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Abstract—Discrete Fourier transforms (DFTs) over finite fields
have widespread applications in digital communication and
storage systems. Hence, reducing the computational complexities
of DFTs is of great significance. Recently proposed cyclotomic
fast Fourier transforms (CFFTs) are promising due to their low
multiplicative complexities. Unfortunately, there are two issues
with CFFTs: (1) they rely on efficient short cyclic convolution
algorithms, which have not been sufficiently investigated in the
literature and (2) they have very high additive complexities when
directly implemented. To address both issues, we make three
main contributions in this paper. First, for any odd prime ,
we reformulate a -point cyclic convolution as the product of
a � �� � �� Toeplitz matrix and a vector, which has
well-known efficient algorithms, leading to efficient bilinear algo-
rithms for -point cyclic convolutions. Second, to address the high
additive complexities of CFFTs, we propose composite cyclotomic
Fourier transforms (CCFTs). In comparison to previously pro-
posed fast Fourier transforms, our CCFTs achieve lower overall
complexities for moderate to long lengths and the improvement
significantly increases as the length grows. Third, our efficient
algorithms for -point cyclic convolutions and CCFTs allow us to
obtain longer DFTs over larger fields, e.g., the 2047-point DFT
over������� and 4095-point DFT over�������, which are first
efficient DFTs of such lengths to the best of our knowledge. Finally,
our CCFTs are also advantageous for hardware implementations
due to their modular structure.

Index Terms—Cooley–Tukey algorithm, cyclotomic fast Fourier
transforms, discrete Fourier transforms, finite fields, prime-factor
algorithm.

I. INTRODUCTION

D ISCRETE Fourier transforms (DFTs) over finite fields [1]
have widespread applications in error correction coding,

which in turn is used in all digital communication and storage
systems. For instance, both syndrome computation and Chien
search in the syndrome based decoder of Reed–Solomon codes
[2] and [3], a family of widely used error control codes, can be
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formulated as polynomial evaluations and hence can be imple-
mented efficiently using DFTs over finite fields. Directly imple-
menting an -point DFT requires multiplications and

additions and becomes costly when is large. Hence,
reducing the computational complexities of DFTs is of great
significance. Recently, efficient long DFTs have become par-
ticularly important as increasingly longer error control codes
are chosen for digital communication and storage systems. For
example, Reed–Solomon codes over and with block
length of several thousands are considered for hard drive [4]
and tape storage [5] as well as optical communication systems
[6] to achieve better error performance; the syndrome based de-
coder of such codes requires DFTs of lengths up to 4095 over

. In addition to complexity, a modular structure is de-
sirable for efficient hardware implementations of DFTs.

In the literature, fast Fourier transforms (FFTs) based on the
prime-factor algorithm [7] and the Cooley-Tukey algorithm [8]
have been proposed for DFTs over the complex field. When
FFTs based on the prime-factor algorithm are adapted to DFTs
over finite fields [9], they still have high multiplicative complex-
ities. In contrast, recently proposed cyclotomic FFTs (CFFTs)
are promising since they have significantly lower multiplicative
complexities [10] and [11]. However, CFFTs have two issues.
First, they rely on efficient algorithms for short cyclic convo-
lutions, which do not always exist. For instance, CFFTs over

would require efficient algorithms for 11-point cyclic
convolutions. Previous works (see, for example, [10]–[12]) have
not investigated CFFTs over partially due to the lack of
efficient 11-point cyclic convolutions in the literature. Second,
CFFTs have very high additive complexities when directly im-
plemented, which can be reduced by techniques such as the
common subexpression elimination (CSE) algorithm (see, for
example, [12]–[15]). In particular, the CSE algorithm in [12] is
effective for reducing the additive complexities of CFFTs over

for . Although the CSE algorithm has a polyno-
mial complexity [12, Sec.III-F], its time and memory require-
ments limit its effectiveness for long DFTs. Due to these two
issues, CFFTs over and have not been inves-
tigated in the literature.

In this paper, we address both aforementioned issues. The
main contributions of our paper are as follows.

• For an odd prime , we reformulate a -point cyclic con-
volution over characteristic-2 finite fields as the product
of a Toeplitz matrix and a vector. Since

is composite, this product can be readily obtained
by multi-dimensional technologies from well-known
Toeplitz matrix vector products (TMVPs) of very small
sizes [16]–[20]. In comparison to other ad hoc techniques
based on TMVPs, our reformulation achieves lower mul-
tiplicative complexity, especially for small to moderate
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and leads to efficient bilinear algorithms for -point cyclic
convolutions over characteristic-2 finite fields. Our refor-
mulation can be readily extended to the real and complex
fields as well as more general finite fields. Furthermore,
by multi-dimensional technologies, we can also obtain ef-
ficient algorithms for -point cyclic convolutions. These
algorithms are also keys to long CFFTs.

