m, V) in the En-
hanced butterfly network.

total number of edges in EBn is 5n2n−1. Following
theorem shows that EBn can be viewed as a Cayley
graph.

Theorem 1. (Cayley Characterization) EBn is a
Cayley graph.
Proof. The vertices of EBn form a group Γ under the
following group operation ◦:
For any (m1, V1), (m2, V2) ∈ Γ, define

(m1, V1) ◦ (m2, V2) = (m1 + m2, V1 ⊕
m1
←

V2).

In this group operation,

m

←

V represents a vector
obtained by left rotation of V by m times. Similarly,
m

→

V will represent a right rotation of V by m places.
Since we are dealing with vectors of length n in EBn,
m left rotations and n−m right rotations are identical.

To see the associativity of this group operation,
note that

((m1, V1) ◦ (m2, V2)) ◦ (m3, V3)

= (m1 + m2, V1 ⊕
m1
←

V2) ◦ (m3, V3)

= (m1 + m2 + m3, V1 ⊕
m1
←

V2 ⊕
m1+m2
←−

V3).

and

(m1, V1) ◦ ((m2, V2) ◦ (m3, V3))

= (m1, V1) ◦ (m2 + m3, V2 ⊕
m2
←

V3)

= (m1 + m2 + m3, V1 ⊕

m1
←−

(V2 ⊕
m2
←

V3)).

Therefore,

((m1, V1) ◦ (m2, V2)) ◦ (m3, V3)
= (m1, V1) ◦ ((m2, V2) ◦ (m3, V3)),

225

111

0

2

1

0

110000 001 010 011 100 101

Figure 3: Enhanced Butterfly network of degree 3
(EB3). The row numbers and column headings repre-
sent the two coordinates of the node labels.

showing that the group operation is associative. One
may also verify that under this operation, (0, 0) ∈ Γ is
the identity element and every element (m, V) ∈ Γ has

the inverse (−m,

m

→

V). Therefore Γ is indeed a group.
To show that EBn is a Cayley graph, we should

be able to produce generators γ ∈ Γ such that for any
x ∈ Γ, vertices x and x ◦ γ are connected. One can
check that the set of elements

S = {(1, 0), (−1, 0), (1, 1), (−1, 2n−1), (0, 2bn/2c)}

are the five generators that correspond to the five edges
from each node. Set S is also closed under inverse.

Therefore network EBn is a Cayley graph.

This Cayley graph characterization implies the
following result.

Corollary 1. EBn is a node symmetric network.

Note that the group Γ is not Abelian. Theorem
1 may facilitate development of efficient mappings on
EBn. It may also be used to define the graph auto-
morphism φ : Γ → Γ that maps a specific node
(m1, V1) to an arbitrary node (m2, V2):

φ(m, V) = (m − m1 + m2, V2 ⊕ (

m2−m1
←−

V1 ⊕ V)).

This automorphism will be used later to obtain certain
paths in EBn.

A property of interconnection networks that is
of great practical importance is the diameter of the
network. Following theorem deals with that.

Theorem 2. (Diameter) The diameter of EBn is n.

Proof. Since EBn is symmetric (Corollary 1), we only
need to show that the distance from any arbitrary node
(m, V) to node (0, 0) is at most n. We achieve that
by specifying a path as follows:
case 1. If m ≤ bn/2c,

for i = m to n-1 do
if (dn/2e ≤ i < m + dn/2e)

if the (i − dn/2e)th bit of V is 1, then
go along the h edge, i.e.,
replace (i, V) by (i, V ⊕ 2i−dn/2e)

if the i-th bit of current V is 1, then
go along the f edge, i.e.,
replace (i, V) by (i + 1, V ⊕ 2i)

else
go along the g edge, i.e.,
replace (i, V) by (i + 1, V)

case 2. If m > bn/2c,

for i = m downto 1 do
if (m − bn/2c) ≤ i < dn/2e)

if the (i + bn/2c)th bit of V is 1, then
go along the h edge, i.e.,
replace (i, V) by (i, V ⊕ 2i+bn/2c)

if the (i − 1)-th bit of current V is 1, then
go along the f−1 edge, i.e.,
replace (i, V) by (i − 1, V ⊕ 2i−1)

else
go along the g−1 edge, i.e.,
replace (i, V) by (i − 1, V)

