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Abstract. Using Du’s characterization of the dual canonical basis of the coordi-
nate ring O(GL(n, C)), we express all elements of this basis in terms of immanants.
We then give a new factorization of permutations w avoiding the patterns 3412 and
4231, which in turn yields a factorization of the corresponding Kazhdan-Lusztig
basis elements C′

w(q) of the Hecke algebra Hn(q). Using the immanant and fac-
torization results, we show that for every totally nonnegative immanant Immf (x)
and its expansion

∑
dwImmw(x) with respect to the basis of Kazhdan-Lusztig im-

manants, the coefficient dw must be nonnegative when w avoids the patterns 3412
and 4231.

1. Introduction

Studying methods of solving of the quantum Yang-Baxter equation, Drinfeld [10]
and Jimbo [19] introduced a quantization Uq(sl(n, C)) of the universal enveloping al-
gebra U(sl(n, C)). An explosion of mathematical research soon led to a quantization
Oq(SL(n, C)) of the coordinate ring O(SL(n, C)), related by Hopf algebra duality to
Uq(sl(n, C)), and to a development of the representation theory of these algebras now
known as quantum groups. In particular, Kashiwara [21] and Lusztig [25], [26] intro-

duced a modification U̇ of Uq(sl(n, C)) and a canonical (or crystal) basis of this algebra
which has many interesting representation theoretic properties. A corresponding dual
basis of Oq(SL(n, C)) is known as the dual canonical basis, and may be viewed as
the projection of a certain basis of a quantization Cq[x1,1, . . . , xn,n] of the polyno-
mial ring C[x1,1, . . . , xn,n]. This latter basis is also called the dual canonical basis.
(See [11].) An elementary description of canonical and dual canonical bases has been
rather elusive, especially in the nonquantum (q = 1) setting.

Results of Lusztig [27] imply that when we specialize at q = 1, the elements of the
dual canonical basis of C[x1,1, . . . , xn,n] are totally nonnegative (TNN) polynomials in
the following sense. We define a matrix with real entries to be totally nonnegative
(TNN) if each of its minors is nonnegative. (See e.g. [14].) We define a polynomial
p(x) ∈ C[x1,1, . . . , xn,n] to be totally nonnegative (TNN) if for each n×n TNN matrix
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A = (ai,j), we have
p(A) =

def
p(a1,1, . . . , an,n) ≥ 0.

While it is not true that every TNN polynomial belongs to the dual canonical cone,
we will show that certain coordinates of a TNN polynomial with respect to the dual
canonical basis must be nonnegative. Our criterion involves avoidance of the patterns
3412 and 4231 in permutations and thus links total nonnegativity to smoothness in
Schubert varieties.

In Section 2 we review Du’s formulation of the dual canonical basis and express
its elements in terms of functions called immanants. In Sections 3 and 4 we state
factorization theorems for 3412-avoiding, 4231-avoiding permutations and for the cor-
responding Kazhdan-Lusztig basis elements. In Section 5 we combine immanant and
factorization results to prove that for each TNN homogeneous element p(x) of the
coordinate ring O(SL(n, C)), certain coordinates of p(x) with respect to the dual
canonical basis must be nonnegative.

2. Kazhdan-Lusztig immanants and the dual canonical basis

The dual canonical bases of O(SL(n, C)) and O(GL(n, C)) may be obtained easily
from a basis of the polynomial ring C[x] = C[x1,1, . . . , xn,n]. We will call this basis
also the dual canonical basis.

We will find it convenient to express monomials in C[x1,1, . . . , xn,n] in terms of per-
mutations in the symmetric group Sr according to the following conventions. Define
a left action of Sn on n-letter words by letting the adjacent transposition si swap the
letters in positions i and i + 1. We call the word w ◦ (1 · · ·n) the one-line notation of
w. Thus, the one-line notation of s1s2 in S3 is s1(s2(123)) = s1(132) = 312. Denote
the one-line notations of w and of w−1 by w1 · · ·wn and w−1

1 · · ·w−1
n , respectively. If

a factorization of w into adjacent transpositions w = si1 · · · siℓ is as short as possible,
we call the number ℓ = ℓ(w) the length of w. It is well known that ℓ(w) is equal to
the number of pairs (wi, wj) satisfying wi > wj and i < j.

Before explicitly describing the dual canonical basis of C[x], let us look at a multi-
grading of this ring in terms of multisets. C[x] has a traditional grading by degree,

C[x] =
⊕

r≥0

Ar,

where Ar is the complex span of degree-r monomials. We may refine this grading by
defining a multigrading of Ar indexed by pairs of r-element multisets. Let M(n, r)
be the set of r-element multisets of [n] =

def
{1, . . . , n}. Then we have

(2.1) Ar =
⊕

M,M ′∈M(n,r)

Ar(M, M ′),
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where Ar(M, M ′) is the homogeneous component of multidegree (M, M ′), i.e. the
complex span of monomials in which the multiset of row indices is M and the multiset
of column indices is M ′. For example, the polynomial x1,1x

2
2,1x3,3 − x1,1x2,1x2,3x3,1

belongs to the component A3(1223, 1113) of C[x1,1, . . . , x3,3].

Closely related to the multigrading (2.1) are generalized submatrices of x. Given
two r-element multisets M = m1 · · ·mr, M ′ = m′

1 · · ·m′
r of [n] (written as weakly

increasing words), define the (M, M ′) generalized submatrix of x to be the r × r
matrix

xM,M ′ =




xm1,m′
1

xm1,m′
2

· · · xm1,m′
r

xm2,m′
1

xm2,m′
2

· · · xm2,m′
r

...
...

...
xmr ,m′

1
xmr ,m′

2
· · · xmr ,m′

r


 .

Letting y = xM,M ′, we see that for every permutation w ∈ Sr having one-line notation
w1 · · ·wr, the monomial

(2.2) y1,w1 · · · yr,wr
= xm1,m′

w1
· · ·xmr ,m′

wr

belongs to Ar(M, M ′). In particular, we may express the polynomial in the preceding
paragraph in terms of the matrix y = x1223,1113 as y1,1y2,2y3,3y4,4 − y1,1y2,2y3,4y4,3.

The multigrading (2.1) is also closely related to parabolic subgroups of Sr as follows.
To an r-element multiset M , associate a subset ι(M) of the generators {s1, . . . , sr−1}
of Sr by

ι(M) = {sj |mj = mj+1}.
Let I = ι(M), J = ι(M ′) be the subsets of generators of W = Sr corresponding
to multisets M , M ′, and denote the corresponding parabolic subgroups by WI , WJ .
Letting WI and WJ act by left and right multiplication on all r×r matrices (restricting
the defining representation of Sr to the parabolic subgroups), we see that xM,M ′ is
fixed by this action.

The dual canonical basis of C[x1,1, . . . , xn,n] consists of homogeneous elements with
respect to the multigrading (2.1). Du [11, Sec. 2] stated a new formula for the elements
of this basis and justified it [12] by combining earlier results of Dipper and James [8]
and Grojnowski and Lusztig [15]. This formula relies upon alternating sums [11,
Sec. 1] of (inverse) Kazhdan-Lusztig polynomials,

Q̃u,w(q) =
∑

v∈WIwWJ
u≤v≤w

(−1)ℓ(w)−ℓ(v)Pw0v,w0u(q),

where u and w are maximal representatives of cosets in WI\W/WJ , ℓ(w) is the length

of w, and ≤ is the Bruhat order on Sr. (See [18].) These polynomials Q̃u,w(q) are
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generalizations of Deodhar’s q-parabolic Kazhdan-Lusztig polynomials [7], for when
I = ∅ we have

Q̃u,w(q) = P̃ J
w0wwJ

0 ,w0uwJ
0
(q),

where w0 and wJ
0 are the longest elements of W and WJ , respectively.

We will express the dual canonical basis in terms of generalized submatrices and
Kazhdan-Lusztig immanants {Immu(x) | u ∈ Sn} introduced in [30],

(2.3) Immu(x) =
∑

w≥u

(−1)ℓ(w)−ℓ(u)Pw0w,w0u(1)x1,w1 · · ·xn,wn
.