• Due to the high additive complexities of CFFTs, we pro-
pose composite cyclotomic Fourier transforms (CCFTs),
which are generalization of CFFTs. When the length
of a DFT is factored, i.e., , the CCFT uses

- and -point CFFTs as sub-DFTs via the prime-factor
and Cooley-Tukey algorithms. Thus, CFFTs are simply a
special case of our CCFTs, corresponding to the trivial
factorization, i.e., . This generalization re-
duces overall complexities in three ways. First, this di-
vide-and-conquer strategy itself leads to lower complexi-
ties. Second, the moderate lengths of the sub-DFTs enable
us to apply complexity-reducing techniques such as the
CSE algorithm in [12] more effectively. Third, when the
length admits different factorizations, the one with the
lowest complexity is selected. In the end, while an -point
CCFT may have a higher multiplicative complexity than an

-point CFFT, the former achieves a lower overall com-
plexity for long DFTs because of its significantly lower
additive complexity. Moreover, when is composite, an

-point CCFT has a modular structure, which is suitable
for efficient hardware implementations. Our CCFTs pro-
vide a systematic approach to designing long DFTs with
low complexity.

• Our efficient algorithms for -point cyclic convolutions
and CCFTs allow us to obtain longer DFTs over larger
fields. For example, we propose CFFTs over ,
which are unavailable in the literature heretofore partially
due to the lack of efficient 11-point cyclic convolution al-
gorithms. Our 2047-point DFTs over and 4095-
point DFTs over are also first efficient DFTs of
such lengths to the best of our knowledge and they are
promising for emerging communication systems.

Our work in this paper extends and improves previous works
[10] and [12] on CFFTs over finite fields of characteristic-2 in
several ways. First, previously proposed CFFTs focus on

-point CFFTs over for . In contrast, our CCFTs
allow us to derive long DFTs with low complexity over larger
fields. Our approach can be applied to any finite field, but we
present CCFTs over and due to their sig-
nificance in applications. Furthermore, our work investigates

-point CFFTs over for any that divides ,
i.e., . Second, our CCFTs achieve lower overall com-
plexities than all previously proposed FFTs for moderate to
long lengths and the improvement significantly increases as the
length grows.

The rest of the paper is organized as follows. Section II briefly
reviews the necessary background of this paper, such as the
CFFT, the prime-factor algorithm, the Cooley-Tukey algorithm
and the CSE algorithm. We propose an efficient bilinear algo-
rithm for -point cyclic convolutions over in Section III.
We then use an 11-point cyclic convolution algorithm to con-
struct 2047-point CFFT over in Section V. We also
propose our CCFTs and compare their complexities with pre-

viously proposed FFTs in Section V. Concluding remarks are
provided in Section VI.

II. BACKGROUND

A. Cyclotomic Fast Fourier Transforms

In this paper, we consider DFTs over finite fields . Let
be an element with order , which implies that

(otherwise does not exist). Given an -dimensional
column vector over , the DFT
of is given by , where

(1)

If we define , we have . Di-
rectly computing the DFT requires multiplications and

additions and is impractical for large . Cyclotomic
FFTs (CFFTs) [10] and [11] can reduce the multiplicative com-
plexities greatly.

We first partition the integer set
into cyclotomic cosets modulo with re-
spect to [3]: , where

and
. A polynomial , where

, is called a linearized polynomial over ,
since it has a linear property for

. With the help of cyclotomic cosets, can
be decomposed as a sum of linearized polynomials

Therefore, and each lies in the
subfield .

Using a normal basis of
over , can be expressed by ,
where . By the linear property of ’s,

. Written in the ma-
trix form, the DFT of is given by , where

is an binary matrix constructed from the bi-
nary coefficients , is an permutation matrix,

is a block diagonal matrix, and
’s are square matrices. The permutation matrix
reorders the vector into and

.
Though the idea of cyclotomic decomposition dates back to

[21], the normal basis representation is a key step in reducing
the multiplicative complexity of DFTs [10]. Since ,
the th block of is actually a circulant matrix, which is
given by

...
...

. . .
...
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Hence, the multiplication between and can be
formulated as an -point cyclic convolution between

and . Since
is usually small, we can use efficient bilinear form algorithms
[1] for short cyclic convolutions to compute . Those
bilinear form algorithms have the following form:

where , , and are all binary matrices, is
a precomputed constant vector and denotes a component-wise
multiplication between two vectors. Combining all the matrices,
we get

(2)

where ,
and .

