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Abstract. We study Muirhead-type generalizations of families of inequalities due
to Newton, Maclaurin and others. Each family is defined in terms of a commonly
used basis of the ring of symmetric functions in n variables. Inequalities corre-
sponding to elementary symmetric functions and power sum symmetric functions
are characterized by the same simple poset which generalizes the majorization or-
der. Some analogous results are also obtained for the Schur, homogeneous, and
monomial cases.

1. Introduction

Commonly used bases for the vector space Λr
n of homogeneous of degree r sym-

metric functions in n variables x = (x1, . . . , xn) are the monomial symmetric func-
tions {mλ(x) |λ ` r}, elementary symmetric functions {eλ(x) |λ ` r}, (complete)
homogeneous symmetric functions {hλ(x) |λ ` r}, power sum symmetric functions
{pλ(x) |λ ` r}, and Schur functions {sλ(x) |λ ` r}. (See [12, Ch. 7] for definitions.)

To each element gλ(x) of these bases, we will associate a term-normalized symmetric
function Gλ(x) and a mean Gλ(x) by

(1.1) Gλ(x) =
gλ(x)

gλ(1, . . . , 1)
, Gλ(x) = r

√
Gλ(x).

Thus, for example Eλ(x) and Eλ(x) are associated with the elementary symmetric
function eλ(x). Note that {Gλ(x) |λ ` r} forms a basis of Λr

n, and that the functions
{Gλ(x) |λ ` r}, while symmetric, are not polynomials in x and therefore do not
belong to the ring of symmetric functions Λn. In the definition of Gλ(x), we assume
r > 0.

The functions Gλ(x) are examples of symmetric means (see, e.g., [2, p. 62]). By
definition, these are symmetric functions in x1, . . . , xn satisfying

(1) min(a) ≤ G(a) ≤ max(a),
(2) a ≤ b (componentwise) implies G(a) ≤ G(b),
(3) limb→0 G(a + b) = G(a),
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(4) G(ca) = cG(a),

for all a,b ∈ Rn≥0 and c ∈ R≥0.

This paper will explore inequalities between symmetric means. For fixed n and two
means F, G, we will write F(x) ≤ G(x) or G(x)− F(x) ≥ 0 if we have F(a) ≤ G(a)
for all a ∈ Rn≥0. We define the inequality F (x) ≤ G(x) analogously. Note that if
the degrees of F (x) and G(x) are equal, then we have F (x) ≤ G(x) if and only if
F(x) ≤ G(x).

The study of inequalities of symmetric means has a long history. (See, e.g., [2],
[5].) Perhaps the best known such inequality is that of the arithmetic and geometric
means,

E1(x) ≥ En(x).

See [2] for many proofs of this result. Another example is Muirhead’s inequality [8]:
if λ and µ are partitions of r, then

Mλ(x) ≤Mµ(x) if and only if µ majorizes λ; equivalently,

Mλ(x) ≤Mµ(x) if and only if µ majorizes λ.

See Section 2 for a definition and further discussion of the majorization order (also
known as dominance order) on partitions. Muirhead’s inequality will serve as a pro-
totype for many of the results in this paper.

Other classical inequalities are due to

(1) Maclaurin [6]: For 1 ≤ i ≤ j ≤ n,

Ei(x) ≥ Ej(x),

(2) Newton [9, p. 173]: For 1 ≤ k ≤ n− 1,

Ek,k(x) ≥ Ek+1,k−1(x); equivalently,

Ek,k(x) ≥ Ek+1,k−1(x),

(3) Schlömilch [11]: For 1 ≤ i ≤ j,

Pi(x) ≤ Pj(x),

(4) Gantmacher [4, p. 203]: For k ≥ 1,

pk,k(x) ≤ pk+1,k−1(x); equivalently,

Pk,k(x) ≤ Pk+1,k−1(x); equivalently,

Pk,k(x) ≤ Pk+1,k−1(x),

(5) Popoviciu [10]: For 1 ≤ i ≤ j,

Hi(x) ≤ Hj(x),
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(6) Schur [5, p. 164]: For k ≥ 1,

Hk,k(x) ≤ Hk+1,k−1(x); equivalently,

Hk,k(x) ≤ Hk+1,k−1(x).

Note that term-normalized symmetric functions and means are defined only for a
finite number n of variables. Nevertheless, we may essentially eliminate dependence
upon n from the inequalities enumerated above by considering them to be inequalities
in sequences of functions,

G = (G(x1), G(x1, x2), G(x1, x2, x3), . . . ),

G = (G(x1),G(x1, x2),G(x1, x2, x3), . . . ).

We will define partial orders on such sequences by declaring F ≤ G if we have
F (x) ≤ G(x) for all n > 0, and F ≤ G if we have F(x) ≤ G(x) for all n > 0.

Our strategy will be to classify the above partial orders on the infinite sets {Gλ |λ `
1, 2, . . . } corresponding to the common bases of the ring of symmetric functions. Our
principal results and conjectures (Theorem 3.2, Theorem 4.2, Conjecture 5.1, Theo-
rem 7.3, Conjecture 7.4) can be viewed as either analogs or extensions of Muirhead’s
inequality. Stating them in full generality requires the introduction of two new partial
orders on partitions: the normalized majorization order, and the double (normalized)
majorization order. These will be defined in Section 2 .

Strangely, these partial orders seem to have escaped study within the extensive
and venerable literature on symmetric means. The classical inequalities listed above
solve many special cases of the problem we have posed above, but fall short of a
complete classification. For example, Muirhead’s inequalities apply only to pairs of
polynomials having the same degree. Maclaurin’s inequalities allow different degrees,
but only deal with partitions having a single part.