Theorem 2.1. Let M , M ′ be r-element multisets of [n] and define W = Sr. The
nonzero polynomials in the set {Immv(xM,M ′) | v ∈ W} are the dual canonical basis of
Ar(M, M ′). In particular, the permutations v corresponding to nonzero polynomials
are maximal length representatives of double cosets in Wι(M)\W/Wι(M ′).

Proof. Let I = ι(M), J = ι(M ′). By [11, Lem. 2.2], (see also [12, Sec. 4], [13, Sec. 3])
the dual canonical basis elements of Ar(M, M ′) are in bijective correspondence with
cosets in Wι(M)\W/Wι(M ′), and each has the form

Zu =
∑

z≥u

(−1)ℓ(z′)−ℓ(u′)Q̃u′,z′(1)
n∏

i,j=1

x
α(z,i,j)
i,j ,

where u, z are minimal representatives of double cosets in WI\W/WJ , u′, z′ are the
respective maximal coset representatives, and

α(z, i, j) = |{k |mk = i, m′
zk

= j}|.

For any pair (u, z) of minimal coset representatives and the corresponding pair
(u′, z′) of maximal coset representatives, we have that u ≤ z if and only if u′ ≤ z′.
(See e.g. [9, Lem. 2.2], [28, Prop. 31].) We may therefore rewrite Du’s description by
summing over only maximal coset representatives,

Zu =
∑

z′≥u′

(−1)ℓ(z′)−ℓ(u′)Q̃u′,z′(1)

n∏

i,j=1

x
α(z,i,j)
i,j .

Let y = xM,M ′. Then for any function f : Sr → C we have

Immf (y) =
∑

w∈Sr

f(w)y1,w1 · · · yr,wr
.

Since each permutation v in the double coset WIwWJ satisfies

y1,v1 · · ·yr,vr
= y1,w1 · · · yr,wr

,
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we may sum over these double cosets,

(2.4) Immf (y) =
∑

D∈WI\W/WJ

(∑

v∈D

f(v)

)
y1,w1 · · · yr,wr

,

where w is any representative of the double coset D. Note that yi,wi
= xj,k if mi = j

and m′
wi

= k. Thus the exponent of xi,j in y1,w1 · · · yr,wr
is equal to α(w, i, j),

y1,w1 · · · yr,wr
=

n∏

i,j=1

x
α(w,i,j)
i,j .

Now for any u ∈ Sr consider the function fu : v 7→ (−1)ℓ(v)−ℓ(u)Pw0v,w0u(1) and
the corresponding Kazhdan-Lusztig immanant Immu(y) = Immfu

(y) of y. If u is not
maximal in WIuWJ , then we have su > u for some transposition s in I, or we have
us > u for some transposition s in J . (See, e.g., [5, Thm. 1.2].) By [30, Cor. 6.4]
either of these conditions implies that Immu(y) = 0. Thus for any maximal coset
representative u′ we have by (2.4) that

Immu′(y) =
∑

D∈WI\W/WJ

(∑

v∈D
v≥u′

(−1)ℓ(v)−ℓ(u′)Pw0v,w0u′(1)

) n∏

i,j=1

x
α(w′,i,j)
i,j ,

where w′ is the maximal representative of D. We include the inequality v ≥ u′

because the number Pw0v,w0u′(1) is zero otherwise. For each coset D and its maximal
representative w′, the inner sum is equal to

(−1)ℓ(w′)−ℓ(u′)
∑

v∈WIw′WJ

u′≤v≤w′

(−1)ℓ(w′)−ℓ(v)Pw0v,w0u′(1) =

{
(−1)ℓ(w′)−ℓ(u′)Q̃u′,w′(1), if w′ ≥ u′,

0 otherwise,

and we have

Immu′(y) =
∑

WIw′WJ

w′≥u′

(−1)ℓ(w′)−ℓ(u′)Q̃u′,w′(1)

n∏

i,j=1

x
α(w,i,j)
i,j = Zu,

as desired. �

Quantizing the Kazhdan-Lusztig immanants by

Immv(x; q) =
∑

w≥v

(−q−1/2)ℓ(w)−ℓ(v)Q̃v,w(q)x1,w1 · · ·xn,wn
,

one constructs the dual canonical basis of quantum Ar(M, M ′) by taking all of the

polynomials (q1/2)ℓ(wJ
0 )−ℓ(wI

0)Immv(xM,M ′; q), where I = ι(M), J = ι(M ′), v is a max-
imal length coset representative in WI\W/WJ , and wI

0, wJ
0 are the maximal length

elements of WI , WJ . (See [3], [11], [13] for other descriptions of this basis.)



6 MARK SKANDERA

Letting B be the dual canonical basis of C[x1,1, . . . , xn,n], we have the following
well-known formulas for the dual canonical bases of the coordinate rings of GL(n, C)
and SL(n, C). The dual canonical basis of

O(GL(n, C)) ∼= C[x1,1, . . . , xn,n, t]/(det(x)t − 1)

is obtained by dividing elements of B by powers of the determinant,
⋃

r≥0

⋃

M,M ′∈M(n,r)

{Immw(x) det(x)−k | k ≥ 0; w maximal in Wι(M)\Sr/Wι(M ′)}.

The dual canonical basis of

O(SL(n, C)) ∼= C[x1,1, . . . , xn,n]/(det(x) − 1)

is obtained by projecting C[x1,1, . . . , xn,n] onto O(SL(n, C)), or by setting det(x) = 1
in O(GL(n, C)).

3. Factorization of 3412-avoiding, 4231-avoiding permutations

The factorization of Kazhdan-Lusztig basis elements in Section 4 and the nonneg-
ativity results in Section 5 depend upon a strategic factorization of permutations
whose one-line notations avoid certain patterns.

Let v be a permutation v in Sk with one-line notation v1 · · · vk. Given a word
u = u1 · · ·uk on a totally ordered alphabet, we will say that u matches the pattern
v if the letters of u appear in the same relative order as those of v. We will also
say that u1 matches the v1, etc. For example, a word u1u2u3 matches the pattern
312, with u1 matching the 3, u2 matching the 1, and u3 matching the 2, if we have
u2 < u3 < u1. Given a permutation w in Sn having one-line notation w1 · · ·wn, we
will say for any indices i1 < · · · < ik in [n] that the word wi1 · · ·wik is a subword of
w. We will say that w avoids the pattern v if no subword of w matches the pattern v.
We will also call such a permutation v-avoiding. In particular we will be interested
in permutations which avoid the patterns 3412 and 4231.

A somewhat customary map ⊕ : Sn × Sm → Sn+m may be defined in terms of
adjacent transpositions by

si1 · · · siℓ ⊕ sj1 · · · sjk
=
def

si1 · · · siℓsj1+n · · · sjk+n,

or equivalently, in terms of one-line notation by

u1 · · ·un ⊕ v1 · · · vm =
def

u1 · · ·un · (v1 + n) · · · (vm + n).

We define a permutation w to be ⊕-indecomposable if it can not be expressed as
w = u ⊕ v. It is easy to see the following properties of the map ⊕.

Observation 3.1. Let u and v be permutations in Sm and Sn.



DUAL CANONICAL AND KAZHDAN-LUSZTIG BASES 7

(1) u and v avoid the patterns 3412 and 4231 if and only if u ⊕ v does.
(2) u′ ≤ u and v′ ≤ v if and only if u′ ⊕ v′ ≤ u ⊕ v.
(3) ℓ(u) + ℓ(v) = ℓ(u ⊕ v).

We will factor each 3412-avoiding, 4231-avoiding permutation as a product of re-
versals, permutations s[i,j] having a one-line notation of the form

1 · · · (i − 1) · j(j − 1) · · · i · (j + 1) · · ·n,

for some interval [i, j]. Call a sequence (sI1, . . . , sIp
) of reversals a reversal factoriza-

tion of w if w = sI1 · · · sIp
. Note that every permutation has a reversal factorization.

Indeed, each adjacent transposition si is the reversal s[i,i+1]. We define s[i,i] to be the
identity permutation, and we denote the left and right endpoints of an interval I by
λ(I) and ρ(I), respectively.