Clearly this algorithm transforms the first index
of the label to 0. To see that the second index also gets
converted to an all 0 vector, consider the two cases
separately. in case 1, for each i, m ≤ i ≤ n − 1, we
convert a 1 at the i-th bit position of V using the f
edge. In addition, for (dn/2e ≤ i < m + dn/2e), we
also convert the 1 bit at the (i + bn/2c) mod n-th
bit position of V using the h edge. This affects bit
positions 0 through m − 1. Thus one can see that by
the time i completes its entire iteration, all the bits
of V would be zero. Therefore the final destination
of this path is indeed (0, 0). The second case can be
similarly proved.

To compute the path length, note that in the first
case, one traverses h edges at most m times and f or g
edges exactly n − m times. Therefore the path length
is at most n. Similarly in the second case, one uses
h edges at most n − m times and f−1 or g−1 edges
exactly m times. Thus the path length is at most n in

this case as well.

Combined with the group automorphism, the
path algorithm may be used to obtain path between an

226

arbitrary pair of nodes in EBn. To go from (m1, V1)
to (m2, V2), one first finds an automorphism φ to map
(m2, V2) to (0, 0):

φ(m, V) = (m, V) ◦ (m2, V2)
−1

= (m − m2, V ⊕
m−m2
←−

V2).

One then determines a path from φ(m1, V1) to (0, 0).
By applying φ−1 to every node on this path, one
may obtain the desired path between (m1, V1) and
(m2, V2). (Note that φ−1 = (m2, V2) ◦ (m, V).)

To illustrate this, consider the path in EB11

from (1, 10111011100) to (5, 10111100111). Since
in this case, the function φ(1, 10111011100) equals
(1, 10111011100)(5, 10111100111)−1

= (7, 11011000001), we first need to establish a path
from (7,11011000001) to (0, 00000000000). But this is
the exact path that was determined earlier. Therefore
by translating each node according to φ−1, one gets
the desired path:

(1, 10111011100)
f−1

−→ (0, 10111011101)
g−1

−→
(10, 10111011101)

h−→ (10, 10111001101)
g−1

−→
(9, 10111001101)

h−→ (9, 10111000101)
g−1

−→
(8, 10111000101)

g−1

−→ (7, 10111000101)
h−→

(7, 10111000111)
g−1

−→ (6, 10111000111)
f−1

−→
(5, 10111100111)

It may also be noted that rather than translating
each node one may simply choose to apply the same
edge sequence as in the case of φ(m1, V1) to (0, 0) to
get the final path.

3 Optimal Paths in EBn

We will now describe the procedure to determine
the optimal path between an arbitrary node (m, V)
and node (0, 0) in EBn. Because of symmetry, this
same algorithm may be extended to provide an optimal
path between any arbitrary pair of nodes.

If m ≤ bn/2c, there are two possible paths to the
final destination. The first path is the one described
in case 1 of the proof of Theorem 2. The length DL of
this path is given by

DL = (n − m) + weight(V ⊕ (2m − 1)). (1)

The second term in (1) represents the number of 1s in
the m least significant bits of V .

The second possible path to go from (m,V) to
(0, 0) is described by the following algorithm. It re-
lies upon two constants, t1 and t2 satisfying m ≤ t1 <

dn/2e and t1 + bn/2c ≤ t2 ≤ n. Procedure to deter-
mine t1 and t2 is explained later.

for i = m to t1 − 1 do
go from (i, V) to (i + 1, V) along the g edge

for i = t1 downto t2 + 1 mod n (through 0) do
if the (i + bn/2c) mod n-th bit of V is 1, then

go along the h edge, i.e.,
replace (i, V) by (i, V ⊕ 2i+bn/2c mod n)

if the (i − 1)-th bit of V is 1, then
go along the f−1 edge, i.e.,
replace (i, V) by (i − 1, V ⊕ 2i−1)

else
go along the g−1 edge, i.e.,
replace (i, V) by (i − 1, V)

for i = t2 to n − 1 do
go from (i, V) to (i + 1, V) along the g edge

The length of this path, DR, is given by

DR = (t1 − m) + (t1 + n − t2) + (n − t2)
+weight(V ⊕ (2t1+bn/2c − 2t2−dn/2e))

(2)

Note that the weight function in (2) gives the number
of 1’s within bit positions (t2 − dn/2e) to (t1 + bn/2c)
of V .