This program is only partially complete. We obtain complete results for the ele-
mentary and power sum cases: the posets {Eλ} and {Pλ} are classified in Sections 3
and 4, using an analog of Muirhead’s inequality based on the normalized majoriza-
tion order. For the monomial poset {Mλ}, we conjecture a characterization that
extends Muirhead’s inequality to pairs of functions with different degree, using the
double-majorization order. In Section 5 we establish the necessity of this condition,
and prove its sufficiency in many cases. For homogeneous symmetric functions, it is
easy to prove a sufficient condition for the partial order {Hλ} , but its necessity is
open. For Schur functions, the situation is reversed: necessity of the corresponding
condition is easy but sufficiency is open. We discuss the status of these and other
questions in Section 7.
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2. Majorization and its extensions

The following definition is classical and has a vast literature (see, e.g. [7]): if λ and
µ are partitions of n, then we write λ � µ and say that λ is majorized by µ if

λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi for all i ≥ 1.

In this definition, we tacitly regard λ and µ as sequences of the same length, adding
zeros if necessary. Let Pn denote the poset of all partitions of n, under the ma-
jorization order. It is well-known that Pn is a lattice, and that it is self-dual. More
precisely,

(2.1) λ � µ if and only if λ>� µ>,

where λ> denotes the transpose (or conjugate) of λ defined by λ>j = max{i |λi ≥ j}.
See [1] for more discussion of the lattice structure of Pn.

The notion of majorization extends readily to rational sequences: if Q∗ denotes
the set of weakly decreasing sequences of nonnegative rationals, and α, β ∈ Q∗, we
say that α � β if α1 + · · · + αi ≤ β1 + · · · + βi for all i. The set Q∗ is a lattice
under this ordering, with meets defined as in (Pn,�) using partial sums, i.e., if
Si(λ) = λ1 + · · ·+ λi, then

Si(λ ∧ µ) = min(Si(λ), Si(µ)) for all i ≥ 1.

However, there is no analog of (2.1), and Q∗ is not self-dual. The subset Q1 ⊆ Q∗
consisting of sequences whose entries sum to 1 is a sublattice of Q∗. We will refer to
the elements of Q1 as rational partitions of 1.

For each integer n, Pn embeds naturally in Q1 under the map

λ ↪→ λ̄ =
λ

|λ|
.

This allows us to define a new relation, called normalized majorization, on the set P∗
of all integer partitions. If λ and µ are partitions, possibly of different integers, we
write

λ v µ if λ̄ � µ̄, i.e.,
λ

|λ|
� µ

|µ|
.

It is important to note that (P∗,v) is preorder, not a partial order: for example, if λ
is any partition, then λ v kλ and kλ v λ for any positive integer k. Let P∗ = (P∗,v)
denote the quotient of P∗ with respect to the relation α ∼ β iff α v β and β v α.
If n is a positive integer, let P≤n denote the subposet of P∗ consisting of elements
corresponding to partitions of integers less than or equal to n. Several similarities
and differences between the normalized majorization order and ordinary majorization
orders are easy to see.

Observation 2.1. Normalized majorization satisfies the following properties:
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(1) For all n, (Pn,�) embeds isomorphically in P≤n (and hence in P∗) as a sub-
poset.

(2) For all n, P≤n is a finite poset; for n ≥ 5 it is not a lattice and is not self-dual;
for n ≥ 6 it is not ranked.

(3) P∗ is a lattice, isomorphic to the infinite sublattice of Q1 consisting of se-
quences with finite support; it is not locally finite (in fact every interval has
infinite length), and it is not self-dual.

Figure 2.1 shows the poset P≤6, with each element represented by the corresponding
integer partition in “lowest terms”. Thus, for example, {3, 3} and {2, 2} are both
represented by {1, 1}. Partitions of integers dividing 6 have been emphasized to show
the embedding of (P6,�) in P≤6.

Figure 2.1. The poset P≤6, with an embedding of (P6,�) .

Parts (1) and (2) of Observation 2.1 are straightforward, as are most of the claims
made in (3). To verify that P∗ is not locally finite, suppose that α, β ∈ Q1 are distinct
partitions with finite support, such that α ≺ β. Then the partition

γ =
α + β

2
= (

α1 + β1

2
,
α2 + β2

2
, . . . )
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lies strictly between α and β, and also has finite support.

We will also introduce another partial order on P∗, called the double (normalized)
majorization order. If λ and µ are partitions, possibly of different numbers, define

λ E µ iff λ v µ and λ>w µ>,

or in other words,

λ E µ iff
λ

|λ|
� µ

|µ|
and

λ>

|λ|
� µ>

|µ|
.

Let DP∗ = (P∗, E ). It is worth noting that the conditions λ v µ and λ>w µ> are
not equivalent in general; for example, if λ = {2, 2} and µ = {2, 1}, then λ v µ
but λ> 6w µ>. However, when |λ| = |µ|, λ E µ if and only if λ � µ, and thus double
majorization is equivalent to ordinary majorization in this case. We note some basic
properties of DP∗:

Observation 2.2. Let λ and µ be integer partitions.

(1) If λ E µ and µ E λ, then λ = µ; hence DP∗ is a partial order.
(2) For all n, (Pn,�) embeds isomorphically in DP∗ as a subposet.
(3) λ E µ if and only if λ>D µ>; hence DP∗ is self-dual.
(4) DP∗ is an infinite poset without universal bounds; it is locally finite, but is not

locally ranked.
(5) DP∗ is not a lattice.

Figure 2.2 shows the restriction of this poset to integer partitions of of 1, . . . , 5.
Embeddings of (Pn,�) in DP∗ appear as vertical columns in the diagram, for n =
1, . . . , 5.

Claims (1)–(3) in Observation 2.2 are immediate or straightforward. To verify the
claim in (4) that DP∗ is locally finite, note that if λ E θ E µ, then it follows from
the definition of double majorization that

θ>1 ≤ λ>1 and θ1 ≤ µ1.

Hence the Ferrers diagram of θ fits inside a box of size λ>1 × µ1. Since there are only
a finite number of such θ, the interval [λ, µ] is finite.