Let w ∈ Sn be ⊕-indecomposable. Call a reversal factorization (sI1 , . . . , sIp
) of w an

indecomposable zig-zag factorization if there exist a positive integer r and a sequence
of nonnegative integers

(3.1) j1, . . . , jr, k1, . . . , kr,

all odd except possibly for j1 and kr which may also be zero, such that I1, . . . , Ip may
be labeled as

(3.2) A0, B1,1, . . . , B1,j1, A1, C1,1, . . . , C1,k1, D1,

. . . , Bi,1, . . . , Bi,ji
, Ai, Ci,1, . . . , Ci,ki

, Di, . . . ,

Br,1, . . . , Br,jr
, Ar, Cr,1, . . . , Cr,kr

, Dr,

with labels A0, B1,1, . . . , B1,j1 unused if j1 = 0 and labels Ar, Cr,1, . . . , Cr,kr
unused if

kr = 0, and with the endpoints of the intervals satisfying the following conditions:

(1) For each i satisfying ji 6= 0 we have

λ(Ai−1) < λ(Bi,1) = λ(Bi,2) < λ(Bi,3) = · · · < λ(Bi,ji
) = λ(Di),

ρ(Ai−1) = ρ(Bi,1) < ρ(Bi,2) = ρ(Bi,3) < · · · = ρ(Bi,ji
) < ρ(Di).

(2) For each i satisfying ki 6= 0 we have

λ(Ai) = λ(Ci,1) > λ(Ci,2) = λ(Ci,3) > · · · = λ(Ci,ki
) > λ(Di),

ρ(Ai) > ρ(Ci,1) = ρ(Ci,2) > ρ(Ci,3) = · · · > ρ(Ci,ki
) = ρ(Di).

(3) For i = 1, . . . , r we have ρ(Bi,ji
) < λ(Ci,ki

).
(4) For i = 1, . . . , r − 1 we have ρ(Ci,1) < ρ(Bi+1,1).

By the above conditions, we have that the number p in an indecomposable zig-zag
factorization (sI1, . . . , sIp

) is odd, and that the interval Ip is labeled Dr. When p ≥ 3,
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1,1
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A

Figure 3.1. Intervals corresponding to an indecomposable zig-zag factorization.

then at least one of the integers (3.1) is positive, and the interval I1 is labeled A0 if
j1 > 0 and A1 otherwise. Furthermore, the above conditions imply that the intervals

{Ai | 0 ≤ i ≤ r}∪{Bi,j | 1 ≤ i ≤ r, j even}∪{Ci,j | 1 ≤ i ≤ r, j even}∪{Di | 1 ≤ i ≤ r},

i.e. {I1, I3, I5, . . . , Ip}, have cardinality at least two (of course, excluding unused labels
as listed after (3.2).) The assumption that w is ⊕-indecomposable implies that we
have I1∪· · ·∪Ip = [n]. For convenience, we also will define the empty reversal factor-
ization of the identity element of S1 to be an indecomposable zig-zag factorization.

If a permutation w decomposes as w = w(1)⊕· · ·⊕w(m) and has a reversal factoriza-
tion W which is a concatenation W1 · · ·Wm of indecomposable zig-zag factorizations
corresponding to w(1), . . . , w(m), then we will call W a zig-zag factorization of w.

Figure 3.1 shows intervals, labeled as in (3.2), corresponding to the indecomposable
zig-zag factorization

(3.3) (s[1,5], s[3,5], s[3,6], s[4,6], s[13,15], s[13,13], s[9,13], s[9,10], s[4,10], s[14,15], s[14,18])

of the permutation in S18 having one-line notation

(3.4) (10, 9, 8, 2, 1, 3, 7, 6, 13, 12, 11, 5, 18, 17, 4, 16, 15, 14).

In addition to illuminating the choice of the term zig-zag, Figure 3.1 suggests par-
tially ordering the intervals (I1, . . . , Ip) used in a zig-zag factorization by defining
Ii < Ij if i < j and Ii ∩ Ij 6= ∅, and by taking the transitive closure of this relation.
For an indecomposable zig-zag factorization, all comparabilities in this poset are given
by

(3.5)
Ai−1 < Bi,1 < · · · < Bi,j1 < Di,

Ai < Ci,1 < · · · < Ci,k1 < Di,

for i = 1, . . . , r. We will return to this poset in Section 5.
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Note that an indecomposable zig-zag factorization of w−1 is obtained by listing the
intervals (3.2) in the order

(3.6) D1, B1,j1, . . . , B1,1, A0, C1,k1, . . . , C1,1, D2, B2,j2, . . . , B2,1, A1,

. . . , Ci,ki
, . . . , Ci,1, Di+1, Bi+1,ji+1

, . . . , Bi+1,1, Ai, . . . ,

Cr−1,kr−1, . . . , Cr−1,1, Dr, Br,jr
, . . . , Br,1, Ar−1, Cr,kr

, . . . , Cr,1, Ar.

From a zig-zag factorization of w, one can easily identify certain decreasing sub-
words of the one-line notations of w and w−1.

Observation 3.2. Let w have a zig-zag factorization (sI1 , . . . , sIp
). For numbers

a < b, if the earliest interval in this factorization to contain a is also the earliest to
contain b, then we have wa > · · · > wb. If the latest interval to contain a is also the
latest to contain b, then we have w−1

a > · · · > w−1
b .

Moreover, knowledge that a permutation has a zig-zag factorization allows us to use
decreasing subwords of the one-line notations of w and w−1 to construct the zig-zag
factorization.

Observation 3.3. Suppose that w has an indecomposable zig-zag factorization with
intervals labeled as in (3.2), and let ℓ, m be the greatest indices for which the one-line
notations of w and w−1 satisfy

(3.7)
w1 > · · · > wℓ,

w−1
1 > · · · > w−1

m .

Then we have the following.

(1) ℓ = m if and only if w = s[1,n].
(2) ℓ < m if and only if j1 = 0, D1 = [1, m], and C1,k1 = [ℓ + 1, m].
(3) ℓ > m if and only if A0 = [1, ℓ] and B1,1 = [m + 1, ℓ].

These two observations imply that the zig-zag factorization of a permutation is
unique if it exists, and that we may construct it with the following algorithm.

(1) Initialize the current factorization to be the empty sequence ( ).
(2) Let t− 1 be the greatest index for which the one-line notations of w and w−1

satisfy
w1 · · ·wt−1 = w−1

1 · · ·w−1
t−1 = 1 · · · (t − 1).

(3) If t − 1 = n, output the current factorization sequence and stop.
(4) If the longest initial decreasing subwords of wt · · ·wn and w−1

t · · ·w−1
n are

equally long, do
(a) Let ℓ be the greatest index satisfying wt > · · · > wℓ, w−1

t > · · · > w−1
ℓ

and replace w by s[t,ℓ]w.
(b) Append s[t,ℓ] to the current factorization sequence.
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Otherwise, if the longest initial decreasing subword of wt · · ·wn is longer than
the longest inital decreasing subword of w−1

t · · ·w−1
n , do

(a) While the greatest indices ℓ, m satisfying wt > · · · > wℓ, w−1
t > · · · > w−1

m

satisfy ℓ > m, do
(i) Append the reversals (s[t,ℓ], s[m+1,ℓ]) to a temporary factorization

sequence.
(ii) Replace t by m + 1 and w by s[t,ℓ]s[m+1,ℓ]w.

(b) Append the temporary factorization sequence to the current factorization
sequence.

Otherwise if the longest initial decreasing subword of wt · · ·wn is shorter than
the longest inital decreasing subword of w−1

t · · ·w−1
n , do

(a) While the greatest indices ℓ, m satisfying wt > · · · > wℓ, w−1
t > · · · > w−1

m

satisfy ℓ < m, do
(i) Prepend the reversals (s[ℓ+1,m], s[t,m]) to a temporary factorization

sequence.
(ii) Replace t by ℓ + 1 and w by ws[t,m]s[ℓ+1,m].

(b) Append the temporary factorization sequence to the current factorization
sequence.

(5) Return to (2) with the updated permutation w.

Assuming that a permutation w has an indecomposable zig-zag factorization or
that it avoids the patterns 3412 and 4231 allows us to restate Equation (3.7) more
precisely.

Lemma 3.4. Let w be a permutation in Sn and let a, b be the greatest indices for
which the one-line notations of w and w−1 satisfy

(3.8)
w1 > · · · > wb,

w−1
1 > · · · > w−1

a .