Constants t1 and t2 are chosen using the following
procedure:

1. For m ≤ i < dn/2e, compute

HL(i) = 2(i − m)+
weight(V ⊕ (2i+bn/2c − 2m+1+bn/2c)).

(3)

2. For m ≤ i < dn/2e, Choose the smallest integer
i′ ≥ i such that

• i′ = i, n is even and bit i′ of V is 1.

• i′ > i and either bit i′ − (n mod 2) or bit
(i′ + bn/2c) mod n of V is 1.

Note that for odd n, i′ > i.
Compute

HR(i) = 2(dn/2e − i′)

+ weight(V ⊕ (2bn/2c−1 − 2i′−(n mod 2)))
(4)

3. Choose t1 equal to the value of i which minimizes

H = min
m≤i<dn/2e

(HL(i) + HR(i)) (5)

and choose t2 = i′ + bn/2c where i′ denotes the
corresponding integer as in step 2.

227

We now state the result about the optimal path.

Theorem 3. (Optimal path) The path given above
with the smaller of the lengths DL and DR is the op-
timal path in EBn.

The proof of this theorem is omitted for
brevity. We illustrate this procedure by computing
the optimal path in EB11 from (2, 10100010011) to
(0, 00000000000).

The first path between these nodes using the al-
gorithm in Theorem 2 has a length given by (1) and
equals DL = 11. To obtain the second path, one com-
putes t1 = 3 and t2 = 5 + b11/2c = 10 as specified
earlier. Thus from (2), DR = 8. Since DR < DL, we
use the second path given below:

(2, 10100010011)
g−→ (3, 10100010011)

h−→
(3, 10000010011)

g−1

−→ (2, 10000010011)
f−1

−→
(1, 10000010001)

f−1

−→ (0, 10000010000)
f−1

−→
(10, 00000010000)

h−→ (10, 00000000000)
g−→

(0, 00000000000).

When m > bn/2c, one can obtain the optimal
path between any (m, V) and (0, 0) by simply trans-
forming the problem using symmetry of the network
into one that has m ≤ bn/2c. To get the desired op-
timal path in this case, we first find the optimal path

from (−m,

m

→

V) to (0, 0). Note that since m > bn/2c,
(−m) mod n ≤ bn/2c and the optimal path algorithm
described earlier is applicable in this case. Since this
path is reversible (see footnote 1), this path is also

the optimal path to go from (0, 0) to (−m,

m

→

V). By
multiplying (from the left) each node on this path by
node (m, V) (using the group operations in Γ defined
earlier), one gets the optimal path from (m, V) to

(0, 0). Alternately, after the path from (−m,

m

→

V) to
(0, 0) is obtained, one can read the sequence of edges
used therein in reverse order and then employ the in-
verses of these edges to obtain the desired path from
(m, V) to (0, 0).

We illustrate this procedure by computing the
optimal path from node (7, 11011000001) to node
(0, 00000000000) in EB11.

Since n = 11, according to the procedure de-
scribed above, we first have to get the optimal path
from (4, 10000011101) to (0, 00000000000). For this,
the first path has a length DL = 10 given by (1). For
the second path, t1 and t2 work out to be 4 and 10
respectively. Thus from (2), DR = 7. Clearly the sec-
ond path of length 7 is the optimal path. It is given
by:

(4, 10000011101)
f−1

−→ (3, 10000010101)
f−1

−→
(2, 10000010001)

g−1

−→ (1, 10000010001)
f−1

−→
(0, 10000010000)

f−1

−→ (10, 00000010000)
h−→

(10, 00000000000)
g−→ (0, 00000000000).

The optimal path from (7, 11011000001) to
(0, 00000000000) is therefore given by

(7, 11011000001)
g−1

−→ (6, 11011000001)
h−→

(6, 11011000000)
f−→ (7, 11010000000)

f−→
(8, 11000000000)

g−→ (9, 11000000000)
f−→

(10, 10000000000)
f−→ (0, 00000000000).