The multiplications required by (2) are due to the compo-
nent-wise multiplication between and and the additions
required by (2) are for multiplications between binary matrices
and vectors. The direct implementation of CFFT in (2) requires
much fewer multiplications than the direct implementation of
DFT, at the expense of a very high additive complexity.

B. Common Subexpression Elimination

Given an binary matrix and an -dimensional
vector over a field . The matrix vector multiplication
can be done by additions over only, the number of which is
denoted by since the complexity is determined by ,
when is arbitrary. The problem of determining the minimal
number of additions, denoted by , has been shown to
be NP-complete [22]. Instead, different common subexpression
elimination algorithms (see, e.g., [13]–[15]) have been proposed
to reduce . The CSE algorithm proposed in [12] takes ad-
vantage of the differential savings and recursive savings and can
greatly reduce the number of additions in calculating , al-
though the reduced additive complexity, denoted by ,
is not guaranteed to be the minimum. Like other CSE algo-
rithms, the CSE algorithm in [12] is randomized and the reduc-
tion results of different runs are not necessarily the same. There-
fore, in practice, a better result can be obtained by first running
the CSE algorithm many times and then selecting the smallest
number of additions. The CSE algorithm in [12] greatly reduces
the additive and overall complexities of CFFTs with length up
to 1023, but it is much more difficult to reduce the additive com-
plexity of longer CFFTs. This is because though the CSE algo-
rithm in [12] has a polynomial complexity (it is shown that its
complexity is ), the runtime and memory re-
quirements become prohibitive when and are very large,
which occurs for long CFFTs.

C. Prime-Factor and Cooley-Tukey Algorithms

Both the prime-factor algorithm and the Cooley-Tukey algo-
rithm first decompose an -point DFT into shorter sub-DFTs
and then construct the -point DFT from the sub-DFTs [1].
The prime-factor algorithm requires that the length has at
least two co-prime factors, i.e., there exist two co-prime num-
bers and such that . For an integer

, there is a unique integer pair such
that , and

, since and are co-prime. For any integer
, let , ,

where and . By the Chi-
nese remainder theorem, uniquely determines and
can be represented by ,
where and .
Substituting the above representation of and in (1), we get

, where and are the th
root and the th root of 1, respectively. Therefore, (1) becomes

(3)

In this way, the -point DFT is obtained by using - and
-point sub-DFTs. The -point DFT result is derived by first

carrying out -point DFTs and -point DFTs and
then combining the results according to the representation of
. The prime-factor algorithm can also be applied to - and

-point DFTs if they have co-prime factors.
The Cooley-Tukey algorithm has a different decomposition

strategy from the prime-factor algorithm. Let ,
where and do not have to be co-prime. Let ,
where and and ,
where and . Then (1)
becomes

(4)

In this way, the Cooley-Tukey algorithm also decomposes
the -point DFT into - and -point DFTs. However,
compared with (3), (4) has an extra term , which is
called a twiddle factor and incurs additional multiplicative
complexity. The Cooley-Tukey algorithm can be used for
arbitrary non-prime length , including the prime powers to
which case the prime-factor algorithm cannot be applied. The
Cooley-Tukey algorithm is very suitable if has a lot of small
factors: for example, a -point DFT by the Cooley-Tukey
algorithm requires multiplications.

III. -POINT CYCLIC CONVOLUTIONS OVER

The lengths of cyclic convolutions involved in -point
CFFTs over are the same as the sizes of the cyclotomic
cosets modulo with respect to and they are usually
much smaller than , the length of the CFFTs. Efficient algo-
rithms for such short cyclic convolutions play an essential role
in the multiplicative complexity reduction of CFFTs.

Despite their significance, there are no general algorithms
for efficient cyclic convolutions of arbitrary length over finite
fields. Of course, efficient ad hoc algorithms for 2- to 9-point
cyclic convolutions can be found in the literature (4- and 8-point
can be found in [23] and [24], and the rest can be found in
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[1] and [2]). Furthermore, cyclic convolutions with composite
lengths can be constructed with multi-dimensional technologies
described in [1]. For instance, a 10-point cyclic convolution al-
gorithm can be constructed based on 2- and 5-point algorithms,
while a 12-point cyclic convolution algorithm is constructed
based on 3- and 4-point algorithms. However, an efficient al-
gorithm for cyclic convolutions of larger prime lengths (for ex-
ample, 11- or 13-point) is not available in the open literature.
We can implement these cyclic convolutions via the convolution
theorem. Although the DFT and the inverse DFT can be imple-
mented by the Winograd algorithm [25] or the Rader algorithm
[26], this approach remains inefficient, especially for small to
moderate lengths. In [27], strategies to derive cyclic convolu-
tion algorithms directly over any finite field were de-
veloped. Unfortunately, these methods are applicable only to
lengths or their factors.