Assume that a ≤ b. If w avoids the patterns 3412 and 4231 or has a zig-zag factor-
ization, then we have

(3.9) wb+1−i = i, i = 1, . . . , a.

Furthermore, we have wj = a + 1 for some j ≥ b + 1, unless a = b = n.

Proof. If b = n then we also have a = n and the conclusions of the lemma are clearly
true. Assume therefore that b < n.

Suppose first that w avoids the patterns 3412 and 4231 and we do not have the
equalities (3.9). Let c be the greatest integer for which wb+1−c 6= c, c ≤ a. If
wb+1−c < c, then we have wb < 1, a contradiction. We therefore have wb+1−c > c,
implying wb+1−a > a and c = a by our choice of c. Since a and b are the greatest
indices satisfying (3.8), we have that wb < wb+1, and that a(a + 1) is a subword
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of wb+2 · · ·wn. If w1 > wb+1, then the subword w1wbwb+1a of w1 · · ·wn matches the
pattern 4231, a contradiction. If w1 < wb+1, then the subword w1wb+1a(a+1) matches
the pattern 3412, another contradiction. We therefore have (3.9).

Next suppose that w has a zig-zag factorization (sI1 , . . . , sIp
). By Observation 3.3

we have I1 = [1, b], I2 = [a + 1, b], and by definition we have λ(Ii) ≥ a + 1 for
i = 3, . . . , p. Thus the one-line notation of the product sI2 · · · sIp

begins with 1 · · ·a.
Applying sI1 = s[1,b] on the left reverses the letters 1, . . . , a and puts them in positions
b + 1 − a, . . . , b. Again we have (3.9). Thus,

(3.10) w1 > · · · > wb−a > wb−a+1 = a.

Now suppose that the letter a+1 appears in the subword w1 · · ·wb of w. By (3.10)
we must have wb−a = a + 1, which contradicts the maximality of a in (3.8). Since
b < n, we conclude that a + 1 appears in the word wb+1 · · ·wn. �

Using this lemma, we can now prove the equivalence of zig-zag factorization and
avoidance of the patterns 3412 and 4231.

Theorem 3.5. A permutation u ∈ Sn avoids the patterns 3412 and 4231 if and only
if it has a zig-zag factorization.

Proof. By Observation 3.1 and the definition of zig-zag factorization, it suffices to
prove that an ⊕-indecomposable permutation u avoids the patterns 3412 and 4231 if
and only if it has an indecomposable zig-zag factorization.

It is easy to verify the statement for permutations in S1, S2, S3. Using induction on
n, assume the statement to be true also for permutations in S4, . . . , Sn−1. If neither
u nor u−1 satisfies the conditions of w in (3.8) and (3.9) then u does not avoid the
patterns 3412 and 4231 and u does not have a zig-zag factorization. Assume therefore
that u satisfies these conditions and define v ∈ Sn by u = s[1,b]s[a+1,b]v, where a and
b are the maximal indices satisfying (3.8). Then the one-line notation of u is

u1 · · ·un = u1 · · ·ub−a · a · · ·21 · ub+1 · · ·un = va+1 · · · vb · a · · ·21 · vb+1 · · · vn,

and the one-line notation of v is

v1 · · · vn = 12 · · ·a · va+1 · · · vb · vb+1 · · · vn = 12 · · ·a · u1 · · ·ub−a · ub+1 · · ·un.

First we claim that u avoids the patterns 3412 and 4231 if and only if v does.
Assume that some subword vivjvkvℓ of v matches the pattern 3412 or 4231. Then we
must have i ≥ a + 1, since otherwise all letters to the right of position i in v would
be greater than vi. But then vivjvkvℓ is also a subword of u.

Now assume that a subword uiujukuℓ of u matches the pattern 3412 or 4231. If
at least one of the letters uiujukuℓ belongs to the range [1, a], then one such letter
must match the 1 in 3412 or 4231. But then a subword of the decreasing word
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u1 · · ·ub−a must match 34 or 423, which is impossible. Thus uiujukuℓ is a subword of
u1 · · ·ub−a · ub+1 · · ·u1 = va+1 · · · vn.

Next we claim that u has an indecomposable zig-zag factorization if and only if v has
a zig-zag factorization. Assume that u has an indecomposable zig-zag factorization
(sI1, . . . , sIr

). By Observation 3.3 we have I1 = [1, b], I2 = [a+1, b]. Thus (sI3, . . . , sIr
)

is a zig-zag factorization of v.

Now assume that v has a zig-zag factorization (sJ1, . . . sJr
). Let c and d be the

greatest indices for which we have

va+1 > · · · > vc

v−1
a+1 > · · · > v−1

d .

Since u1 · · ·ub−a is a decreasing word, we have c ≥ b. If d = c then by Observation 3.3,
v decomposes as v = 1 · · ·a⊕c(c−1) · · · (a+1)⊕v′ for some permutation v′ ∈ Sn−c, and
u decomposes as u = s[1,b]s[a+1,b]s[a+1,c] ⊕ v′, contradicting the ⊕-indecomposability
of u. Suppose therefore that d > c. Then for some i we have Ji = [c + 1, d],
Ji+1 = [a + 1, d], and

λ(J1), . . . , λ(Ji−1) > c + 1 ≥ b + 1.

It follows that (s[1,b], s[a+1,b], sJ1, . . . , sJr
) is an indecomposable zig-zag factorization of

u. Now suppose that d < c. Then J1 = [a+1, c], J2 = [d+1, c]. If c = b, then v−1
a = a

and v−1
a+1 = b by Lemma 3.4. This implies that u−1

a = b − a + 1 and u−1
a+1 = b − a,

contradicting our choice of a to be the minimal index satisfying u−1
1 > · · · > u−1

a .
If c > b, then (s[1,b], s[a+1,b], sJ1, . . . , sJr

) is an indecomposable zig-zag factorization of
u. �

The number of inversions in a permutation possessing an indecomposable zig-zag
permutation is given by the following formula.

Proposition 3.6. Let w avoid the patterns 3412 and 4231 and have an indecom-
posable zig-zag factorization (sI1 , . . . , sIp

) with intervals labeled as in (3.2). Then we
have

ℓ(w) =

(|A0|
2

)
+

r∑

i=1

((|Ai|
2

)
+

(|Di|
2

)
+

ji∑

j=1

(−1)j

(|Bi,j|
2

)
+

ki∑

k=1

(−1)k

(|Ci,k|
2

))

=

p∑

j=1

(−1)j+1

(|Ij |
2

)
.

Proof. Suppose first that w is the reversal s[1,n]. Then the sequence (3.1) is (j1, k1) =
(0, 0) with r = 1, and the interval [1, n] is labeled D1. The above formula therefore

is equal to
(
|D1|

2

)
=
(

n
2

)
= ℓ(s[1,n]).
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Now suppose that w 6= s[1,n]. Assume that the interval I1 is labeled A0. (If this
is not the case, we can apply the following argument to w−1, since ℓ(w−1) = ℓ(w).)
Assume by induction that the claimed formula holds for permutations in S1, . . . , Sn−1,
and define a permutation v by w = sA0sB1,1v. Then v is the direct sum of the
identity permutation in Sλ(B1,1)−1 with a 3412-avoiding, 4231-avoiding permutation
in Sn−λ(B1,1), and we have that

ℓ(v) =

r∑

i=1

((|Ai|
2

)
+

(|Di|
2

)
+

ji∑

j=2

(−1)j

(|Bi,j|
2

)
+

ki∑

k=1

(−1)k

(|Ci,k|
2

))
.

Since the one-notation of v begins with 1 · · · (λ(B1,1)−1) and is followed by a decreas-

ing sequence of |B1,1| letters, the permutation sB1,1v has
(
|B1,1|

2

)
fewer inversions than

v. Since the one-line notation of sB1,1v begins with an increasing sequence of |A0|
letters, w has

(
|A0|
2

)
more inversions than this, and we have the desired formula. �

From the zig-zag factorization of a permutation, one may construct a reduced
expression as follows.