The statement in (5) that DP∗ is not a lattice may be verified by inspection of
Figure 2.2. Note for example, that the partitions {2} and {3, 1} do not have a greatest
lower bound; any such partition would have to lie in the interval [{2, 1}, {2}], and
that entire interval is displayed in the diagram.

We continue by listing some technical observations that will be useful in later
sections. Some of these will involve the operations of dilation and replication, defined
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Figure 2.2. Double majorization of partitions of 1, . . . , 5.

for partitions λ = (λ1, . . . , λ`) as follows: if c is a positive integer, then

cλ = (cλ1, . . . , cλ`),

λc = (λ1, . . . , λ1︸ ︷︷ ︸
c

, . . . , λ`, . . . , λ`︸ ︷︷ ︸
c

).

The operations of dilation and replication extend to rational values of c, provided
that the resulting part sizes and multiplicities are integral. The following facts are
easy consequences of the above definitions.

Observation 2.3. Let λ, µ be integer partitions with |λ| = |µ|, let c and d be positive
rational numbers. Then we have

(1) (λd)>= dλ>,
(2) (dλ)>= (λ>)d,
(3) λ � µ⇐⇒ cλ � cµ⇐⇒ λd � µd ⇐⇒ λ>� µ>,

assuming all of these sequences are defined.

The following results are routine but require a little more effort, and we leave their
verification to the reader.
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Observation 2.4. Suppose that λ and µ are arbitrary integer partitions.

(1) If |λ| ≤ |µ|, then λ E µ if and only if λ v µ, i.e., λ
|λ| �

µ
|µ| .

(2) If |λ| ≥ |µ|, then λ E µ if and only if λ>w µ>, i.e., λ>

|λ| �
µ>

|µ| .

(3) If c is a positive rational such that cλ is defined, then λ E cλ if and only if
c ≥ 1.

(4) If c is a positive rational such that λc is defined, then λ D λc if and only if
c ≥ 1.

We conclude this section with an alternate characterization of the majorization
order that will be used in Sections 3 and 4. If λ is a partition, define the function
ψλ : N→ N by

(2.2) ψλ(j) = max
1≤k≤`

{λ1 + · · ·+ λk − kj}.

Lemma 2.5. Two integer partitions λ, µ of r satisfy λ � µ if and only if we have
ψλ(j) ≤ ψµ(j) for j = 1, . . . , r. Furthermore, for any fixed j we have ψλ(j) > ψµ(j)
if and only if λ>1 + · · ·+ λ>j < µ>1 + · · ·+ µ>j.

Proof. Note that ψλ(j) is equal to the number of boxes in columns j + 1, . . . , r of the
Young diagram of λ,

ψλ(j) = r − (λ>1 + · · ·+ λ>j).

Thus the condition ψλ(j) ≤ ψµ(j) for j = 1, . . . , r is equivalent to the condition
λ>� µ>, which in turn is equivalent to λ � µ. �

This result can be generalized easily to rational partitions of 1.

Corollary 2.6. Two integer partitions λ, µ satisfy λ>

|λ| �
µ>

|µ| if and only if we have
1
|λ|ψλ(j) ≤

1
|µ|ψµ(j) for j = 1, . . . , r. Furthermore, for any fixed index j we have

1
|λ|ψλ(j) >

1
|µ|ψµ(j) if and only if

λ>1
|λ| + · · ·+ λ>j

|λ| <
µ>1
|µ| + · · ·+ µ>j

|µ| .

3. Elementary means

Maclaurin’s and Newton’s inequalities state that

E1 ≥ · · · ≥ En,

Ek,k ≥ Ek+1,k−1, for k = 1, . . . , n− 1.

In this section we generalize these to inequalities of the form Eλ ≤ Eµ, where λ, µ
are integer partitions and Eλ, Eµ are means corresponding to elementary symmetric
functions.
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For λ = (λ1, . . . , λ`) ` r, the term-normalized elementary symmetric function Eλ(x)
is given by the formula

Eλ(x) =
eλ(x)(

n
λ1

)
· · ·
(
n
λ`

) ,
and the corresponding elementary mean is the rth root of this, Eλ(x) = r

√
Eλ(x).

Since eλd(x) = eλ(x)d and λd is a partition of dr, we have the following stability
property of elementary means under the replication operation.

Observation 3.1. For any partition λ and integer d ≥ 1 we have Eλ = Eλd.

We can now state and prove the main result of this section.

Theorem 3.2. If λ and µ are integer partitions with |λ| = |µ|, then

Eλ ≤ Eµ iff λ � µ iff λ>� µ>.

If λ and µ are arbitrary integer partitions, then

Eλ ≤ Eµ iff λ>v µ> i.e.,
λ>

|λ|
� µ>

|µ|
.

The partial order on {Eλ|λ ` n} is isomorphic to (Pn,�). The partial order on {Eλ}
is isomorphic to (P∗,v).

Proof. First we consider the case that |λ| = |µ|, which was first proved in [3, Thm. 5.7].

Suppose that λ>� µ>. Then for some index i we have

λ>1 + · · ·+ λ>i > µ>1 + · · ·+ µ>i.

Choosing a number n ≥ max(λ1, µ1) and specializing the symmetric functions Eλ(x),
Eµ(x) at

x1 = · · · = xi = t,

xi+1 = · · · = xn = 1,

we obtain polynomials in N[t] of degrees λ>1 + · · ·+ λ>i and µ>1 + · · ·+ µ>i, respectively.
Thus we have

lim
t→∞

[Eλ(t, . . . , t︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
n−i

)− Eµ(t, . . . , t︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
n−i

)] =∞,

which implies that Eλ � Eµ.