Herein, for an odd prime , we propose to reformulate a
-point cyclic convolution as the product of a

Toeplitz matrix and a vector. Since is composite, this
product can be readily obtained by multi-dimensional technolo-
gies from well-known Toeplitz matrix vector products (TMVPs)
of very small sizes, leading to efficient bilinear algorithms for

-point cyclic convolutions. Since these cyclic convolutions
will be used for CFFTs over , we focus on cyclic convo-
lutions over . However, our reformulation can be readily
extended to the real and complex fields as well as more general
finite fields. Furthermore, by multi-dimensional technologies,
we can also obtain efficient algorithms for -point cyclic
convolutions. These algorithms are also key to long CFFTs.

For a -dimensional vector over
some field , where is any odd prime integer, we con-
sider its corresponding polynomial . As-
suming that the -point cyclic convolution of two vectors and

is , all of which are -dimensional vectors over , their
corresponding polynomials are related by [1]

(5)

Note that and and
are co-prime in . Hence, by the

Chinese remainder theorem, can be uniquely determined
by and , where

(6)

It is easy to see that , and
the vector can be
derived by multiplying the vector with a matrix with
structure

...

where is a identity matrix. That is,
. Simillarly, we have and .

From (5) and (6), it is easy to see that and

(7)

Therefore, to compute the -point cyclic convolution of and
, we first compute and , then compute

from and and finally, .
From (7), the polynomial product can be computed as

(8)

and hence the vector can be computed through a matrix
product , where the elements of matrix are

(9)

Note that in (8) and (9), is considered as zero outside its valid
range, i.e., if or .

We can check that is an invertible matrix and is given
by

where the length- row vector , the
length- column vector and the

matrix has 0 on the first upper diagonal and 1
everywhere else.

Now consider the resulted cyclic convolution
as the product of and :

Values of and can be computed as and
. Note that and are related as

. This implies that the sum of the components
of gives . Furthermore, contains only 1’s. Thus,
the computation of and reduces to

(10)

Equation (10) shows that multiplying a vector with needs
only the evaluation of .

Since , one needs to compute where the
matrix . We now show that is a

Toeplitz matrix. From the structure of , we have

(11)

From (9), using appropriate ranges for the three terms we get

(12)
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Fig. 1. An efficient algorithm for �-point cyclic convolutions.

Finally, combining (9), (11) and (12) gives

(13)

Since is a function of only , is a Toeplitz matrix.
Recall that is zero if its index is outside the valid range of 0
to . Thus, in (13), at most one of the first two terms is valid
for any combination of and .

Fig. 1 illustrates our algorithm for -point cyclic convo-
lutions, which rely on the implementation of . Direct
implementation of requires multiplications, but
we can reduce it since is a Toeplitz matrix. For any odd
prime , is composite and can be obtained by
using multi-dimensional technologies from TMVPs of smaller
sizes [16]–[20]. For example, CFFTs over , ,

and , involve 11-, 13-, 17- and 19-point
cyclic convolutions, respectively. Using our reformulations,
these cyclic convolutions can be obtained from TMVPs of
size 2 2, 3 3 (see, e.g., [20]) and 5 5 (provided in the
Appendix). Hence, our reformulation leads to efficient cyclic
convolution algorithms for any odd prime , which are
sufficient for CFFTs over characteristic-2 fields as large as

.
This reformulation is also applicable to a prime greater than

19, where may have a prime factor greater than five. In
this case, one can use two ad hoc techniques to proceed. First,
one can break a matrix into blocks and treat them sep-
arately. Second, one can extend the matrix to a larger
matrix so that it remains a Toeplitz matrix and its size becomes
composite again. The complexity of the cyclic convolution algo-
rithm obtained through this reformulation is much smaller than
that of the direct implementation. For example, we can first ex-
tend the Toeplitz matrix to a

matrix and its product with a vector requires fewer
than multiplications if we use the two-way split
method described in [20].

We note that a -point cyclic convolution can be formulated
as a circulant matrix vector product. Since a circulant
matrix is a special case of Toeplitz matrix, one can of course
apply the two ad hoc techniques described above to this

circulant matrix directly. However, since our reformulation

turns a -point cyclic convolution into a TMVP,
which directly benefits from multi-dimensional technologies at
the expense of only one extra multiplication, we believe our
reformulation will lead to a lower multiplicative complexity. We
cannot prove this analytically, but will illustrate this point below
with an example.

We also remark that our reformulation leads to bilinear algo-
rithms for cyclic convolutions, which can be implemented effi-
ciently since the pre- and post-addition matrices are all binary.