Corollary 3.7. Let w avoid the patterns 3412 and 4231 and have an indecomposable
zig-zag factorization with intervals labeled as in (3.2). Choose reduced expressions

{W (Ai) | 0 ≤ i ≤ r},
{W (Bi,j) | 1 ≤ i ≤ r, j = 2, 4, . . . , ji − 1},
{W (Ci,k) | 1 ≤ i ≤ r, k = 2, 4, . . . , ki − 1},

{W (Di) | 1 ≤ i ≤ r}
for the permutations

{sA0sB1,1} ∪ {sAi
sCi,1

sBi+1,1
| 0 < i < r} ∪ {sAr

sCr,1},
{sBi,j

sBi,j+1
| 1 ≤ i ≤ r, j = 2, 4, . . . , ji − 1},

{sCi,k
sBi,j+1

| 1 ≤ i ≤ r, k = 2, 4, . . . , ki − 1},
{sDi

| 1 ≤ i ≤ r}.
Then a reduced expression for w in terms of adjacent transpositions is given by the
concatenation of the reduced expressions

(3.11) W (A0), W (B1,2), . . . , W (B1,j1−1), W (A1), W (C1,2), . . . , W (C1,k1−1), W (D1),

. . . , W (Bi,2), . . . , W (Bi,ji−1), W (Ai), W (Ci,2), . . . , W (Ci,ki−1), W (Di), . . . ,

W (Br,2), . . . , W (Br,jr−1), W (Ar), W (Cr,1), . . . , W (Cr,kr
), W (Dr).

Proof. Multiplying the reduced expressions in (3.11), we clearly obtain w. By Propo-
sition 3.6, the length of this expression for w is as short as possible and the expression
is therefore reduced. �



14 MARK SKANDERA

Furthermore, for each 3412-avoiding, 4231-avoiding permutation w, we have the
following description of permutations v ≤ w.

Proposition 3.8. Let (sI1, . . . , sIp
) be a zig-zag factorization of w ∈ Sn. Then u ≤ w

if and only if there exist permutations tI1 , . . . , tIp
satisfying u = tI1 · · · tIp

and tIj
≤ sIj

for j = 1, . . . , p.

Proof. By Observation 3.1, we may assume that w is ⊕-indecomposable. Label the
intervals I1, . . . , Ip as in (3.2). Assume that I1 is labeled A0. (If I1 is labeled D1, the
claim is trivial; if it is labeled A1, we may replace w by w−1 in the claim and use the
factorization (3.6) for w−1.)

Suppose first that u ≤ w. Choosing a reduced expression W for w as in (3.11), we
can find a reduced expression U for u which is a subexpression of W . It is then easy
to express U as a product of the desired form.

Now suppose that we have u = tI1 · · · tIp
, with tIj

≤ sIj
for j = 1, . . . , p. Combining

the inequalities

tA0tB1,1 ≤ sA0 ,

tAi
tCi,1

tBi+1,1
≤ sAi

, 1 ≤ i < r,

tAr
tCr,1 ≤ sAr

,

tBi,j
tBi+1,j

≤ sBi,j
, 1 ≤ i ≤ r, j = 2, 4, . . . , ji − 1,

tCi,k
tCi+1,k

≤ sCi,k
, 1 ≤ i ≤ r, k = 2, 4, . . . , ki − 1,

tDi
≤ sDi

, 1 ≤ i ≤ r.

with a reduced expression of the form (3.11) for w, we have that u ≤ w. �

A second description of permutations less than or equal to a 3412-avoiding, 4231-
avoiding permutation is as follows.

Lemma 3.9. Let w ∈ Sn avoid the patterns 3412 and 4231 and have an indecompos-
able zig-zag factorization (sI1, . . . , sIp

). Then each v ≤ w factors uniquely as v = uy
with ℓ(v) = ℓ(u) + ℓ(y) and

(3.12)

u ≤ sI1 ,

y ≤ zy, for all z ≤ sI1,

y ≤ sI3 · · · sIp
.

Furthermore, this factorization defines a bijection between permutations v ≤ w and
pairs (u, y) satisfying (3.12).

Proof. Let SI1 be the parabolic subgroup of Sn corresponding to the interval I1, and
let W I1 be the set of minimum length representatives of cosets of the form SI1y. It
is well known that elements y of W I1 are characterized by the condition that y ≤ zy



DUAL CANONICAL AND KAZHDAN-LUSZTIG BASES 15

for all z ∈ SI1, that every permutation v ∈ Sn factors uniquely as v = uy with
u ∈ SI1 , y ∈ W I1, ℓ(v) = ℓ(u) + ℓ(y), and that this factorization defines a bijection
φ : Sn → SI1 × W I1.

To see that φ satisfies φ({v | v ≤ w}) ⊂ SI1 × {y ∈ W I1 | y ≤ sI3 · · · sIp
}, choose

a permutation v ≤ w. By Proposition 3.8, we can factor v as tI1tI3 · · · tIp
with

tIj
≤ sIj

for j odd and with ℓ(v) = ℓ(tI1) + ℓ(tI3) + · · · + ℓ(tIp
). Furthermore, it

is easy to choose tI1, . . . , tIp
so that the first |I1| letters in the one-line notation of

tI3 · · · tIp
are increasing. Thus we have u = tI1 ∈ SI1 and y = tI3 · · · tIp

∈ W I1. The
containment φ−1(SI1 × {y ∈ W I1 | y ≤ sI3 · · · sIp

}) ⊂ {v | v ≤ w} follows immediately
from Proposition 3.8. �

4. A Factorization of Kazhdan-Lusztig basis elements

While each nonnegative linear combination of dual canonical basis elements is a
totally nonnegative polynomial, the converse of this statement is false. Intimately
related to this fact is a vector space duality between the homogeneous component
An([n], [n]) of C[x1,1, . . . , xn,n] and the group algebra C[Sn] defined by

〈x1,u(1) · · ·xn,u(n), v〉 = δu,v.

In particular, Kazhdan and Lusztig [22] defined a basis {C ′
w(q) |w ∈ Sn} of the Hecke

algebra Hn(q) by

C ′
v(q) = q−ℓ(v)/2

∑

u≤v

Pu,v(q)Tu,

where {Pu,v(q) | u, v ∈ Sn} are the Kazhdan-Lusztig polynomials, which we used ear-
lier the definition (2.3) of Kazhdan-Lusztig immanants. These polynomials have no
known elementary formula.

Specializing the Kazhdan-Lusztig basis at q = 1, we obtain a basis of C[Sn]. Dual
to this is the basis of Kazhdan-Lusztig immanants,

〈Immu(x), C ′
v(1)〉 = δu,v.

Since no elementary formula is known for the Kazhdan-Lusztig polynomials, it is not
surprising that also no elementary formula is known for the Kazhdan-Lusztig basis
of the Hecke algebra or for the Kazhdan-Lusztig immanants. Nevertheless, we can
deduce certain properties of the Kazhdan-Lusztig immanants by studying Kazhdan-
Lusztig basis elements corresponding to reversals and to 3412-avoiding, 4231-avoiding
permutations.

For each adjacent transposition si in Sn, the Kazhdan-Lusztig basis element C ′
si
(q)

has the form q−1/2(Te + Tsi
). The following result of Billey and Warrington [2] uses

pattern avoidance to characterize basis elements which factor as products of these.
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Theorem 4.1. Let si1 · · · siℓ be a reduced expression for w. Then we have

C ′
w(q) = C ′

si1
(q) · · ·C ′

siℓ
(q)

if and only if w avoids the patterns 321, 56781234, 46781235, 56718234, 46718235.

To state an analogous factorization result in Theorem 4.3, we generalize from ad-
jacent transpositions to reversals, for which we have

(4.1) C ′
s[i,j]

(q) = (q−1/2)(
j−i+1

2 )
∑

v≤s[i,j]

Tv.

More generally still, results linking pattern avoidance, smoothness in Schubert va-
rieties and the Kazhdan-Lusztig basis [4], [6], [23] imply that basis elements corre-
sponding to 3412-avoiding, 4231-avoiding permutations have the form

C ′
w(q) = q−ℓ(w)/2

∑

v≤w

Tv.

That is, the Kazhdan-Lusztig polynomial Pv,w(q) is identically 1 when w avoids the
patterns 3412 and 4231. (See also [1, Ch. 6].) While the above expression is itself
rather simple, we will show in Theorem 4.3 that it factors as a product of basis
elements of the form (4.1). This factorization, closely related to the zig-zag factor-
ization defined in Section 3, will help describe the dual cone of total nonnegativity,
to be defined in Section 5.