Conversely, suppose that λ>� µ> and write λ = (λ1, . . . , λ`). If λ covers µ in the
majorization order, then there exist indices 1 ≤ j < k ≤ ` for which we have

µ = (λ1, . . . , λj−1, λj − 1, λj+1, . . . , λk−1, λk + 1, λk+1, . . . , λ`).
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For arbitrary n, we therefore have that Eµ(x)− Eλ(x) is equal to

Eλ(x)

Eλj(x)Eλk(x)
(Eλj−1(x)Eλk+1(x)− Eλj(x)Eλk(x)).

Rewriting Newton’s inequalities as

E1(x)

E0(x)
≥ E2(x)

E1(x)
≥ E3(x)

E2(x)
≥ · · · ,

we see that Eλj(x)Eλk(x) ≤ Eλj−1(x)Eλk+1(x). Thus, Eλ(x) ≤ Eµ(x). If λ does not
cover µ in the majorization order, then there exists a sequence of partitions

µ = ν(0) ≤ ν(1) ≤ · · · ≤ ν(m) = λ,

in which each comparison of consecutive partitions is a covering relation. Thus we
have

Eµ(x)− Eλ(x) =
m−1∑
i=0

(Eν(i)(x)− Eν(i+1)(x)) ≥ 0,

and again Eλ(x) ≤ Eµ(x). Since this argument is independent of n, we have Eλ ≤ Eµ.

Now consider the case that |λ| and |µ| are not equal. By Observation 3.1, we have

Eλ(x) = Eλ|µ|(x), Eµ(x) = Eµ|λ|(x).

Since λ|µ| and µ|λ| are both partitions of |λ| · |µ|, we have Eλ ≤ Eµ if and only if

(λ|µ|)>� (µ|λ|)>. By Observation 2.3 this is equivalent to the condition λ>

|λ| �
µ>

|µ| . �

The isomorphism between {Eλ} and (P∗,v) is given by the map Eλ 7→ λ>. Conse-
quently, the labeling of elements in Figure 2.1 does not represent the partial order on
the Eλ. Figure 3.1 shows another copy of the diagram in which the labels have been
corrected to show the ordering of elementary means.

The proof of Theorem 3.2 shows that Newton’s inequalities imply those of Maclau-
rin and those of the form Eλ ≤ Eµ in the following strong algebraic sense. Define the
Newton semiring to be the set of all nonnegative linear combinations of products of
symmetric functions of the forms

{Ej,i(x)− Ej+1,i−1(x) | 1 ≤ i ≤ j ≤ n− 1} ∪ {Ei(x) | 1 ≤ i ≤ n}.

Corollary 3.3. Each difference Eµ(x) − Eλ(x) with |λ| = |µ| and µ � λ belongs to
the Newton semiring.

Note that Corollary 3.3 includes differences of the form Eµ|λ|(x) − Eλ|µ|(x) with
λ>

|λ| �
µ>

|µ| , even if |λ| 6= |µ|. This shows that Newton’s inequalities imply Maclaurin’s

inequality and relatives of the form Eλ ≤ Eµ.
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Figure 3.1. Equivalence classes of partitions of 1, . . . , 6 ordered by
inequalities of elementary means.

4. Power sum means

The inequalities of Schlömilch and Gantmacher state that

P1 ≤ P2 ≤ · · · ,
Pk,k ≤ Pk+1,k−1, for k = 1, 2, . . . .

We will generalize these to inequalities of the form Pλ ≤ Pµ, where λ, µ are integer
partitions and Pλ, Pµ are means corresponding to power sum symmetric functions.

For λ = (λ1, . . . , λ`) ` r, the term-normalized power sum symmetric function Pλ(x)
is given by

Pλ(x) =
pλ(x)

n`
,

and the corresponding power sum mean is the rth root of this, Pλ(x) = r
√
Pλ(x).

Like the elementary basis {eλ(x) |λ ` r} of Λr
n, the power sum basis {pλ(x) |λ ` r}

is multiplicative. We therefore have the following equalities.

Observation 4.1. For any partition λ and integer d ≥ 1 we have Pλ = Pλd.
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Theorem 4.2. If λ and µ are integer partitions with |λ| = |µ|, then

Pλ ≤ Pµ iff λ � µ iff λ>� µ>.

If λ and µ are arbitrary integer partitions, then

Pλ ≤ Pµ iff λ>w µ> i.e.,
λ>

|λ|
� µ>

|µ|
.

The partial order on {Pλ|λ ` n} is isomorphic to (Pn,�). The partial order on {Pλ}
is isomorphic to the dual of (P∗,v).

Proof. Let λ = (λ1, . . . , λ`), µ = (µ1, . . . , µm) be integer partitions. Let us first
assume that |λ| = |µ|.

Suppose that λ � µ, and let ψλ, ψµ be the functions defined in (2.2). Using
Lemma 2.5, choose an index j such that ψλ(j) > ψµ(j), and consider the functions
which we temporarily denote by φλ(t), φµ(t) and which we define by

φλ(t) = Pλ(t, 1, . . . , 1︸ ︷︷ ︸
tj

) =
∏̀
i=1

tλi + tj

1 + tj
=

1

(tj + 1)`

∑̀
k=0

∑
{i1,...,ik}

tλi1+···+λik+(`−k)j,

φµ(t) = Pµ(t, 1, . . . , 1︸ ︷︷ ︸
tj

) =
m∏
i=1

tµi + tj

1 + tj
=

1

(tj + 1)m

m∑
k=0

∑
{i1,...,ik}

tµi1+···+µik+(m−k)j.

These are rational functions in t which asymptotically approach polynomials in t of
degrees ψλ(j) and ψµ(j), respectively. Thus we have

lim
t→∞

[φλ(t)− φµ(t)] =∞,

which implies Pλ � Pµ.

Conversely, suppose that λ � µ. Then we proceed as in the proof of Theorem 3.2
with Gantmacher’s inequalities replacing those of Newton and conclude that Pλ ≤ Pµ.