A. Example: 11-Point Convolution Algorithm Over

To illustrate the advantages of our reformulation above, we
derive our efficient 11-point cyclic convolution algorithm over

and compare its multiplicative complexity with some
other approaches. By using 2 2 and 5 5 TMVPs, we obtain
an 11-point cyclic convolution algorithm

, where the matrices , and are derived
from a 10 10 TMVP, which is then decomposed into 2 2
and 5 5 TMVPs via multi-dimensional technologies. Since
the 10 10 TMVP requires 42 multiplications, our 11-point
cyclic convolution requires 43 multiplications. Details about the
matrices can be found in [28].

Let us compare this multiplicative complexity with the two
aforementioned ad hoc techniques. First, we can partition the
11 11 circulant matrix into a 10 10 Toeplitz matrix, a
10 1 column vector, a 1 10 row vector and a single element
and then apply multi-dimensional technologies to the 10 10
TMVP. In addition to the 10 10 TMVP, this approach requires
21 extra multiplications, as opposed to the one in our approach.
Second, we can extend the 11 11 circulant matrix to a 12 12
Toeplitz matrix and then apply multi-dimensional technologies
to it. A 12 12 TMVP requires multiplications.
Taking into account that we pad a zero to the 11 1 vector
and that the last element of the TMVP is not needed, two
multiplications can be saved and we need 52 multiplications
in total (note that this total multiplicative complexity is the
same regardless of the decomposition order of 12). We can also
extend the 11 11 circulant matrix to a 15 15 Toeplitz matrix
or a 16 16 one, which require 66 and 60 multiplications,
respectively. Our reformulation is more efficient than these ad
hoc techniques in terms of the multiplicative complexity. This
is because our reformulation turns a -point cyclic convolution
into a TMVP, which directly benefits from
multi-dimensional technologies at the expense of only one
extra multiplication.

We also compare our result with the implementation via the
convolution theorem, i.e., first multiplying the DFTs of the two
vectors component-wisely and then computing the inverse DFT
of the resulting vector. If we use the Rader’s algorithm [26] to
implement the DFT and inverse DFT, it needs 101 multiplica-
tions in total. Hence, this approach is less efficient than ours.

By using the CSE algorithm in [12], our 11-point cyclic con-
volution algorithm requires 43 multiplications and 164 addi-
tions. When we use this algorithm in CFFTs over , one
of the two inputs is known in advance. The computation further
reduces to 42 multiplications since one of the multiplication has
an operand of one and 120 additions because the additions in-
volving the known input can be pre-computed.
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IV. LONG CYCLOTOMIC FOURIER TRANSFORMS

A. 2047-Point CFFT Over

The efficient algorithm for 11-point cyclic convolutions we
designed in Section III-A is the key to the CFFTs over .
A direct implementation of a 2047-point CFFT with this cyclic
convolution algorithm requires 7812 multiplications and
2130248 additions. The prohibitively high additive complexity
is dominated by the multiplication between the 2047 2047
binary matrix (see Section II-A) and a 2047-dimensional
vector, which requires 2095280 additions. Unfortunately, if we
use the CSE algorithm in [12] to reduce its additive complexity,
the time complexity of the CSE algorithm itself is too high (it
may need months to finish).

Due to the high time complexity of the CSE algorithm in [12],
we have tried a simplified CSE algorithm with limited success.
In the original CSE algorithm in [12], only one of the patterns
with the greatest recursive savings is selected and removed in
each round of iterations. Instead of selecting only one pattern,
our simplified CSE algorithm has a reduced time complexity as
it removes multiple patterns at one time. The simplified CSE
algorithm with a reduced time complexity allows us to reduce
the additive complexity for the 2047-point CFFT to 529720 ad-
ditions, about one fourth of that for the direct implementation.
Despite this improvement, the effectiveness of this simplified
CSE algorithm is rather limited.

B. Difficulty With Long CFFTs

Consider an -point CFFT over . Let
be the cyclotomic cosets modulo

over and . Suppose an -point cyclic
convolution can be done with multiplications and
hence directly implementing the -point DFT with the CFFT
requires multiplications and
additions, where denotes the number of additions
we need to evaluate the product of a binary matrix and a
vector. The multiplicative complexity can be further reduced
because we can pre-compute the vector in (2) and some
of its elements may be one. Then the CSE algorithm can
be applied to the matrices and to reduce
and to and , respectively. Since

is a block diagonal matrix, we
have . That is, we can reduce
the additive complexity of each to get a better result of

. Since the size of is much smaller than that of , it
allows us to run the CSE algorithm many times to achieve a
smaller additive complexity. However, the matrix is not a
block diagonal matrix and therefore we have to apply the CSE
algorithm directly to . When the size of is large, the
CSE algorithm in [12] requires a lot of time and memory and
hence it is impractical for extremely long DFTs. As mentioned
above, it would take months for the CSE algorithm in [12]
to reduce the additive complexity of 2047-point CFFT over

, let alone 4095-point CFFTs over . The
prohibitively high time complexity of the CSE algorithm in [12]
and the limited effectiveness of the simplified CSE algorithm
motivate our composite cyclotomic Fourier transforms.