For any nonnegative integer k, define the polynomials kq and kq! by

kq =

{
1 + q + · · ·+ qk−1 if k > 0,

0 if k = 0,

kq! =

{
1q2q · · · kq if k > 0,

1 if k = 0.

Specializing the polynomials at q = 1, we obtain k and k! respectively. Since kq! is
a generating function for permutations in Sk by length, i.e. kq! =

∑
w∈Sk

qℓ(w), the

Hecke algebra identity TvC
′
s[i,j]

(q) = qℓ(v)C ′
s[i,j]

(q) for v ≤ s[i,j] implies that we have

(4.2) (C ′
s[i,j]

(q))2 = (q−1/2)

(
j−i+1

2

)
(j − i + 1)q!C

′
s[i,j]

(q).

The author is grateful to K. Peterson for pointing out this identity.

Proposition 4.2. Let w ∈ Sn avoid the patterns 3412 and 4231 and have an in-
decomposable zig-zag factorization (s[1,m], s[j+1,m], sI3, . . . , sIp

). Let e be the identity
element of Sj, and define w′ ∈ Sn−j by e ⊕ w′ = sI3 · · · sIp

. Then we have

(4.3) C ′
s[1,m]

(q)C ′
e⊕w′(q) = (m − j)q!(q

−1/2)

(
m−j

2

)
C ′

w(q).
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Proof. By Proposition 3.6, we have ℓ(w) = ℓ(e ⊕ w′) +
(

m
2

)
−
(

m−j
2

)
. Thus, since w

avoids the patterns 3412 and 4231, the right-hand side of Equation (4.3) is equal to

(4.4) (m − j)q!(q
−1/2)

(
m
2

)
+ℓ(w′)

∑

v≤w

Tv.

Since s[1,m] and w′ avoid the patterns 3412 and 4231, the left-hand side is equal to

(4.5) (q−1/2)

(
m
2

)
+ℓ(w′)

∑

u≤s[1,m]

Tu

∑

v≤e⊕w

Tv.

For indices i, i′, let S[i,i′] be the parabolic subgroup of Sn generated by si, . . . , si′−1.
Define X ⊂ S[1,m] to be the set of minimum length representatives of cosets uS[j+1,m]

in S[1,m]. Then each permutation u ∈ S[1,m] factors uniquely as u = xz with x ∈ X
and z ∈ S[j+1,m]. Using Proposition 3.8 and the definition of an indecomposable zig-
zag factorization, it is straightforward to show that the group S[j+1,m] acts by left
multiplication on the set {v | v ≤ e ⊕ w′}. Let Y ⊂ S[j+1,m] be the set of minimum
length representatives of the resulting orbits. Then Y is also the set of minimum
length representatives in the orbits resulting from the action of S[1,m] on {v | v ≤ w}.

By Lemma 3.9 and Equation (4.2) we then have

(4.6)

∑

u≤s[1,m]

Tu

∑

v≤e⊕w′

Tv =
∑

x∈X

Tx

( ∑

z∈S[j+1,m]

Tz

)2∑

y∈Y

Ty

= (m − j)q!
∑

x∈X
z∈S[j+1,m]

y∈Y

TxTzTy

= (m − j)q!
∑

u∈S[1,m]

y∈Y

TuTy

= (m − j)q!
∑

v≤w

Tv.

By (4.4) and (4.5) this gives the desired equality (4.3). �

The factorization result for permutations given in Theorem 3.5 now translates
into the following factorization result for Kazhdan-Lusztig basis elements. Given a
sequence of intervals (I1, . . . , Im), define the Hecke algebra element

Φ(I1, . . . , Im; q) = C ′
sI1

(q) · · ·C ′
sIm

(q).

Theorem 4.3. Let w avoid the patterns 3412 and 4231 and have an indecompos-
able zig-zag factorization (sI1, . . . , sIp

) with intervals labeled as in (3.2). Then C ′
w(q)
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factors as

(4.7) C ′
w(q) =

(q1/2)

(
|I2|
2

)
+
(
|I4|
2

)
+···+

(
|Ip−1|

2

)

|I2|q!|I4|q! · · · |Ip−1|q!
Φ(I1, I3, . . . , Ip; q).

Proof. Assume that Equation (4.7) holds for permutations in S1, . . . , Sn−1.

If the interval I1 is labeled as A0, define v = sI3sI4 · · · sIp
. Then v = e⊕w′ for some

3412-avoiding, 4231-avoiding permutation w′ in Sn′, n′ < n. Using the induction
hypothesis and Proposition 3.6 we then have

(4.8) C ′
v(q) =

(q1/2)

(
|I4|
2

)
+
(
|I6|
2

)
+···+

(
|Ip−1|

2

)

|I4|q!|I6|q! · · · |Ip−1|q!
Φ(I3, I5, . . . , Ip; q).

By Proposition 4.2 we may multiply both sides of (4.8) by

q
1
2(

|I2|
2 )

|I2|q!
C ′

sI1
(q)

to obtain Equation (4.7).

If the interval I1 is labeled as A1, then apply the above argument to the zig-zag
factorization (3.6) of w−1 to factor C ′

w−1(q) as in Equation (4.7) and reverse the order
of the factors to obtain a factorization of C ′

w(q). Finally, if the interval I1 is labeled
as D1, then the result follows from Equation (4.1). �

Since C ′
u(q)C

′
v(q) = C ′

u⊕v(q), we may factor C ′
w(q) for any 3412-avoiding, 4231-

avoiding permutation w as a product of expressions of the form (4.7). On the other
hand, we may use Equation (4.2) to obtain the following alternative to the factoriza-
tion (4.7),

C ′
w(q) =

q

(
|I2|
2

)
+
(
|I4|
2

)
+···+

(
|Ip−1|

2

)

(|I2|q!|I4|q! · · · |Ip−1|q!)2
Φ(I1, I2, . . . , Ip; q).

To illustrate Theorem 4.3, let w ∈ S18 be the permutation having one-line notation
(3.4). Using the zig-zag factorization (3.3) of w, we may factor C ′

w(q) as

q
1
2

((
3
2

)
+
(
3
2

)
+
(
1
2

)
+
(
2
2

)
+
(
2
2

))

3q!3q!0q!1q!1q!
C ′

s[1,5]
(q)C ′

s[3,6]
(q)C ′

s[13,15]
(q)C ′

s[9,13]
(q)C ′

s[4,10]
(q)C ′

s[14,18]
(q)

=
q4

3q!2
C ′

s[1,5]
(q)C ′

s[3,6]
(q)C ′

s[13,15]
(q)C ′

s[9,13]
(q)C ′

s[4,10]
(q)C ′

s[14,18]
(q).

Note that in Figure 3.1 it is easy to distinguish between the intervals which contribute
Kazhdan-Lusztig basis elements to the above expression and the intervals which con-
tribute q-factorials and powers of q. In terms of the poset defined in (3.5), the latter



DUAL CANONICAL AND KAZHDAN-LUSZTIG BASES 19

intervals are equal to intersections of the intervals which they cover and which cover
them.

The factorizations in Theorems 4.1 and 4.3 are related by more than their ap-
pearance. The following result shows that the two factorizations are identical for
permutations which avoid all seven of the forbidden patterns, equivalently, for per-
mutations which avoid the two patterns 321 and 3412.

Proposition 4.4. Let w avoid the patterns 321 and 3412. Then the factorizations of
C ′

w(q) in Theorems 4.1 and 4.3 agree.

Proof. Since the operation ⊕ preserves avoidance of both patterns, we may assume
w to have an indecomposable zig-zag factorization (sI1 , . . . , sIp

). By Observation 3.2,
we have

|Im| =

{
2 m odd,

1 m even.

By Proposition 3.6, ℓ(w) is equal to the number of these intervals having cardinality
2. Thus the zig-zag factorization of w (ignoring reversals of the form s[i,i]) is a reduced
expression for w, and the factorization

C ′
w(q) = C ′

sI1
(q)C ′

sI3
(q) · · ·C ′

sIp
(q)

given by Theorem 4.3 agrees with that given by Theorem 4.1. �

It is easy to see that neither Theorem 4.1 nor Theorem 4.3 generalizes the other,
e.g. by using them to factor C ′

4312(q) and C ′
3412(q). On the other hand, they must be

special cases of a more general fact since we have

C ′
4231(q) = C ′

s[1,2]
(q)C ′

s[2,4]
(q)C ′

s[1,2]
(q),

while 4231 avoids neither 321 nor 4231. It would be interesting to precisely state this
generalization.