In the case that |λ| and |µ| are not equal, we again proceed as in the proof of
Theorem 3.2. Specifically, we apply Observation 4.1 to see that we have

Pλ(x) = Pλ|µ|(x), Pµ(x) = Pµ|λ|(x)

for all n. Thus we have Pλ ≤ Pµ if and only if λ|µ| � µ|λ|, or equivalently, if and only

if λ>

|λ| �
µ>

|µ| . �

The similarity of Theorems 3.2 and 4.2 is somewhat curious. In fact, we have
Pλ ≤ Pµ if and only if Eλ ≥ Eµ. It would be interesting to find a more direct proof
of this fact.

The proof of Theorem 4.2 shows that Gantmacher’s inequalities imply those of
Schlömilch and those of the form Pλ ≤ Pµ, just as as Corollary 3.3 shows that
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Newton’s inequalities imply those of Maclaurin. To be more precise, we define the
Gantmacher semiring to be the set of all nonnegative linear combinations of products
of symmetric functions of the forms

{Pj+1,i−1(x)− Pj,i(x) | 1 ≤ i ≤ j} ∪ {Pi(x) | i ≥ 1}.
Corollary 4.3. Each difference Pµ(x) − Pλ(x) with |λ| = |µ| and λ � µ belongs to
the Gantmacher semiring.

As was the case with Corollary 3.3, the last result also covers cases where |λ| 6= |µ|,
since it implies that Pµ|λ|(x)− Pλ|µ|(x) when λ>

|λ| �
µ>

|µ| .

Finally, we note that the inequalities of Schlömilch and Gantmacher hold in greater
generality than we have considered here. For example, Schlömilch’s inequalities hold
for power sum means indexed by any two real numbers [11]. (See also [5, p. 26].) It
also is easy to see that Gantmacher’s inequalities Pk,k ≤ Pk+1,k−1 hold for k real.
Furthermore, these are just a small part of a much larger family of inequalities derived
from minors of matrices. See [4, p. 203].

5. Monomial means

We next turn to the case of monomial means, and look for inequalities of the form
Mλ ≤Mµ where λ, µ are arbitrary integer partitions and Mλ, Mµ are means corre-
sponding to monomial symmetric functions. The prototype is Muirhead’s inequality,
which states that

Mλ ≤Mµ if and only if λ � µ,

provided that |λ| = |µ|.
Note that a formula for λ = (λ1, . . . , λ`) ` r, the term-normalized monomial sym-

metric function is given by

Mλ(x) =
mλ(x)(

n
α1,...,αr,n−`

) ,
where αj is equal to the number of parts of λ which are equal to j. The corresponding

monomial mean is the rth root of this, Mλ(x) = r
√
Mλ(x).

Unlike the elementary and power sum bases of Λr
n, the monomial basis is not

multiplicative. Nonetheless, evidence suggests that a characterization analogous to
Theorem 3.2 and Theorem 4.2 exists for the poset {Mλ} as well.

Conjecture 5.1. Given integer partitions λ and µ, we have

(5.1) Mλ ≤Mµ if and only if λ E µ, i.e.,
λ

|λ|
� µ

|µ|
and

λ>

|λ|
� µ>

|µ|
.

Equivalently, Mλ ≤ Mµ if and only if Eλ> ≤ Eµ> and Pλ ≤ Pµ. The poset {Mλ} is
isomorphic to DP∗.
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Much of Conjecture 5.1 may be proved using the methods of the proof of The-
orem 3.2. In particular, we will show that the conditions on λ and µ in (5.1) are
necessary for the inequality Mλ ≤Mµ, i.e., that Mλ ≤Mµ implies λ E µ. As in the
proof of Theorem 3.2, we consider specializations of Mλ, Mµ at vectors of the form
(t, . . . , t, 1, . . . , 1). First we prove the necessity in (5.1) of the conditions λ

|λ| �
µ
µ| .

Proposition 5.2. If Mλ ≤Mµ, then λ
|λ| �

µ
|µ| .

Proof. Suppose λ
|λ| �

µ
|µ| . Then there exists an index j such that

λ1

|λ| + · · ·+ λj
|λ| >

µ1

|µ| + · · ·+ µj
|µ| .

Choosing n > max(λ>1, µ
>
1) and specializing the symmetric functions Mλ(x), Mµ(x)

at

x1 = · · · = xj = t,

xj+1 = · · · = xn = 1,

we obtain polynomials in N[t] of degrees λ1 + · · ·+ λj and µ1 + · · ·+ µj, respectively.
It follows that

lim
t→∞

[Mλ(t, . . . , t︸ ︷︷ ︸
j

, 1, . . . , 1︸ ︷︷ ︸
n−j

)−Mµ(t, . . . , t︸ ︷︷ ︸
j

, 1, . . . , 1︸ ︷︷ ︸
n−j

)] =∞,

which implies Mλ � Mµ. �

To prove the necessity in (5.1) of the conditions λ>

|λ| �
µ>

|µ| , we will need to look more

closely at specializations of Mλ, Mµ at x = (t, . . . , t, 1, . . . , 1).

Proposition 5.3. Fix an integer partition θ = (θ1, . . . , θ`) and a nonnegative integer
j ≥ `. Then we have

(5.2) Mθ(t, . . . , t︸ ︷︷ ︸
j

, 1, . . . , 1︸ ︷︷ ︸
n−j

) =
∑̀
k=0

(
j
k

)(
n−j
`−k

)(
n
`

) ∑
ρ

a(θ, ρ)t|ρ|

where the second sum is over subsequences ρ = (ρ1, . . . , ρk) = (θi1 , . . . , θik) of θ and
a(θ, ρ) is a constant which depends upon θ and ρ.