V. COMPOSITE CYCLOTOMIC FOURIER TRANSFORMS

A. Composite Cyclotomic Fourier Transforms

Instead of simplifying the CSE algorithm or designing other
low complexity optimization algorithms, we propose composite
cyclotomic Fourier transforms (CCFTs) by first decomposing
a long DFT into shorter sub-DFTs, via the prime-factor or
Cooley-Tukey algorithm and then implementing the sub-DFTs
by CFFTs. Note that both the decompositions require only that

is a primitive root of 1, hence they can be extended
to finite fields easily. When is prime, our CCFTs reduce to
CFFTs. When is composite, we first decompose the DFT
into shorter sub-DFTs and then combine the sub-DFT results
according to (3) or (4). The shorter sub-DFTs are implemented
by CFFTs to reduce their multiplicative complexities and then
we use the CSE algorithm in [12] to reduce their additive com-
plexities. Finally, when has multiple factors, the factorization
can be carried out recursively.

Suppose the length of the DFT is composite, i.e., .
Either the prime-factor algorithm or the Cooley-Tukey algo-
rithm can be used to decompose the -point DFT into sub-
DFTs when and are co-prime. When and are not
co-prime, only the Cooley-Tukey algorithm can be used. It is
easy to show that if and are co-prime, the prime-factor
and Cooley-Tukey algorithms lead to the same additive com-
plexity for CCFTs, but the Cooley-Tukey algorithm results in
a higher multiplicative complexity due to the extra multipli-
cations of twiddle factors. Hence, the prime-factor algorithm
is better than the Cooley-Tukey algorithm in this case and the
Cooley-Tukey algorithm is used only if the prime-factor algo-
rithm cannot be applied.

We denote the multiplicative and additive complexities of
an -point DFT by and , respectively
and the algorithm used to implement this DFT is specified in
the subscription of . Assuming that and the
total number of non-unitary twiddle factors required by the
Cooley-Tukey algorithm decompositions is denoted by , the
complexity of this decomposition is given by

(14)

(15)

For , there is at most one pair
of ’s that are not co-prime in the decomposition of ,
say and , without loss of generality. In this case,

. If all the elements in the
decomposition of are co-prime to each other, then .

The decomposition allows our CCFTs to achieve lower
complexities for several reasons. First, this divide-and-conquer
strategy is used in many fast Fourier transforms. If we assume
CFFTs have quadratic additive complexities with their length

when directly implemented (this assumption is at least
supported by the additive complexities of the CFFTs without
CSE in Table IV), the CCFT decomposition reduces the ad-
ditive complexity from to . Second,
the lengths of the sub-DFTs are much shorter, which enables
us to apply several powerful but complicated techniques to
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TABLE I
COMPLEXITIES OF SHORT CYCLIC CONVOLUTIONS OVER ���� �

reduce the complexities of the sub-DFTs. For example, it
takes much less time and memory to apply the CSE algo-
rithm in [12] to the sub-DFTs and thus we can run it multiple
times to get a better reduction result. Third, when the length
of the DFT admits different factorizations (for example,

), we choose the decomposi-
tion(s) with the lowest complexity.

B. Complexity Reduction

We reduce the additive and the overall complexities of our
CCFTs in three steps. First, we reduce the complexities of
short cyclic convolutions. Second, we use these short cyclic
convolutions to construct CFFTs of moderate lengths. Third,
we use CFFTs of moderate lengths as sub-DFTs to construct
our CCFTs.

1) Complexity Reduction of Short Cyclic Convolutions: Ef-
ficient short cyclic convolution algorithms, such as the -point
reformulations we proposed in Section III, are the keys to the
multiplicative complexity reduction of CFFTs and our CCFTs.
Suppose an -point cyclic convolution is calculated
with the bilinear form . Since is
the normal basis in our CCFTs, can be precomputed
to reduce the multiplicative complexity. We apply the CSE al-
gorithm in [12] to reduce the additive complexities in the multi-
plication with binary matrices and . The complexity
reduction results , , the total additive
complexity and the multiplicative
complexities are listed in Table I. Note that the complexity of
the 11-point cyclic convolution is derived from our reformula-
tion introduced in Section III.