Question 4.5. For which permutations w does C ′
w(q) factor as g(

√
q)Φ(I1, . . . , Im; q)

for some intervals I1, . . . , Im and some rational function g?

5. The dual cone of total nonnegativity

In [30, Sec. 7], cones of TNN and SNN elements of spanC{x1,w1 · · ·xn,wn
|w ∈ Sn}

were defined. Virtually all of the known TNN and SNN polynomials belong to these
cones. (See [30, Sec. 1].) Generalizing these definitions a bit, we will define the
following cones of functions on n × n matrices. Define the dual canonical cone, the
dual cone of total nonnegativity, and the dual cone of Schur nonnegativity, which we
will denote by ČB, ČTNN, and ČSNN, respectively, to be the cones whose extreme
rays are homogeneous elements of C[x1,1, . . . , xn,n] belonging to B, having the TNN
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property, and having the SNN property, respectively. Our use of the term dual refers
to the relationship of this point of view to that of Stembridge [32], who defined the
cone of total nonnegativity to be the smallest cone in C[Sn] containing all of elements
of the form

∑
w∈Sn

a1,w(1) · · ·an,w(n)w, where A = (ai,j) is a totally nonnegative matrix.

Using this terminology, we have the following.

Corollary 5.1. The dual canonical cone is contained in the intersection of the dual
cones of total nonnegativity and Schur nonnegativity.

Proof. By Theorem 2.1, the dual canonical basis elements are Kazhdan-Lusztig im-
manants of generalized submatrices of x = (xi,j)

n
i,j=1. By [16], [30], [29], these are

TNN and SNN. �

The author and A. Zelevinsky have verified that the containment of ČB in ČTNN is
strict. In particular, the homogeneous element

(5.1) Imm3214(x) + Imm1432(x) − Imm3412(x)

belongs to ČTNN r ČB. Moreover we have used cluster algebras and Maple to show
that this element is equal to a subtraction-free rational expression in matrix minors.
Thus the cone ČSFR of functions which have this subtraction-free rational function
property must also properly contain ČB. On the other hand, the element (5.1) does
not belong to ČSNN, because its evaluation on the Jacobi-Trudi matrix H2222 expands
in the Schur basis as

2s62 + 2s53 + 2s521 − s44 + 2s431 + 2s422.

Thus ČB and ČSNN are not known to be different.

In order to examine the difference ČTNN r ČB more closely, we will use graphs
known as planar networks. We define a planar network of order n to be an acyclic
planar directed multigraph G = (V, E) in which 2n boundary vertices are labeled
counterclockwise as sources 1, . . . , n and sinks n, . . . , 1. In figures, sources will appear
on the left and sinks on the right. All edges should be understood to be oriented
from left to right. We define a path family in a planar network to be an n-tuple
π = (π1, . . . , πn) of paths from sources 1, . . . , n, respectively, to sinks w(1), . . . , w(n),
respectively, for some permutation w ∈ Sn. We will say that w is the type of the path
family. We will say also that a path family π covers a planar network if each edge in
the planar network belongs to at least one of the paths in π.

Planar networks are often used to represent the factorization of permutations into
the standard generators s1, . . . , sn−1 of Sn. In this capacity, the planar networks are
often refered to as wiring diagrams, and vertices are not explicitly drawn. We shall
associate planar networks also to reversal factorizations as follows. To represent the
reversal s[i,j], we shall draw i− 1 horizontal lines, above a “star” of j − i + 1 diagonal
lines, above n − j more horizontal lines. To represent a reversal factorization, we
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will concatenate planar networks corresponding to the appropriate reversals. It is
easy to see that the connected components of such a planar network correspond to
⊕-indecomposable permutations.

The first two planar networks G and G′ in Figure 5.1 represent the reversal (zig-zag)
factorization

s[1,5]s[3,5]s[3,6]s[4,6]s[13,15]s[13,13]s[9,13]s[9,10]s[4,10]s[14,15]s[14,18]s[23,25]s[23,24]s[22,24]s[22,22]s[20,22]

of the permutation whose one-line notation is

(10, 9, 8, 2, 1, 3, 7, 6, 13, 12, 11, 5, 18, 17, 4, 16, 15, 14, 19, 22, 21, 24, 25, 23, 20).

This permutation decomposes as

(10, 9, 8, 2, 1, 3, 7, 6, 13, 12, 11, 5, 18, 17, 4, 16, 15, 14)⊕ (1) ⊕ (3, 2, 5, 6, 4, 1),

or equivalently as u ⊕ e ⊕ v, where

u = s[1,5]s[3,5]s[3,6]s[4,6]s[13,15]s[13,13]s[9,13]s[9,10]s[4,10]s[14,15]s[14,18],

e = s[1,1],

v = s[4,6]s[4,5]s[3,5]s[3,3]s[1,3].

Accordingly, both planar networks have three connected components. While G′ is
smaller than G, it is easy to see that the two planar networks are equivalent in the
sense that for any w ∈ S25 there is a bijective correspondence between path families
of type w in G and in G′.

For each reversal s[i,j] with i 6= j in a reversal factorization, a “star” is visible in
a planar network (e.g. G or G′) which represents that factorization. We will call the
vertex in the center of that star a reversal vertex.

After concatenating planar networks corresponding to reversals, we will find it
convenient to delete multiple edges between reversal vertices. Deleting from the
planar network G′ in Figure 5.1 all but one edge joining each pair of adjacent reversal
vertices, we arrive at the planar network H in the same figure. For convenience, we
will also delete any vertices having indegree and outdegree equal to one, so that the
only vertices remaining in the deleted planar network are sources, sinks, and reversal
vertices corresponding to intervals listed in (4.7).

We will refer to this network H as the deleted planar network corresponding to a
reversal factorization. In general, for any planar network G representing a reversal
factorization and the corresponding deleted planar network H , there exists a constant
c such that for any permutation w, the number of path families of type w in G is
equal to c times the number of path families of type w in H . In order to state a
precise formula for c, we will partially order the reversal vertices in G by defining
v ≤ v′ if there exists a directed path from v to v′ in G. (This is precisely the poset
defined in the discussion of Figure 3.1.)
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Figure 5.1. Two equivalent planar networks corresponding to a re-
versal factorization, and a third “deleted” planar network.

Observation 5.2. Fix a planar network G representating a reversal factorization, let
reversal vertices v and v′ correspond to reversals s[i,j] and s[i′,j′], and suppose that v is
covered by v′. Define k = |[i, j]∩ [i′, j′]| and construct a new planar network G′′ from
G by deleting all but one of the k paths between v and v′. Then for any permutation
w ∈ Sn, the number of path families of type w covering G is equal to k! times the
number of path families of type w covering G′′.

For any deleted planar network H corresponding to a zig-zag factorization of a
3412-avoiding, 4231-avoiding permutation w, we will show that the number of path
families of type v in H can be nonzero only when v ≤ w.

To each planar network G of order n, we associate a path matrix A = (ai,j) by
defining ai,j to be the number of paths from source i to sink j. For any permutation
v ∈ Sn, the product a1,v1 · · ·an,vn

is equal to the number of path families of type v
in G (not necessarily covering G). A celebrated result in the theory of total nonneg-
ativity [20], [24] asserts the path matrix of a planar network to be TNN. (For more
information, see [14] and references there.)



DUAL CANONICAL AND KAZHDAN-LUSZTIG BASES 23

Lemma 5.3. Let H be the deleted planar network corresponding to the zig-zag fac-
torization of a 3412-avoiding, 4231-avoiding permutation w in Sn and let A be the
path matrix of H. Then H and A have the following properties.

(1) Every path family in H covers H.
(2) Every entry of A is zero or one.
(3) We have

a1,u1 · · ·an,un
=

{
1 if u ≤ w,

0 otherwise.