4 Conclusion

Wrap-around butterfly is a very useful network
by virtue of its support of a wide variety of parallel
algorithms, its ability to emulate other parallel archi-
tectures and its fixed node degree implying a low cost
implementation. We have shown that with certain ad-
ditional edges, one can get an Enhanced Butterfly net-
work, EBn. EBn is symmetric, has n2n nodes, a fixed
node degree of 5 and a low diameter n. It is a Cay-
ley graph and therefore inherits all the nice proper-
ties of Cayley graphs including the symmetry. Table
1 compares EBn with some popular networks used in
parallel processing.

Table 1: Comparison of EBn with wrap-around M×N
mesh, wrap-around butterfly (Bn), hypercube (Hn),
de Bruijn network (DBn), folded hypercube (FHn)
and enhanced de Bruijn network(EDBn).

No. of Node Diameter Symm-
proc. degree etry

Mesh MN 4 (M + N)/2
√

Bn n × 2n 4 b3n/2c √

Hn 2n n n
√

DBn 2n 4 n
EBn n × 2n 5 n

√

FHn 2n n + 1 dn/2e √

EDBn 2n 8 bn/2c

Wrap-around butterfly network Bn is a subgraph
of EBn; consequently, EBn supports all the embed-
dings that Bn supports including mappings of cycles
and trees. It is possible that some of the mappings on
Bn may be improved on EBn. The lower diameter of
EBn also results into lower average distance between

228

a random pair of nodes of the network. For example,
when n = 6, EBn has 20% lower average distance as
compared to Bn. When n = 12, this gain rises to 22%.
A path of length at most n between an arbitrary pair
of nodes of EBn is easy to implement. Design of an
optimal path is also possible.

References

[1] M. Samatham and D. Pradhan, “The de bruijn
multiprocessor network: A versatile parallel pro-
cessing and sorting network for vsli,” IEEE Trans.

Computers, vol. 38, no. 4, pp. 567–581, 1989.

[2] F. Preparata and J. Vuillemin, “The cube-
connected cycles: A versatile network for paral-
lel computation,” Comm. ACM, vol. 24, no. 5,
pp. 30–39, 1991.

[3] F. Leighton, Introduction to parallel algorithms

and architectures: Arrays, trees, hypercubes. M.
Kaufman Pub., 1992.

[4] P. Vadapalli and K. Srimani, “Trivalent cayley
graphs for interconnection network,” Information

Processing Letters, vol. 54, pp. 329–335, 1995.

[5] M. D. Wagh and J. C. Mo, “Hamilton cycles in
trivalent cayley graphs,” Information Processing

Letters, vol. 60, no. 4, pp. 177–181, 1996.

[6] S. Bhatt, F. Chung, J. W. Hong, F. Leighton, and
A. Rosenberg, “Optimal simulation by butterfly
networks,” in Proc. 20th Symp. Theory Comput.,
pp. 192–204, 1988.

[7] A. Gupta and S. E. Hambrusch, “Embedding
complete binary trees into butterfly networks,”
IEEE Trans. Computers, vol. 40, pp. 853–863, Jul
1991.

[8] R. Feldmann and W. Unger, “The cube-
connected-cycle is a subgraph of the butterfly net-
work,” Parallel Processing Letters, vol. 2, no. 1,
pp. 13–19, 1992.

[9] S. Bhatt, F. R. K. Chung, J. Hong, F. Leighton,
B. Obrenic, A. L. Rosenberg, and E. J. Schwabe,
“Optimal emulation by butterfly-like networks,”
JACM, vol. 43, pp. 293–330, Mar 1996.

[10] A. El-Amawy and S. Latifi, “Properties and per-
formance of folded hypercubes,” IEEE Transac-

tions on Parallel and Distributed Systems, vol. 2,
pp. 31–42, Jan 1991.

[11] O. Guzide and M. D. Wagh, “Enhanced de bruijn
graphs,” in Proc. of the the 2005 Int. Conf. on Al-

gorithmic Math and Comp. Sc, (Las Vegas, NV),
pp. 23–28, 2005.

[12] P. Vadapalli and K. Srimani, “A new family of
cayley graph interconnection networks of con-
stant degree four,” IEEE Trans. Parallel and Dis-

tributed Systems, vol. 17, no. 1, pp. 26–32, 1996.

[13] M. D. Wagh and O. Guzide, “Mapping cycles and
trees on wrap-around butterfly graphs,” SIAM J.

on Comput., vol. 35, pp. 741–765, 2006.

229