2) Additive Complexity Reduction of CFFTs With Moderate
Lengths: Blocks of CFFTs with moderate lengths are used to
build our CCFTs. Their moderate lengths allow us to use mul-
tiple techniques to reduce their additive complexities.

• First, for any CFFT, we run the CSE algorithm in [12] mul-
tiple times and then choose the best results.

• Second, for each CFFT in (2), we may reduce
together as a whole, or reduce and sep-
arately. Since ,

. However, this property may not
hold for the CSE algorithm because it may not find the
optimal solutions. Furthermore, we may benefit from
reducing and separately for the following
reasons. First, has a block diagonal structure, which is
similar as and we can find a better reduction result for

. Second, has much more columns than and

hence the CSE algorithm requires less memory and time
to reduce than to reduce .

• Third, there is flexibility in terms of normal bases used to
construct the matrix in (2) and this flexibility can be used
to further reduce the additive complexity of any CFFT. For
each cyclotomic coset, a normal basis is needed. A normal
basis is not unique in finite fields and any normal basis
can be used in the construction of the matrix , leading to
the same multiplicative complexity. But different normal
bases result in different and hence different additive
complexities due to . There are several options regarding
the normal basis. One can simply choose a fixed normal
basis for all cyclotomic cosets of the same size as in [12].
A more ideal option is to enumerate all possible normal
bases and their corresponding and to select the smallest
additive complexity. However, when the underlying field
is large, the number of possible normal bases is very large
and hence it becomes infeasible to enumerate all possible
constructions. Thus, in this paper we use a compromise of
these two options: for each cyclotomic coset we choose
a normal basis at random and the combination of random
normal bases leads to ; we minimize the complexity over
as many combinations as complexity permits. We refer to
this as a random normal basis option.

We emphasize that all three techniques require multiple runs of
the CSE algorithm. Since the time and memory requirements of
the CSE algorithm grow with the length of DFT, the moderate
length of the sub-DFTs is the key enabler of these techniques.
Though the CSE algorithm may be costly for moderate length
CFFTs, it is a one-time task.

For any so that , the mul-
tiplicative and additive complexities of the -point CFFT are
shown in Table II. Table II shows four different schemes to re-
duce the additive complexity for CFFTs. Schemes A and B both
use the fixed normal basis option in the construction of the ma-
trix , while schemes C and D are based on the random normal
basis option. Schemes A and C reduce and sepa-
rately, while schemes B and D reduce as a whole. For
smaller CFFTs, we typically minimize the complexity over hun-
dreds of combinations of normal bases and fewer combinations
for longer CFFTs. In Table II, the smallest additive complexities
are in a boldface font. We observe that the random normal basis
option offers further additive complexity reduction in most of
the cases. However, since the fixed normal basis is not neces-
sarily one of the combinations, in some cases the fixed normal
basis option outperforms the random normal basis option. Also,
sometimes applying the CSE to together as a whole leads
to lower complexity and in some cases it is better to apply the
CSE to and separately.

3) Construction of CCFTs Using Moderate-Length CFFTs as
Sub-DFTs: We use the CFFTs with moderate lengths in Table II
as sub-DFTs to construct our CCFTs. With (14) and (15), the
computational complexities of our CCFTs over

with non-prime lengths can be calculated. The re-
sults are summarized in Table III, where the factorizations in
parentheses are not co-prime and the Cooley-Tukey algorithm
is used in these cases. We have tried all the decompositions
with lengths smaller than 320 and the decompositions with the
smallest overall complexities are listed in Table III. Note that for
each sub-DFT, the scheme with the smallest additive complexity
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TABLE II
THE COMPLEXITIES OF THE CFFTS WHOSE LENGTHS ARE LESS THAN 320 AND

ARE FACTORS OF � � � FOR � � � � ��

TABLE III
THE SMALLEST COMPLEXITY OF OUR � -POINT CCFTS OVER

���� � FOR COMPOSITE � AND � �� � � FOR � � � � ��
(WE ASSUME THE SUB-DFTS ARE SHORTER THAN 320)

listed in Table II is used in the CCFT implementation to reduce
the total additive complexity. We also note that all DFT lengths
in Table III are composite. The prime lengths are omitted be-
cause in these cases, a CCFT reduces to a CFFT, which can be
found in Table II.

Since some lengths of the DFTs have different decomposi-
tions, it is possible that one decomposition has a smaller additive
complexity but a larger multiplicative complexity than another
one. Therefore, we need a metric to compare the overall com-
plexities between different decompositions. In this paper, we
follow our previous work [12] and assume that the complexity
of a multiplication over is times of that of an ad-
dition over the same field and the total complexity of a DFT is
a weighted sum of the additive and multiplicative complexities,
i.e., . This assumption is based on
both the software and hardware implementation considerations
[12]. Table III lists the decompositions with the smallest overall
complexities.