Proof. Suppose that two permutations u and v have reversal factorizations represented
by planar networks with path matrices A and B, respectively. It is easy to see that the
reversal factorization of u⊕v formed by concatenating those of u and v is represented
by a planar network which is a disjoint union of the two planar networks and whose
path matrix has the block diagonal form

A ⊕ B =

[
A 0
0 B

]
.

We may therefore assume that w is ⊕-indecomposable.

(1) Suppose that π is a path family in H which does not cover some edge e of H .
If e is an edge from a source to a reversal vertex, or from a reversal vertex to a sink,
then π is not a path family. Thus e must be an edge from reversal vertex v to an
adjacent reversal vertex v′. Let s[i,j], s[i′,j′] be the corresponding reversals. If i < i′,
then paths in π must connect sources 1, . . . , j to sinks 1, . . . , i′ − 1 while j > i′ − 1,
contradicting the existence of e. Similarly, if i > i′, then paths in π must connect
sources i, . . . , n to sinks j′, . . . , n while n − i + 1 > n − j′, again contradicting the
existence of e.

(2) Reversal vertices in H correspond to a subsequence (sJ1 , . . . , sJp
) of the reversal

factorization of w. Let v(J1), . . . , v(Jp) be the corresponding reversal vertices in H .
Suppose that there are at least two paths in H from source i to sink j. Let k be the
smallest index such that i belongs to Jk and let ℓ be the greatest index such that j
belongs to Jℓ. Then there must be at least two paths in H from v(Jk) to v(Jℓ). This
is impossible however, since paths in H must follow the partial order (3.5).

(3) Let I = (I1, . . . , Ip) be the full sequence of intervals in the zig-zag factorization
of w. Construct a planar network G to represent this factorization by concatenating
planar networks G(I1), . . . , G(Ip) corresponding to the reversals.

Suppose that u ≤ w. By Proposition 3.8, u can be factored as u = t1 · · · tp with
tj ≤ sIj

for j = 1, . . . , p. It is therefore clear that there is at least one path family
of type u which covers G. By Observation 5.2 there is at least one path family
of type u which covers H . By statements (1) and (2) above there is at most one,
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i.e. a1,u1 · · ·an,un
= 1. Now suppose that a1,u1 · · ·an,un

= 1. By Observation 5.2 there
is at least one path family π of type u which covers G. Thus π may be viewed as the
concatenation of p families π(1), . . . , π(p) of n subpaths, with π(j) being the restriction
of π to G(Ij). Since type(π) = type(π(1)) · · · type(π(p)), Proposition 3.8 implies that
type(π) ≤ w.

Thus the statements u ≤ w and a1,u1 · · ·an,un
= 1 are equivalent. By statement (2)

we must also have the equivalence of u 6≤ w and a1,u1 · · ·an,un
= 0. �

The path matrices we have constructed serve as “indicator” matrices for Kahzdan-
Lusztig immanants in the following sense. (For a different description of the relation-
ship between a 3412-avoiding, 4231-avoiding permutation w and the path matrix of
its deleted planar network, see [17] and [31].)

Theorem 5.4. Let H be the deleted planar network corresponding to a zig-zag fac-
torization of a 3412-avoiding, 4231-avoiding permutation w in Sn, and let A be the
path matrix of H. Then we have

Immu(A) =

{
1 if u = w,

0 otherwise.

Proof. Using Lemma 5.3 we have

Immu(A) =
∑

u≤v≤w

(−1)ℓ(v)−ℓ(u)Pw0v,w0u(1)a1,v1 · · ·an,vn

=
∑

u≤v≤w

(−1)ℓ(v)−ℓ(u)Pw0v,w0u(1).

Since w avoids the patterns 3412 and 4231, we have Pv,w(q) = 1 for all v ≤ w, and we
may replace each number Pw0v,w0u(1) in the above sum by Pw0v,w0u(1)Pv,w(1). Now
by Kazhdan and Lusztig’s inversion formula [22, Sec. 3]

∑

u≤v≤w

(−1)ℓ(v)−ℓ(u)Pw0v,w0u(1)Pv,w(1) =

{
1 if u = w,

0 otherwise,

we obtain the desired result. �

The existence of these indicator matrices allows us to compare the dual canonical
cone with the dual cone of total nonnegativity as follows.

Theorem 5.5. Let Immf(x) be totally nonnegative and let its expansion in terms of
Kazhdan-Lusztig immanants be given by

Immf (x) =
∑

w∈Sn

dwImmw(x).

Then du is nonnegative for each 3412-avoiding, 4231-avoiding permutation u.



DUAL CANONICAL AND KAZHDAN-LUSZTIG BASES 25

Proof. Let u be a 3412-avoiding, 4231-avoiding permutation in Sn, and suppose that
du is negative. Let H be the deleted planar network corresponding to the zig-zag
factorization of u, and let A be the path matrix of H . Then A is TNN and by
Theorem 5.4 we have

Immf (A) = duImmu(A) = du < 0,

contradicting the total nonnegativity of Immf (x). �

More generally, we have the following.

Theorem 5.6. Let W = Sr, let M , M ′ be two r-element multisets of [n] and let p(x)
be a totally nonnegative element of Ar(M, M ′). If the expansion of p(x) in terms of
the dual canonical basis is

p(x) =
∑

w∈Sr

dwImmw(xM,M ′),

then du is nonnegative for each 3412-avoiding, 4231-avoiding permutation u in Sr.

Proof. By Theorem 2.1, we may assume each coefficient dw to be zero unless w is a
maximal representative of a coset in Wι(M)\W/Wι(M ′). Let u be such a representative
which avoids the patterns 3412 and 4231 and suppose that du is negative. Let H be
the deleted planar network corresponding to the zig-zag factorization (sI1, . . . , sIp

) of
u and let A = (ai,j) be the path matrix of H . Then A is TNN.

Furthermore, we claim that

ai,j =

{
ai+1,j if mi = mi+1,

ai,j+1 if m′
j = m′

j+1.

Fix i and suppose that mi = mi+1. By the maximality of u, we have that siu < u, or
equivalently ui > ui+1 in one-line notation. By Observation 3.2, the first interval Ik

in the zig-zag factorization to contain i is also the first interval to contain i+1. Thus
paths in H from source i to a fixed sink j are in bijection with paths from source i+1
to sink j, by swapping the subpaths preceeding the reversal vertex corresponding to
sIk

. This implies that we have ai,j = ai+1,j . Similarly, the equality m′
j = m′

j+1 implies
that ai,j = ai,j+1.

Now let B be the submatrix of A obtained by deleting row i for each index i
satisfying mi = mi+1 and by deleting column j for each index j satisfying m′

j = m′
j+1.

It follows that BM,M ′ = A and since B is a submatrix of A, it too is TNN. By
Theorem 5.4 we therefore have

p(B) = duImmu(A) = du < 0,

contradicting the total nonnegativity of p(x). �
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Theorem 5.5 suggests several problems. Recalling Lakshmibai and Sandhya’s re-
sult [23] that a permutation w’s avoidance of the patterns 3412 and 4231 is equivalent
to smoothness of the Schubert variety Γw, we have the following.

Problem 5.7. Find an intuitive reason for the connection between total nonnegativ-
ity, the dual canonical basis, and smoothness of Schubert varieties.

It would also be interesting to understand precisely how the cones mentioned earlier
are related.

Problem 5.8. Find the extremal rays in C[x1,1, . . . , xn,n] of the cones ČTNN, ČSNN,
and ČSRF, or describe the precise containments satisfied by these cones and ČB.
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Mathematics . Birkhäuser Boston Inc., Boston, MA (2000).

[2] S. C. Billey and G. Warrington. Kazhdan-Lusztig polynomials for 321-hexagon avoiding
permutations. J. Algebraic Combin., 13, 2 (2001) pp. 111–136.

[3] J. Brundan. Dual canonical bases and Kazhdan-Lusztig polynomials (2005). Preprint
math.CO/0509700 on ArXiv.

[4] J. B. Carrell. The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational
smoothness of Schubert varieties. Proceedings of Symposia in Pure Math., 56, Part 1 (1994) pp.
53–61.

[5] C. W. Curtis. On Lusztig’s isomorphism theorem for Hecke algebras. J. Algebra, 92, 2 (1985)
pp. 348–365.
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