Proof. We have

(5.3) mθ(t, . . . , t︸ ︷︷ ︸
j

, 1, . . . , 1︸ ︷︷ ︸
n−j

) =
∑̀
k=0

(
j

k

)(
n− j
`− k

) ∑
(ρ1,...,ρk)

b(θ, ρ)tρ1+···+ρk ,
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where b(θ, ρ) is the number of rearrangements of θ whose first k components are a
rearrangement of (ρ1, . . . , ρk). Similarly,

mθ(1, . . . , 1︸ ︷︷ ︸
n

) =

(
n

`

)
c(θ),

where c(θ) is the number of rearrangements of θ. The ratio of these two expressions
therefore has the desired form. �

Choosing the number of ones in this specialization to be a function of t ∈ R, we
obtain the following sharper result.

Lemma 5.4. Fix an integer partition θ = (θ1, . . . , θ`) and nonnegative integers j ≥ `
and b. Then the function

(5.4) Mθ(t, . . . , t︸ ︷︷ ︸
j

, 1, . . . , 1︸ ︷︷ ︸
tb−j

)

in Q(t) behaves asymptotically like a constant times tψθ(b), where ψθ is the function
defined in (2.2).

Proof. For k = 0, . . . , `, the rational function(
j
k

)(
n−j
`−k

)(
n
`

)
appearing in (5.3) is a ratio q1(n)/q2(n) of polynomials satisfying deg q1−deg q2 = −k.
Substituting n = tb in (5.3) and observing that each subsequence (θi1 , . . . , θik) of
θ satisfies θi1 + · · · + θik ≤ θ1 + · · · + θk, we see that the function (5.4) behaves
asymptotically like a constant times

tmaxk{θ1+···+θk−kb} = tψθ(b).

�

We can now complete the final step in showing necessity of the conditions in (5.1).

Proposition 5.5. If Mλ ≤Mµ, then λ>

|λ| �
µ>

|µ| .

Proof. Suppose that λ>

|λ| �
µ>

|µ| . Then by Corollary 2.6 we may choose an index b

such that ψλ(b)/|λ| > ψµ(b)/|µ|. Fix a nonnegative integer j ≥ max(λ>1, µ
>
1) and

temporarily define the functions φλ(t), φµ(t) of t by

φλ(t) = Mλ(t, . . . , t︸ ︷︷ ︸
j

, 1, . . . , 1︸ ︷︷ ︸
tb−j

), φµ(t) = Mµ(t, . . . , t︸ ︷︷ ︸
j

, 1, . . . , 1︸ ︷︷ ︸
tb−j

).
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By Lemma 5.4 we have

lim
t→∞

φλ(t)

φµ(t)
= lim

t→∞

tψλ(b)/|λ|

tψµ(b)/|µ| =∞,

which implies that Mλ � Mµ. �

Thus we have proved “half” of Conjecture 5.1, and we summarize by stating this
result as a corollary.

Corollary 5.6. If Mλ ≤Mµ, then λ E µ.

It remains to prove sufficiency, i.e. that λ E µ implies Mλ ≤ Mµ. A significant
number of cases may be proved easily using the technique of plethystic substitution.
In particular, we will show that the implication is true whenever |λ| ≤ |µ|.

Recall from Observation 2.4 (3) that for c ∈ Q and cλ an integer partition, we
have λ E cλ if and only if c ≥ 1. Inequalities for monomial means satisfy a similar
condition; in fact we do not even need to assume that cλ is an integer partition.

Proposition 5.7. For c ∈ Q, we have Mλ ≤Mcλ if and only if c ≥ 1.

Proof. Fix λ = (λ1, . . . , λ`) and an integer n ≥ `. Let D ⊂ Nn be the set of all
rearrangements of (λ1, . . . , λ`, 0, . . . , 0). It is clear that we have

(5.5)

∑
δ∈D x

δ1
1 · · ·xδnn
|D|

= Mλ(x),

since the numerator and denominator of the fraction on the left-hand side are equal
to mλ(x) and mλ(1

n), respectively. Similarly for any c ∈ R, we have∑
δ∈D x

cδ1
1 · · ·xcδnn
|D|

= Mcλ(x).

Now observe that for all a ∈ Rn≥0 we may define a sequence b ∈ R|D|≥0 whose

components are the numbers aδ11 · · · aδnn obtained by letting δ vary over D (in any
order). Furthermore, the evaluations of P1(y1, . . . , y|D|) and Pc(y1, . . . , y|D|) at b are
equal to Mλ(a) and Mcλ(a), respectively. We may then apply Schlömilch’s inequality
(or Theorem 4.2) to obtain

Mλ(a) = P1(b) ≤ Pc(b) = Mcλ(a)

if and only if c ≥ 1. Thus we have Mλ ≤Mcλ if and only if c ≥ 1. �

We note that a result equivalent to Proposition 5.7 appears in [2, p. 361], with
essentially the same proof. We can now complete the proof of the sufficiency of the
conditions on λ and µ in (5.1), as follows.
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Proposition 5.8. Assume |λ| ≤ |µ|. If λ E µ then Mλ ≤Mµ.

Proof. By Observation 2.4 (1), the condition λ E µ is equivalent to λ
|λ| �

µ
|µ| , when

|λ| ≤ |µ|. Suppose therefore that we have λ
|λ| �

µ
|µ| , or equivalently, |µ||λ|λ � µ. By

Muirhead’s Theorem, we then have Mkλ ≤ Mµ, where k = |µ|
|λ| . By Proposition 5.7

we also have Mλ ≤Mkλ and thus Mλ ≤Mµ. �

Thus the only remaining part of Conjecture 5.1 which needs to be proved is the
sufficiency of the condition λ E µ when |λ| > |µ|. We state this as a separate conjec-
ture:

Conjecture 5.9. Assume |λ| > |µ|. If λ E µ then Mλ ≤Mµ.

Observation 2.4 (4) states that λ D λd for all rationals d ≥ 1 such that λd is an
integer partition. From this we obtain the following simple special case of Conjecture
5.9.