Table III provide complexities of all -point DFTs over
when and . Note that the decompo-

sition corresponding to is merely the -point CFFT over
. We have used the simplified CSE algorithm described

in Section IV-A to reduce the complexity of the 2047-point
CFFTs over and applied the CSE algorithm in [12] to
the other CFFTs. Thus, we have expanded the results of [12],
where only the -point CFFTs over were given.
We also observe that for some short lengths (see, for example,

15, 33, or 65), the -point CFFTs lead to the lowest
complexity for the -point CCFTs. For the DFTs longer than
320, i.e., 511-point CFFTs over , 341-point CFFTs over

and 455-, 585-, 819-, and 1365-point CFFTs over
, the time complexity of the CSE algorithm in [12] is

still considerable. Thus, we cannot minimize their complexities
using schemes A, B, C, and D and hence they are not listed in
Table II.

Though the twiddle factors in the Cooley-Tukey decom-
position incur extra multiplicative complexity, Table III show
that the Cooley-Tukey decomposition reduces the total com-
plexity of our CCFTs in some cases (the decompositions in
parentheses). For example, a 9-point CFFT requires 11 mul-
tiplications and 48 additions and a 3 3 CCFT based on the
Cooley-Tukey decomposition requires 10 multiplications and
36 additions. Despite the twiddle factors, the CCFT based on
the Cooley-Tukey decomposition have lower multiplicative and
additive complexities, because we can take advantage of the
low complexity of the 3-point DFT.

C. Complexity Comparison and Analysis

We compare the complexities of our CCFTs with those of
previously proposed FFTs in the literature in Table IV. For
each length, the lowest total complexity is in boldface font.
In Table IV, our CCFTs achieve the lowest complexities for

. Although the algorithm in [29] is proved asymptoti-
cally fast, the complexities of our CCFTs are only a fraction of
those in [29] and the advantage grows as the length increases.
Although the FFTs in [9] are also based on the prime-factor
algorithm, our CCFTs achieve lower complexities for two rea-
sons. First, since our CCFTs use CFFTs as the sub-DFTs, the
multiplicative complexities of our CCFTs are greatly reduced
compared with the FFTs in [9]. For example, the multiplicative
complexity of our 511-point CCFT is only one fourth of the
prime-factor algorithm in [9]. Furthermore, using the powerful
CSE algorithm in [12], the additive complexities of our CCFTs
are also greatly reduced. Compared with the CFFTs, our CCFTs
have somewhat higher multiplicative complexities, but this is
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TABLE IV
COMPARISON OF THE COMPLEXITIES OF OUR � -POINT CCFTS WITH FFTS AVAILABLE IN THE LITERATURE

more than made up by their reduced additive complexities. The
additive complexities of our CCFTs are only a small fraction
of those of CFFTs when directly implemented. Compared with
the CFFTs with reduced additive complexities in [12], our
CCFTs still have much smaller additive complexities due to
their decomposition structure for . For example, the
additive complexities of our CCFT is only about half of that of
the CFFT for and one third for . Due to
the significant reduction of the additive complexities, the total
complexities of our CCFTs with are lower than those
of CFFTs. In comparison to CFFTs, the improvement by our
CCFTs also grows as the length increases.

For the prime-length DFTs, such as the 31-point DFT over
, 127-point DFT over and 8191-point DFT over
, our CCFTs reduce to the CFFTs and they have the

same computational complexities.
In the end, we remark that our CCFT is built from shorter

DFTs and short DFTs can be used as modules in the hardware
design. We may either pipeline them to achieve a high speed,
or reuse them to save the chip area. This modular structure is
favorable to hardware implementations.

VI. CONCLUSION

For any odd prime integer , we reformulate a -point cyclic
convolution as a Toeplitz matrix vector
product, leading to efficient cyclic convolution algorithms.
Based on this reformulation, we have obtained an efficient
11-point cyclic convolution algorithm and derived the CFFTs
over . We have also proposed a novel composite
cyclotomic Fourier transform algorithm that leads to lower
complexities through decomposing long DFTs into shorter
ones using the prime-factor or Cooley-Tukey algorithm. Our
CCFTs over have lower complexities
than previously known FFTs over finite fields. They also have
a modular structure, which is desirable in hardware implemen-
tations.

APPENDIX

5 5 TOEPLITZ MATRIX VECTOR PRODUCT OVER

An TMVP over as

...
...

...
. . .

...
...

can be computed with bilinear algorithm ,
where , and

, and are all binary matrices.
For ,

and
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