Conjecture 5.10. Mλ ≥ Mλd for all rationals d ≥ 1 such that λd is an integer
partition. Equivalently, Mλa ≥Mλb for all pairs of nonnegative integers a ≤ b.

We do not have a proof of Conjecture 5.10 in general, but the special case d ∈ N
(or a = 1) can be proved by applying Muirhead’s inequalities.

Proposition 5.11. Mλ ≥Mλd for all integers d ≥ 1.

Proof. Observe that (Mλ)
d is a convex combination of {Mµ |λd � µ � dλ}, and

therefore by Muirhead’s inequalities satisfies Mλd ≤ (Mλ)
d ≤Mdλ. Thus we have

Mλd = d|λ|
√
Mλd ≤ d|λ|

√
(Mλ)d = |λ|

√
Mλ = Mλ.

�

Also, the special “rectangular” case λ = (k) of Conjecture 5.10 can be proved by
plethysm.

Proposition 5.12. Mka ≥Mkb if a, b, k ∈ N, a ≤ b.

Proof. Define y = (xk1, . . . , x
k
n). Then we have

Mka(x) = Ea(y) ≥ Eb(y) = Mkb(x).

�

Another special case of Conjecture 5.9 can be derived from the following property
of the double majorization order.

Observation 5.13. If λ E µ then λ ∪ µ E µ.
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Proof. If λ E µ then we have λ>

|λ| �
µ>

|µ| , or equivalently,

λ>1 + · · ·+ λ>i
|λ|

≥ µ>1 + · · ·+ µ>i
|µ|

for all i. Then we have

(λ ∪ µ)>1 + · · ·+ (λ ∪ µ)>i
|λ ∪ µ|

=
λ>1 + · · ·+ λ>i + µ>1 + · · ·+ µ>i

|λ|+ |µ|
≥ µ>1 + · · ·+ µ>i

|µ|
for all i. Thus,

(λ ∪ µ)>

|λ ∪ µ|
� µ>

|µ|
.

By Observation 2.4 (2), this implies λ ∪ µ E µ. �

The pairs {(λ ∪ µ, µ) |λ E µ} of partitions above provide examples of monomial
means for which Conjecture 5.9 is true.

Proposition 5.14. If Mλ ≤Mµ, then Mλ∪µ ≤Mµ.

Proof. We have

Mλ∪µ = (Mλ∪µ)
1

(|λ|+|µ|) ≤ (MλMµ)
1

(|λ|+|µ|) = (M
|µ|
λ M |µ|

µ )
1

|µ|(|λ|+|µ|) ,

since MλMµ is a convex combination of {Mν |µ∪λ � ν � µ+λ}. Since the condition

Mλ ≤Mµ is equivalent to M
|µ|
λ ≤M

|λ|
µ , the last expression above is less than or equal

to

(M |λ|
µ M |µ|

µ )
1

|µ|(|λ|+|µ|) = M
1
|µ|
µ = Mµ.

�

For example, if λ = 1 and µ = n, we have Mλ ≤ Mµ by Schlömilch’s inequality.
Hence it follows from Proposition 5.14 that Mn ≥Mn,1 for all n ≥ 1.

6. The Muirhead Cone and Muirhead Semiring

In Sections 3 and 4 we defined the Newton and Gantmacher semirings, and showed
that these contained the differences Eµ(x)− Eλ(x) and Pµ(x)− Pλ(x), respectively,
when |λ| = |µ|. Our conclusion was that the main results of those sections (Theorems
3.2 and 4.2) could be derived algebraically from the classical inequalities of Newton
and Gantmacher. In this section we show that Muirhead’s inequality is even stronger
algebraically.

Define the Muirhead cone to be the set of polynomials in n variables that are non-
negative linear combinations of Muirhead differences, which by definition are sym-
metric functions of the form

Mµ(x)−Mλ(x), λ, µ ` d ≥ 0 λ � µ.
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Define the Muirhead semiring to be the set of all nonnegative linear combinations of
products of functions in the set⋃

d

{Mµ(x)−Mλ(x) |λ, µ ` d, λ � µ} ∪
⋃
d

{Mλ(x) |λ ` d}.

The main result of this section is the following:

Theorem 6.1. The Newton and Gantmacher differences lie in the Muirhead cone.
More precisely, if 1 ≤ i ≤ k, then

(6.1) Pk+1,i−1(x)− Pk,i(x) =
n− 1

n
(Mk+1,i−1(x)−Mk,i(x)),

and

(6.2) Ek,i(x)− Ek+1,i−1(x) =
k−1∑
j=0

dj(M2i−j1k−i+2j(x)−M2i−j−11k−i+2j+2(x)),

where

(6.3) dj =
(k − i+ 1)(i− j)(n− k − j)
i(n− k)(k − i+ j + 1)

(
i
j

)(
n−i
k−i+j

)(
n
k

) .

Proof. Equation (6.1) is an elementary computation. To prove (6.2), note first that
the left-hand side is equal to

i∑
j=0

((
k−i+2j

j

)(
n
i

)(
n
k

) − (
k−i+2j
j−1

)(
n
i−1

)(
n
k+1

))m2i−j1k−i+2j(x)

=
i∑

j=0

((
k−i+2j

j

)(
n
i

)(
n
k

) − (
k−i+2j
j−1

)(
n
i−1

)(
n
k+1

))( n

k − j, 2j, n− k − j

)
M2i−j1k−i+2j(x),

which after a bit of manipulation gives

(6.4)
i∑

j=0

(
(k − i+ 1)(ni− ki− nj − j)

i(n− k)(k − i+ j + 1)

(
i
j

)(
n−i
k−i+j

)(
n
k

) )
M2i−j1k−i+2j(x).

On the other hand, the right-hand side is equal to

(6.5)
k∑
j=0

(dj − dj−1)M2i−j1k−i+2j(x).

Further manipulation using the defintion of dj in (6.3) eventually shows that (6.4)
and (6.5) are equal. �

Corollary 6.2. The Newton semiring and Gantmacher semiring are contained in the
Muirhead semiring.
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Thus our principal results concerning elementary and power sum means (Theorems
3.2 and 4.2) may be viewed as algebraic consequences of Muirhead’s inequality. We

do not know whether the differences M
|λ|
µ (x)−M |µ|

λ (x) are contained in the Muirhead
semiring, when λ E µ. Proving this result would establish Conjecture 5.1 in a strong
form.

It is worth noting that there exist nonnegative symmetric functions that are not
contained in the the Muirhead semiring. For example, a classical result known as
Schur’s inequality [5, p.64] states that the function

f(x1, x2, x3) = x1(x1 − x2)(x1 − x3) + x2(x2 − x1)(x2 − x3) + x3(x3 − x1)(x3 − x2)

= m3(x)−m2,1(x) + 3m1,1,1(x)

is nonnegative for all x ≥ 0. It is not difficult to show that f does not lie in the
degree 3 component of the Muirhead semiring, which is the nonnegative span of
m3(x),m2,1(x),m1,1,1(x),m2,1(x)− 6m1,1,1(x), and 2m3(x)−m2,1(x).

7. Open questions

In this section we collect various partial results and conjectures reflecting our state
of knowledge about the corresponding questions for homogeneous symmetric functions
and Schur functions. We consider the homogeneous case first.

A formula for the term-normalized homogeneous symmetric function is given by

Hλ(x) =
hλ(x)((

n
λ1

))
· · ·
((
n
λ`

)) ,
where

((
n
k

))
=
(
n+k−1

k

)
. We define Hλ(x) = |λ|

√
Hλ(x).

Like the elementary and power sum bases, the homogeneous basis is multiplicative.
We therefore have the following equalities.

Observation 7.1. For any partition λ and integer d ≥ 1 we have Hλ = Hλd.

Evidence suggests that a result analogous to Theorems 3.2 and 4.2 is true.

Conjecture 7.2. Given integer partitions λ, µ,

Hλ ≤ Hµ if and only if λ v µ, i.e.,
λ>

|λ|
� µ>

|µ|
.

We can prove this result in one direction:

Theorem 7.3. Given integer partitions λ and µ, we have

Hλ ≤ Hµ if λ v µ.



INEQUALITIES FOR SYMMETRIC MEANS 21

Proof. In the case that |λ| and |µ| are equal, suppose that λ � µ. Then we proceed
as in the proof of Theorem 3.2 with Schur’s inequalities replacing those of Newton
and conclude that Hλ ≤ Hµ.

In the case that |λ| and |µ| are not equal, we again proceed as in the proof of
Theorem 3.2. Specifically, we apply Observation 7.1 to see that we have

Hλ(x) = Hλ|µ|(x), Hµ(x) = Hµ|λ|(x)

for all n. Thus we have Hλ ≤ Hµ if λ|µ| � µ|λ|, or equivalently, if λ>

|λ| �
µ>

|µ| . �

We have not established the converse of Theorem 7.3 even when |λ| = |µ|, which
would mean proving that Hλ ≤ Hµ implies λ � µ. We have verified this by explicit
computation up through |λ| = |µ| = 7, but several degree 8 cases remain unresolved.
We invite the reader to help complete this argument by showing, for example, that
Hλ 6≤ Hµ when λ = {5, 2, 1}, µ = {4, 4}.

Next we turn to the case of Schur functions. A formula for the term-normalized
Schur function is given by

Sλ(x) =
sλ(x)

dλ
,

where dλ is equal to the number of semistandard Young tableaux of shape λ and
having entries 1, . . . , n. It would be natural to define Sλ(x) = |λ|

√
Sλ(x), and establish

inequalities for these “Schur means” analogous to those obtained for the families {Eλ},
{Pλ}, {Mλ}, and {Hλ} . However, we have a conjecture only for the equal-degree
case, i.e., when |λ| = |µ|. The question of characterizing inequalities among the Sλ

remains open. Computational evidence supports the following:

Conjecture 7.4. Given integer partitions λ and µ with |λ| = |µ|,

Sλ ≤ Sµ if and only if λ � µ.

We can prove that the condition is necessary:

Theorem 7.5. Given integer partitions λ and µ with |λ| = |µ|, we have

Sλ ≤ Sµ only if λ � µ.

Proof. Suppose λ � µ. Then there exists an index j such that

λ1 + · · ·+ λj > µ1 + · · ·+ µj.

Specializing the symmetric functions Sλ(x), Sµ(x) at

x1 = · · · = xj = t,

xj+1 = · · · = xn = 1,
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we obtain polynomials in N[t] of degrees λ1 + · · ·+ λj and µ1 + · · ·+ µj, respectively.
It follows that

lim
t→∞

[Sλ(t, . . . , t︸ ︷︷ ︸
j

, 1, . . . , 1︸ ︷︷ ︸
n−j

)− Sµ(t, . . . , t︸ ︷︷ ︸
j

, 1, . . . , 1︸ ︷︷ ︸
n−j

)] =∞,

which implies Sλ � Sµ. �

When |λ| 6= |µ|, it would be natural to conjecture that

Sλ ≤ Sµ if and only if λ v µ,

or perhaps
Sλ ≤ Sµ if and only if λ E µ.

However, both of these statements are false. For example, if λ = {3, 2} and µ = {2, 1},
then λ v µ but Sλ and Sµ are incomparable. Also, if λ = {3, 1} and µ = {2}, then
λ and µ are incomparable in the double-majorization order, but Sλ ≤ Sµ.

It would be interesting to express the appropriate homogeneous and Schur dif-
ferences Hλ(x) − Hµ(x) and Sλ(x) − Sµ(x) as nonnegative linear combinations of
Muirhead differences Mλ(x) − Mµ(x). The authors have obtained partial results
suggesting that this is possible in many cases.
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